
CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 1

Structured Big Data 2:
NoSQL Systems

Shiow-yang Wu (吳秀陽)

CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly
taken with permission and courtesy

from Professor Shih-Wei Liao of NTU.

Recap from Last Lecture

 Why using NoSQL instead of RDBMS?
o As data scales, RDBMS cannot handle it

 The schema from RDBMS will hinder the
scalability

 Need the data model with loosen schema

→ NoSQL

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 2

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 2

Objectives of this lecture

 Deep dive into several NoSQL databases

 NoSQL Database Systems to be discussed

o DynamoDB

o Cassandra

o MongoDB

 You may study other similar systems in your
independent study

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 3

NoSQL: The Name
 “SQL” = Traditional relational DBMS

 Recognition over past decade or so:

Not every data management/analysis problem
is best solved using a traditional relational
DBMS

 “NoSQL” = “No SQL” =
Not using traditional relational DBMS

 “No SQL” Don’t use SQL language

 “NoSQL” = “Not Only SQL”

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 4

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 3

What’s Wrong with RDBMS
 Nothing. One size fits all? Not really.

 Impedance mismatch.
◦ Object Relational Mapping doesn't work quite well.

 Rigid schema design.

 Harder to scale.

 Replication.

 Joins across multiple nodes? Hard.

 How does RDMS handle data growth? Hard.

 Need for a DBA.

 Many programmers are already familiar with it.

 Transactions and ACID make development easy.

 Lots of tools to use.

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 5

NoSQL Systems
 Alternative to traditional relational DBMS

+ Flexible schema

+ Quicker/cheaper to set up

+ Massive scalability (scale horizontally instead of
vertically)

+ Relaxed consistency higher performance &
availability

– No declarative query language more programming

– Relaxed consistency fewer guarantees

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 6

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 4

How did we get here?
 Explosion of social media sites (Facebook, Twitter)

with large data needs

 Rise of cloud-based solutions such as Amazon S3
(Simple Storage Solution)

 Just as moving to dynamically-typed languages
(Ruby/Groovy), a shift to dynamically-typed data
with frequent schema changes

 Open-source community

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 7

Seeds of the NoSQL Movement

 Three major development were the seeds of the
NoSQL movement
◦ BigTable (Google)

◦ Dynamo (Amazon)

◦ Gossip protocol (discovery and error detection)

◦ Distributed key-value data store

◦ Eventual consistency

◦ CAP Theorem

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 8

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 5

CAP Theorem Revisited

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 9

The Perfect Storm
 Large datasets, acceptance of alternatives, and

dynamically-typed data has come together in a
perfect storm

 Not a backlash/rebellion against RDBMS

 SQL is a rich query language that cannot be rivaled
by the current list of NoSQL offerings

• “NoSQL” = “Not Only SQL”

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 10

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 6

Example #1: Web log analysis

Each record: UserID, URL, timestamp, additional-info

Task: Load into database system

Why NoSQL?

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 11

Example #1: Web log analysis

Each record: UserID, URL, timestamp, additional-info

Task: Find all records for…
 Given UserID

 Given URL

 Given timestamp

 Certain construct appearing in additional-info

Why NoSQL?

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 12

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 7

Example #1: Web log analysis

Each record: UserID, URL, timestamp, additional-info

Separate records: UserID, name, age, gender, …

Task: Find average age of user accessing given URL

Why NoSQL?

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 13

Example #2: Social-network graph

Each record: UserID1, UserID2
Separate records: UserID, name, age, gender, …

Task: Find all friends of friends of friends of … friends of
given user

Why NoSQL?

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 14

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 8

Example #3: Wikipedia pages

Large collection of documents

Combination of structured and unstructured data

Task: Retrieve introductory paragraph of all pages about
U.S. presidents before 1900

Why NoSQL?

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 15

Dynamo: Outline

 Background & motivation

 Implementation

 Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swami Sivasubramanian,
Peter Vosshall and Werner Vogels, “Dynamo:
Amazon's Highly Available Key-Value Store”, in
the Proceedings of the 21st ACM Symposium on
Operating Systems Principles, Stevenson, WA,
October 2007.

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 16

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 9

Amazon DynamoDB

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 17

Background

 Amazon’s eCommerence platform architecture

 Composed of highly decentralized, loosely
coupled, service-oriented architecture

 Service based on a well-defined interface
accessible over the network

 hosted in an infrastructure that consists of tens of
thousands of servers located across many data
centers world-wide

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 18

http://youtube.com/v/oz-7wJJ9HZ0
http://youtube.com/v/oz-7wJJ9HZ0

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 10

Amazon Services
 Many services store and retrieve data based on

key (called key-value access)

 Examples of key-value access in Amazon
o best seller lists, shopping carts, customer preferences,

sales rank

 Traditional RDBMS as persistent store is not
suitable
o No need for strong consistency
o No use of schema
o No need of complex querying and optimization
o No need for complex management functionalities
o Scale up v.s. scale out

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 19

Motivation
 Focus on reliability and scalability

 Need a highly-available storage system instead of
consistency

 Consistency v.s. Availability
o High availability is more important

o Client-perceived consistency

o Tradeoff consistency in favor of higher availability

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 20

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 11

Requirements and
Assumptions
 Query model:

o Simple read and write data based on key

o Data stored as a blob (Binary Large Object)

o Object size small (less than 1MB)

 ACID properties

o Weaker consistency: Eventual consistency

o No isolation guarantee

o Only single key updates

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 21

Eventual Consistency
 When no updates occur for a long period of time,

eventually all updates will propagate through the
system and all the nodes will be consistent

 For a given accepted update and a given node,
eventually either the update reaches the node or
the node is removed from service

 Known as BASE (Basically Available, Soft state,
Eventual consistency), as opposed to ACID

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 22

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 12

Requirements and
Assumptions
 Efficiency

o Based on commodity hardware

o Stringent SLA requirements (next slide)

o Tradeoffs: performance, cost efficiency,

availability, and durability

 Other: non-hostile environment, no security-
related requirements (used only by Amazon’s
internal services)

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 23

Service Level Agreements (SLA)
 Definition: a formally negotiated contract where a

client and a service agree on several system-
related characteristics, which most prominently
include the client’s expected request rate
distribution for a particular API and the expected
service latency under those conditions

 Example: response time within 300ms for 99.9% of
its requests for a peak client load of 500 req/sec

 SLAs expresses as 99.9th percentile of the
distribution
o Not the traditional mean or average

o Why? What is the implication of this?

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 24

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 13

Amazon’s Service Oriented
Infrastructure
 Decentralized SOA (next slide)

 a page request to a e-commerce site typically
requires the rendering engine to construct its
response by sending requests to over 150 services

 Services often have multiple dependencies (call
chains)

 To ensure a clear bound on page delivery each
service within the call chain must obey its
performance contract

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 25

SOA of Amazon’s platform

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 26

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 14

Implementation
Problem Technique Advantage

Partitioning of
data

Consistent Hashing Incremental
Scalability

Handling
temporary
failures

Sloppy Quorum Provides high availability
and durability guarantee
when some of the
replicas are not available.

High availability
for writes

Vector clocks with
reconciliation
during reads

Version size is decoupled
from update rates

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 27

Implementation

 Partition: must be balanced

 Why ?
o Design requirement: to scale incrementally

o Need to partition data over the set of nodes(e.g
storage host) dynamically

o balanced distribution of data

o =>Consistent hashing

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 28

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 15

Basic Consistent Hashing
 Hash keys to a fixed circular space or “ring”

 Each node is assigned a random position in the
ring

 Each data is assigned to a node by hashing its key
and walking clockwise

 Each node is responsible for the region between it
and its predecessor

 Departure or arrival of a node only affects its
immediate neighbors

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 29

Partition: Consistent

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 30

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 16

Insert New Data

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 31

Insert new data: Replication

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 32

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 17

Insert New Data

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 33

Adding New Node

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 34

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 18

Load Balancing

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 35

Implementation
Handling temporary failures

 Sloppy Quorem
o Availability too high will reduce durability

even under the simplest failure
o Sloppy Quorem is to control the tradeoff

between availability and consistency
o To get enough durability to handle temporary

failures

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 36

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 19

Sloppy Quorem

 Configurable N, R, W
o N: number of successful copies in ideal state

o R: number of successful reads nodes for successful
read

o W: number of successful writes nodes for successful
write

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 37

Sloppy Quorem

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 38

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 20

Sloppy Quorem: Write

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 39

Sloppy Quorem: Write

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 40

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 21

Sloppy Quorem: Read

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 41

Sloppy Quorem: Read

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 42

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 22

Sloppy Quorum: write after
B fails

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 43

Sloppy Quorum: After B
Recover

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 44

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 23

Sloppy Quorem

N R W Affection

3 2 2 Typical configuration,Consistent,

durable, interactive user state

n 1 n Strong consistency while poor
availability

n 1 1 High availability while weak
consistency

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 45

Implementation

 Data Version
o Dynamo provides fully availibility

o Consistency => eventually consistency

o To guarantee eventually consistency

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 46

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 24

Data Versioning
 A put() call may return to its caller before the update has

been applied at all the replicas
o Put(key, context, object): context contains metadata &

version
o Each put operation is a new immutable version

 A get() call may return many versions of the same object.
o Get(key)

 Challenge: an object having distinct version sub-histories,
which the system will need to reconcile in the future.

 Solution: uses vector clocks in order to capture causality
between different versions of the same object.

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 47

Data Versioning
D0

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 48

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 25

Gossip
 Admin issue command to join/remove node

 Serving node records in its local membership
history

 Gossip based protocol used to agree on the
memberships

 Partition and Placement information sent during
gossip

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 49

READ Operation
 Send read requests to nodes

 Wait for minimum no of responses (R)

 Too few replies fail within time bound

 Gather and find conflicting versions

 Create context (opaque to caller)

 Read repair

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 50

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 26

Values of N, R and W
 N represents durability

◦ Typical value 3

 W and R affect durability, availability, consistency

 What if W is low?

 Durability and Availability go hand-in-hand?

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 51

Conclusion and Influence
 Dynamo has provided high availability and fault

tolerance

 Provides owners to customize according to their
SLA requirements

 Decentralized techniques can provide highly
available system

 Some of the principles used by S3

 Open source implementation
◦ Cassandra

◦ Voldemort

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 52

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 27

Apache Cassandra

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 53

A Picture is worth 1000 words

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 54

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 28

Proven
 The Facebook stores 150TB of data on 150 nodes

 Used at Twitter, Rackspace, Mahalo, Reddit,
Cloudkick, Cisco, Digg, SimpleGeo, Ooyala, OpenX,
others

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 55

Dynamo vs BigTable

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 56

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 29

What is Cassandra
 A distributed data store for big data applications

 A schema free NoSQL distributed DBMS

 A hybrid between a key-value and a column-
oriented data model

 High availability with no single point of failure

 Symmetric architecture to scale horizontally with
automatic cluster maintenance

 Tunable consistency

 Open source

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 57

Design Goals
 High availability

 Flexible consistency
◦ trade-off strong consistency in favor of high availability

 Incremental scalability

 Optimistic Replication

 “Knobs” to tune tradeoffs between consistency,
durability and latency

 Low total cost of ownership

 Minimal administration

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 58

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 30

Best of Both Worlds
 From BigTable

◦ Sparse , ”columnar”
data model
◦ Optional,2-level maps Called

Super-Column Families

◦ SSTable Disk Storage
◦ Append-only Commit Log

◦ MemTable (Buffer & Sort)

◦ Immutable SSTable Files

◦ Hadoop Integration

CSIE59830 Big Data Systems

 From Dynamo
– Symmetric,P2P

architecture
• No Special nodes, No

SPOF(Single Point Of Failure)

– Gossip Based cluster
management

– Distributed hash table for
data placement
• Pluggable partitioning
• Pluggable topology discovery
• Pluggable placement strategies

– Tunable, Eventual
Consistency

Structured Big Data 2 – NoSQL 59

Data Model
 The whole cluster contains several keyspaces

 Keyspace
◦ Typically, a cluster has one keyspace per application

 Data is stored as a multi dimensional map indexed by
key (row key)

 ColumnFamily
◦ Contains several simple columns or super columns

 SuperColumn
◦ Consists of several columns

 Column
◦ Described by name, value, timestamp

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 60

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 31

Simple column family
 column_family : column

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 61

Super column family
 column_family : super_column : column

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 62

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 32

Data Model

KEY
ColumnFamily1 Name : MailList Type : Simple Sort : Name

Name : tid1

Value : <Binary>

TimeStamp : t1

Name : tid2

Value : <Binary>

TimeStamp : t2

Name : tid3

Value : <Binary>

TimeStamp : t3

Name : tid4

Value : <Binary>

TimeStamp : t4

ColumnFamily2 Name : WordList Type : Super Sort : Time

Name : aloha

ColumnFamily3 Name : System Type : Super Sort : Name

Name : hint1

<Column List>

Name : hint2

<Column List>

Name : hint3

<Column List>

Name : hint4

<Column List>

C1

V1

T1

C2

V2

T2

C3

V3

T3

C4

V4

T4

Name : dude

C2

V2

T2

C6

V6

T6

Column Families

are declared

upfront

Columns are

added and

modified

dynamically

SuperColumns

are added and

modified

dynamically

Columns are

added and

modified

dynamically

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 63

Data Model Example

CSIE59830 Big Data Systems

• Column Families:
– Like SQL tables
– but may be

unstructured (client-
specified)

– Can have index tables

• Hence “column-
oriented
databases”/
“NoSQL”
– No schemas
– Some columns

missing from some
entries

– “Not Only SQL”
– Supports get(key) and

put(key, value)
operations

– Often write-heavy
workloads

Structured Big Data 2 – NoSQL 64

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 33

Consistency Model

 Consistency level is based on replication factor N
(usually 3)

 Can set read quorum R (usually 2) and write
quorum W (usually 2)

 Different levels of consistency are allowed (next
two slides)

 R + W > N means strong consistency

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 65

Consistency Levels - Write

Level Description

ANY At least one node

ONE At least one replica node

TWO At least two replica nodes

THREE At least three replica nodes

QUORUM Write to a quorum of replica nodes

LOCAL_QUORUM Write to a quorum of the current data center as
the coordinator

EACH_QUORUM Write to quorums of all data centers

ALL Write to all replica nodes in the cluster

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 66

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 34

Consistency Levels - Read

CSIE59830 Big Data Systems

Level Description

ONE Read from the closest replica

TWO Read from two of the closest replicas

THREE Read from three of the closest replicas

QUORUM Read from a quorum of replicas

LOCAL_QUORUM Read from a quorum of the current data center
as the coordinator

EACH_QUORUM Read from quorums of all data centers

ALL Read from all replicas in the cluster

Structured Big Data 2 – NoSQL 67

Write Operations
 A client issues a write request to a random node in

the Cassandra cluster.

 The “Partitioner” determines the nodes
responsible for the data.

 Locally, write operations are logged and then
applied to an in-memory version.

 Commit log is stored on a dedicated disk local to
the machine.

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 68

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 35

Write Properties
 No locks in the critical path

 Sequential disk access

 Behaves like a write back cache (vs write through)

 Append support without read ahead

 Atomicity guarantee for a key per replica

 “Always Writable”
◦ accept writes during failure scenarios

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 69

Read

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if
digests differ

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 70

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 36

Gossip Protocols
 Network Communication protocols inspired for real life

rumour spreading.

 Periodic, Pairwise, inter-node communication.

 Low frequency communication ensures low cost.

 Random selection of peers.

 Example – Node A wish to search for pattern in data
◦ Round 1 – Node A searches locally and then gossips with node B.

◦ Round 2 – Node A,B gossips with C and D.

◦ Round 3 – Nodes A,B,C and D gossips with 4 other nodes ……

 Round by round doubling makes protocol very robust.

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 71

Gossip - Initial State

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 72

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 37

Gossip – 1st Round

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 73

Gossip – 2nd Round

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 74

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 38

Gossip – 3rd Round

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 75

Gossip – 4th Round

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 76

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 39

Facebook Inbox Search
 Term Search

 Interactions

a. Given the name of a

person

b. Return all messages

that the user might

have ever sent or

received from that

person

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 77

Facebook Inbox Search
 Cassandra was developed to address this problem.

 50+TB of user messages data in 150 node cluster on which
Cassandra was tested.

 Search user index of all messages in 2 ways.
◦ Term search : search by a key word

◦ Interactions search : search by a user id

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 78

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 40

Example: Term Search
 Key: User id

 Super column: Words that make up the message

 Column: Individual message identifiers of the messages
that contain the word

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 79

Comparison with MySQL
 MySQL > 50 GB Data

Writes Average : ~300 ms
Reads Average : ~350 ms

 Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 80

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 41

Why FB pick HBase?
 Cassandra's eventual consistency model

o Wasn't a good match for their new real-time
Facebook Messaging product

 2 types of data patterns
o A short set of temporal data that tends to be volatile

o An ever-growing set of data that rarely gets accessed

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 81

Why FB pick HBase? (II)
 HBase

o Has a simpler consistency model than Cassandra

o Very good scalability and performance for their data
patterns

o HDFS, the filesystem used by HBase, supports
replication, end-to-end checksums, and automatic
rebalancing

o Facebook's operational teams have a lot of
experience using HDFS because Facebook is a big
user of Hadoop and Hadoop uses HDFS as its
distributed file system

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 82

CSIE59830 Big Data Systems Lecture 07 Structured Big Data 2 – NoSQL

Note 42

Why FB pick HBase? (Ref.)

• The Underlying Technology of Messages (FB)

• Why HBase is a better choice than Cassandra
with Hadoop? (StackOverflow)

• HBase vs Cassandra: 我們遷移系統的原因
(Blogger)

• Taking the Bait (Apache HBase)

• Oracle NoSQL Database Compared to Cassandra
and HBase (PDF)

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 83

Conclusion
 There’s no Holy Grail

 Add fancy features only when absolutely needed.

 Many types of failures are possible.

 Need proper systems-level monitoring.

 Value simple designs

 Analyze carefully and choose, or even design your own
solution.
o Data model
o Consistency
o Throughput or response time
o Fault tolerance

CSIE59830 Big Data Systems Structured Big Data 2 – NoSQL 103

https://www.facebook.com/note.php?note_id=454991608919
http://stackoverflow.com/questions/14950728/why-hbase-is-a-better-choice-than-cassandra-with-hadoop
http://oss-tw.blogspot.tw/2010/04/hbase-vs-cassandra.html
https://blogs.apache.org/hbase/entry/taking_the_bait
http://www.oracle.com/technetwork/products/nosqldb/documentation/nosql-cassandra-hbase-1961726.pdf

