
CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 1

Large-Scale Graph
Processing 2: GraphLab

Shiow-yang Wu (吳秀陽)

CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly
taken with permission and courtesy

from Professor Shih-Wei Liao of NTU.

GraphLab
 Open-source large graph processing system
 Implemented in C++ at CMU
 GAS (Gather, Apply, Scatter) model (more on

this later)
 Shared memory -> Distributed GraphLab

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 2

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 2

Main Reference
 Yucheng Low, et. al. Distributed GraphLab: A

Framework for Machine Learning and Data Mining
in the Cloud, Proceedings of the VLDB Endowment,
Vol. 5, No. 8, 2012.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 3

Why do we need GraphLab?

 Machine Learning and Data Mining
(MLDM) problems increasingly
need systems that can execute
MLDM algorithms in parallel on
large clusters.

 Implementing MDLM algorithms in
parallel on current systems like
Hadoop and MPI can be both
prohibitively complex and costly.

 The MLDM community needs a
high-level abstraction to handle the
complexities of graph and network
algorithms.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 4

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 3

MLDM Algorithm
Properties

Graph Structured
Computation

 Many of the recent
advances in MLDM have
focused on modeling the
dependencies between
data.

 By modeling
dependencies, we are
able to extract more
signal from noisy data.

Dependency Graph

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 6

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 4

Asynchronous Iterative
Computation
 Synchronous systems

update all parameters
simultaneously (in parallel)
using parameter values
from the previous time step
as input

 Asynchronous systems
update parameters using
the most recent parameter
values as input.

 Many MLDM algorithms
benefit from asynchronous
systems.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 7

Dynamic Computation
 Static computation requires

the algorithm to update all
vertices equally often. This
wastes time recomputing
vertices who have effectively
converged.

 Dynamic computation allows
the algorithm to potentially
save time by only
recomputing vertices whose
neighbors have recently
updated.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 8

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 5

Serializability
 Serializability ensures that all

parallel executions have an
equivalent sequential execution,
which eliminates race conditions.

 Race conditions are a programming
fault which can produce
undetermined program states and
behaviors.

 Many MLDM algorithms converge
faster if serializability is ensured.
Some, like Dynamic Advanced Life
Support algorithm, require
serializability for correctness
and/or stability.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 9

Properties of MLDM Graph
Processing

Dependency
Graph

Iterative
Computation

What I Like

What My
Friends Like

Factored
Computation

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 10

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 6

GraphLab Abstraction
 GraphLab abstraction:

◦ Data Graph: program state with data and dependencies

◦ Update Function: computation on the data graph by
transforming data in overlapping contexts called scopes

◦ Execution Model: a simple loop execution semantics

◦ Ensuring Serializability: models and methods to
optimize parallel execution while maintaining
serializability

◦ Sync Operation and Global Values: global values that
may be read by update functions, but are written using
sync operations

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 11

Data Graph
 A graph with arbitrary data (C++ Objects)

associated with each vertex and edge.

Vertex Data:

• User profile text

• Current interests estimates

Edge Data:

• Similarity weights

Graph:

• Social Network

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 12

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 7

An update function is a user defined program which when
applied to a vertex transforms the data in the scope of the
vertex

label_prop(i, scope){
// Get Neighborhood data
(Likes[i], Wij, Likes[j]) scope;

// Update the vertex data

// Reschedule Neighbors if needed
if Likes[i] changes then

reschedule_neighbors_of(i);
}

;][][
][

iFriendsj

ij jLikesWiLikes

Update Functions

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 13

Update Functions
 An update function is a

stateless procedure that
modifies the data within
the scope of a vertex and
schedules the future
execution of the update
functions on other vertices.

 GraphLab update takes a
vertex v and its scope Sv
and returns the new
versions of the data in the
scope as well as a set
vertices T:

Update: f(v,Sv) -> (Sv, T)

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 14

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 8

Execution Model: The
Algorithm

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 15

Execution Model: The Scheduler

CPU 1

CPU 2

The scheduler determines the order that vertices are

updated.

e f g

kjih

dcba b

i
h

a

i

b e f

j

c

S
ch

e
d
u
le

r

The process repeats until the scheduler is empty.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 16

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 9

Ensuring Race-Free Code
 How much can computation overlap?

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 18

Importance of Consistency
 Many algorithms require strict consistency, or

performs significantly better under strict consistency.

0 10 20 30
0

2

4

6

8

10

12

Iterations

E
rr

o
r

(R
M

S
E

)

Inconsistent Updates

Consistent Updates

Alternating Least Squares

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 19

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 10

Importance of Consistency
 Machine learning algorithms require

“model debugging”

Build

Test

Debug

Tweak Model

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 20

GraphLab Ensures Sequential
Consistency

For each parallel execution, there exists a sequential

execution of update functions which produces the same result.

CPU 1

CPU 2

Single
CPU

Parallel

Sequential

time

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 21

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 11

Ensuring Serializability
 GraphLab ensures a serializable

execution by stipulating that
for every parallel execution,
there exists a sequential
execution of update functions
which produces the same
result.

 GraphLab several consistency
models which allow the
runtime to optimize the
parallel execution while
maintaining serializability.

 The greater the consistency,
the lower the parallelism.

Full Consistency

Edge Consistency

Vertex Consistency

C

o

n

s

i

s

t

e

n

c

y

P

a

r

a

l

l

e

l

i

s

m

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 23

Read

Write

Full Consistency
 A full consistency ensures that the scopes of

concurrently executing update functions do not
overlap.

 The update function has complete read-write access
to its entire scope.

 This limits the potential parallelism since concurrently
executing update functions must be at least two
vertices apart.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 24

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 12

Consistency Rules

Guaranteed sequential consistency for all update functions

Data

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 25

Full Consistency

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 26

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 13

Obtaining More Parallelism

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 27

Edge Consistency

 The edge consistency model ensures each update
function has exclusive read-write access to its
vertex and adjacent edges, but read-only access to
adjacent vertices

 This increases parallelism by allowing update
functions with slightly overlapping scopes to safely
run in parallel.

Read

Write

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 28

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 14

Edge Consistency

CPU 1 CPU 2

Safe

Read

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 29

Vertex Consistency
 The vertex consistency model only provides write

access to the central vertex data.

 This allows all update functions to be run in
parallel, providing maximum parallelism.

 However, the this is the least consistent model
available.

Read

Write

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 30

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 15

Global Values
 Many MLDM algorithms

require the maintenance
of global statistics
describing data stored in
the data graph.

 GraphLab defines global
values as values which
are read by update
functions and written
with sync operations.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 31

Sync Operation

Sync Operation

𝑍 = 𝐅𝐢𝐧𝐚𝐥𝐢𝐳𝐞(⨁𝒗∈𝑽𝐌𝐚𝐩 𝑆𝑣)

 The sync operation is an associative commutative sum which is
defined over all parts of the graph.

 This supports tasks like normalization that are common in MLDM
algorithms.

 The sync operation runs continuously in the background to
maintain updated estimates of the global value.

 Ensuring serializability of the sync operation is costly and requires
synchronization and halting all computation.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 32

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 16

The GraphLab Framework

Scheduler Consistency Model

Graph Based

Data Representation

Update Functions

User Computation

Sync Operation

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 33

Algorithms Implemented
 PageRank

 Loopy Belief Propagation

 Gibbs Sampling

 CoEM

 Graphical Model Parameter Learning

 Probabilistic Matrix/Tensor Factorization

 Alternating Least Squares

 Lasso with Sparse Features

 Support Vector Machines with Sparse Features

 Label-Propagation

 …

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 34

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 17

Applications

CSIE59830 Big Data Systems 35

Netflix Movie Recommendation

 The Netflix movie recommendation task
uses collaborative filtering to predict
the movie ratings for each user based
on the ratings of similar users.

 The alternating least squares(ALS)
algorithm is often used and can be
represented using the GraphLab
abstraction

 The sparse matrix R defines a bipartite
graph connecting each user with the
movies that they rated. Vertices are
users and movies and edges contain the
ratings for a user-movie pair.

1

2

a

b

c

d

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 36

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 18

Netflix Comparisons
 The GraphLab

implementation was
compared against Hadoop
and MPI using between 4 to
64 machines.

 GraphLab performs between
40-60 times faster than
Hadoop.

 It also slightly outperformed
the optimized MPI
implementation.

4 8 16 24 32 40 48 56 64
10

1

10
2

10
3

10
4

#Nodes

R
u
n

ti
m

e
(s

) Hadoop MPI

GraphLab

HadoopMPI

GraphLab

Machines

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 37

Video Co-segmentation (CoSeg)

 Video co-segmentation automatically identifies and clusters
spatio-temporal segments of video that share similar texture
and color characteristics.

 Frames of high-resolution video are processed by coarsening
each frame to a regular grid of rectangular super-pixels.

 The CoSeg algorithm predicts the best label (e.g. sky,
building, grass, pavement, trees for each super pixel).

High-Res Image Super-Pixel

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 38

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 19

CoSeg Algorithm Implementation

 CoSeg uses Gaussian Mixture
Model in conjunction with
Loopy Belief Propagation.

 Updates that are expected to
change vertex values
significantly are prioritized.

 Distributed GraphLab is the
only distributed graph
abstraction that allows the use
of prioritized scheduling.

 CoSeg scales excellently due to
having a very sparse graph and
high computational intensity.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 39

Named Entity Recognition
(NER)
 Named Entity Recognition is the task of

determining the type (e.g., Person, Place, or Thing)
of a noun-phrase (e.g. Obama, Chicago, or Car)
from its context (e.g. “President..”, “Lives near..”, or
“bought a..”).

 The data graph of bipartite with one set of vertices
corresponding to the noun-phrases and other
corresponding to each contexts.

 There is an edge between a noun-phrase and a
context if the noun-phrase occurs in the context.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 40

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 20

NER Comparisons
 The GraphLab implementation of

NER achieved 20-30x speedup
over Hadoop and was
comparable to the optimized
MPI.

 However, GraphLab scaled
poorly achieving only a 3x
improvement using 16x more
machines.

 This poor performance can be
attributed to the large vertex
data size, dense connectivity,
and poor partitioning.

4 8 16 24 32 40 48 56 64
10

1

10
2

10
3

10
4

#Nodes

R
u
n

ti
m

e
(s

)

Hadoop

GraphLab

MPI

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 41

Cost-Effectiveness
 The price-runtime curves for

GraphLab and Hadoop
illustrate the monetary cost of
deploying either system.

 The price-runtime curve
demonstrates diminishing
returns: the cost of attaining
reduced runtimes increases
faster than linearly.

 For the Netflix application,
GraphLab is about two orders
of magnitude more cost-
effective than Hadoop.

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

Runtime(s)

C
o

s
t(

$
)

GraphLab

Hadoop

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 42

CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 21

Summary
 An abstraction tailored to Machine Learning and

Data Mining applications
◦ Targets Graph-Parallel Algorithms

 Naturally expresses
◦ Data/computational dependencies
◦ Dynamic iterative computation

 Simplifies parallel algorithm design

 Automatically ensures data consistency

 Achieves state-of-the-art parallel performance on a
variety of problems

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 43

Summary

 Distributed GraphLab extends the shared memory
GraphLab to the distributed setting by:
◦ Refining the execution model

◦ Relaxing the schedule requirements

◦ Introducing a new distributed data-graph

◦ Introducing new execution engines

◦ Introducing fault tolerance.

 Distributed Graphlab outperforms Hadoop by 20-
60x and is competitive with tailored MPI
implementations.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 44

