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Note 1

Large-Scale Graph 
Processing 2: GraphLab

Shiow-yang Wu (吳秀陽)

CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly 
taken with permission and courtesy 

from Professor Shih-Wei Liao of NTU.

GraphLab
 Open-source large graph processing system
 Implemented in C++ at CMU
 GAS (Gather, Apply, Scatter) model (more on 

this later)
 Shared memory -> Distributed GraphLab
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Main Reference
 Yucheng Low, et. al. Distributed GraphLab: A 

Framework for Machine Learning and Data Mining 
in the Cloud, Proceedings of the VLDB Endowment, 
Vol. 5, No. 8, 2012.
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Why do we need GraphLab?

 Machine Learning and Data Mining 
(MLDM) problems increasingly 
need systems that can execute 
MLDM algorithms in parallel on 
large clusters. 

 Implementing MDLM algorithms in 
parallel on current systems like 
Hadoop and MPI can be both 
prohibitively complex and costly.

 The MLDM community needs a 
high-level abstraction to handle the 
complexities of graph and network 
algorithms.
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MLDM Algorithm 
Properties

Graph Structured 
Computation

 Many of the recent 
advances in MLDM have 
focused on modeling the 
dependencies between 
data.

 By modeling 
dependencies, we are 
able to extract more 
signal from noisy data.

Dependency Graph

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 6



CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 4

Asynchronous Iterative 
Computation
 Synchronous systems 

update all parameters 
simultaneously (in parallel) 
using parameter values 
from the previous time step 
as input

 Asynchronous systems 
update parameters using 
the most recent parameter 
values as input.

 Many MLDM algorithms 
benefit from asynchronous
systems.
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Dynamic Computation
 Static computation requires 

the algorithm to update all 
vertices equally often. This 
wastes time recomputing 
vertices who have effectively 
converged.

 Dynamic computation allows 
the algorithm to potentially 
save time by only 
recomputing vertices whose 
neighbors have recently 
updated.
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Serializability
 Serializability ensures that all 

parallel executions have an 
equivalent sequential execution, 
which eliminates race conditions.

 Race conditions are a programming 
fault which can produce 
undetermined program states and 
behaviors.

 Many MLDM algorithms converge 
faster if serializability is ensured. 
Some, like Dynamic Advanced Life 
Support algorithm, require 
serializability for correctness 
and/or stability.
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Properties of MLDM Graph 
Processing

Dependency
Graph

Iterative
Computation

What I Like

What My 
Friends Like

Factored 
Computation 
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GraphLab Abstraction
 GraphLab abstraction: 

◦ Data Graph: program state with data and dependencies

◦ Update Function: computation on the data graph by 
transforming data in overlapping contexts called scopes

◦ Execution Model: a simple loop execution semantics

◦ Ensuring Serializability: models and methods to 
optimize parallel execution while maintaining 
serializability

◦ Sync Operation and Global Values: global values that 
may be read by update functions, but are written using 
sync operations
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Data Graph
 A graph with arbitrary data (C++ Objects) 

associated with each vertex and edge.

Vertex Data:

• User profile text

• Current interests estimates

Edge Data:

• Similarity weights 

Graph:

• Social Network

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 12



CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 7

An update function is a user defined program which when 
applied to a vertex transforms the data in the scope of the 
vertex

label_prop(i, scope){
// Get Neighborhood data
(Likes[i], Wij, Likes[j]) scope;

// Update the vertex data

// Reschedule Neighbors if needed
if Likes[i] changes then 

reschedule_neighbors_of(i); 
}

;][][
][





iFriendsj

ij jLikesWiLikes

Update Functions
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Update Functions
 An update function is a 

stateless procedure that 
modifies the data within 
the scope of a vertex and 
schedules the future 
execution of the update 
functions on other vertices.

 GraphLab update takes a 
vertex v and its scope Sv
and returns the new 
versions of the data in the 
scope as well as a set 
vertices T:

Update: f(v,Sv) -> (Sv, T)
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Execution Model: The 
Algorithm
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Execution Model: The Scheduler

CPU 1

CPU 2

The scheduler determines the order that vertices are 

updated.
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The process repeats until the scheduler is empty.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 16



CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 9

Ensuring Race-Free Code
 How much can computation overlap?
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Importance of Consistency
 Many algorithms require strict consistency, or 

performs significantly better under strict consistency.
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Importance of Consistency
 Machine learning algorithms require 

“model debugging”

Build

Test

Debug

Tweak Model
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GraphLab Ensures Sequential 
Consistency

For each parallel execution, there exists a sequential 

execution of update functions which produces the same result. 

CPU 1

CPU 2

Single
CPU

Parallel

Sequential

time
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Ensuring Serializability
 GraphLab ensures a serializable 

execution by stipulating that 
for every parallel execution, 
there exists a sequential 
execution of update functions 
which produces the same 
result. 

 GraphLab several consistency 
models which allow the 
runtime to optimize the 
parallel execution while 
maintaining serializability.

 The greater the consistency, 
the lower the parallelism.

Full Consistency

Edge Consistency

Vertex Consistency
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Read

Write

Full Consistency
 A full consistency ensures that the scopes of 

concurrently executing update functions do not 
overlap. 

 The update function has complete read-write access 
to its entire scope.

 This limits the potential parallelism since concurrently 
executing update functions must be at least two
vertices apart.
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Consistency Rules

Guaranteed sequential consistency for all update functions

Data
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Full Consistency
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Obtaining More Parallelism
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Edge Consistency

 The edge consistency model ensures each update 
function has exclusive read-write access to its 
vertex and adjacent edges, but read-only access to 
adjacent vertices

 This increases parallelism by allowing update 
functions with slightly overlapping scopes to safely 
run in parallel.

Read

Write
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Edge Consistency

CPU 1 CPU 2

Safe

Read
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Vertex Consistency
 The vertex consistency model only provides write 

access to the central vertex data.

 This allows all update functions to be run in 
parallel, providing maximum parallelism. 

 However, the this is the least consistent model 
available.

Read

Write
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Global Values
 Many MLDM algorithms 

require the maintenance 
of global statistics 
describing data stored in 
the data graph.

 GraphLab defines global 
values as values which 
are read by update 
functions and written 
with sync operations.
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Sync Operation

Sync Operation

𝑍 = 𝐅𝐢𝐧𝐚𝐥𝐢𝐳𝐞(⨁𝒗∈𝑽𝐌𝐚𝐩 𝑆𝑣 )

 The sync operation is an associative commutative sum which is 
defined over all parts of the graph.

 This supports tasks like normalization that are common in MLDM 
algorithms. 

 The sync operation runs continuously in the background to 
maintain updated estimates of the global value.

 Ensuring serializability of the sync operation is costly and requires 
synchronization and halting all computation.
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The GraphLab Framework

Scheduler Consistency Model

Graph Based

Data Representation

Update Functions

User Computation

Sync Operation
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Algorithms Implemented 
 PageRank

 Loopy Belief Propagation

 Gibbs Sampling

 CoEM

 Graphical Model Parameter Learning

 Probabilistic Matrix/Tensor Factorization

 Alternating Least Squares

 Lasso with Sparse Features

 Support Vector Machines with Sparse Features

 Label-Propagation

 …

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 34



CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 17

Applications
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Netflix Movie Recommendation

 The Netflix movie recommendation task 
uses collaborative filtering to predict 
the movie ratings for each user based 
on the ratings of similar users.

 The alternating least squares(ALS) 
algorithm is often used and can be 
represented using the GraphLab
abstraction

 The sparse matrix R defines a bipartite 
graph connecting each user with the 
movies that they rated. Vertices are 
users and movies and edges contain the 
ratings for a user-movie pair.
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Netflix Comparisons
 The GraphLab

implementation was 
compared against Hadoop 
and MPI using between 4 to 
64 machines.

 GraphLab performs between 
40-60 times faster than 
Hadoop.

 It also slightly outperformed 
the optimized MPI 
implementation.
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Video Co-segmentation (CoSeg)

 Video co-segmentation automatically identifies and clusters 
spatio-temporal segments of video that share similar texture 
and color characteristics.

 Frames of high-resolution video are processed by coarsening 
each frame to a regular grid of rectangular super-pixels.

 The CoSeg algorithm predicts the best label (e.g. sky, 
building, grass, pavement, trees for each super pixel). 

High-Res Image Super-Pixel
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CoSeg Algorithm Implementation

 CoSeg uses Gaussian Mixture 
Model in conjunction with 
Loopy Belief Propagation.

 Updates that are expected to 
change vertex values 
significantly are prioritized.

 Distributed GraphLab is the 
only distributed graph 
abstraction that allows the use 
of prioritized scheduling.

 CoSeg scales excellently due to 
having a very sparse graph and 
high computational intensity.
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Named Entity Recognition 
(NER)
 Named Entity Recognition is the task of 

determining the type (e.g., Person, Place, or Thing) 
of a noun-phrase (e.g. Obama, Chicago, or Car) 
from its context (e.g. “President..”, “Lives near..”, or 
“bought a..”).

 The data graph of bipartite with one set of vertices 
corresponding to the noun-phrases and other 
corresponding to each contexts. 

 There is an edge between a noun-phrase and a 
context if the noun-phrase occurs in the context.
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NER Comparisons
 The GraphLab implementation of 

NER achieved 20-30x speedup 
over Hadoop and was 
comparable to the optimized 
MPI.

 However, GraphLab scaled 
poorly achieving only a 3x 
improvement using 16x more 
machines. 

 This poor performance can be 
attributed to the large vertex 
data size, dense connectivity, 
and poor partitioning.
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Cost-Effectiveness
 The price-runtime curves for 

GraphLab and Hadoop 
illustrate the monetary cost of 
deploying either system.

 The price-runtime curve 
demonstrates diminishing 
returns: the cost of attaining 
reduced runtimes increases 
faster than linearly. 

 For the Netflix application, 
GraphLab is about two orders 
of magnitude more cost-
effective than Hadoop. 
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Summary
 An abstraction tailored to Machine Learning and 

Data Mining applications
◦ Targets Graph-Parallel Algorithms

 Naturally expresses
◦ Data/computational dependencies
◦ Dynamic iterative computation

 Simplifies parallel algorithm design

 Automatically ensures data consistency

 Achieves state-of-the-art parallel performance on a 
variety of problems
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Summary

 Distributed GraphLab extends the shared memory 
GraphLab to the distributed setting by:
◦ Refining the execution model

◦ Relaxing the schedule requirements

◦ Introducing a new distributed data-graph

◦ Introducing new execution engines

◦ Introducing fault tolerance.

 Distributed Graphlab outperforms Hadoop by 20-
60x and is competitive with tailored MPI 
implementations.
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