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Big Stream Processing 2:
Spark Streaming

Shiow-yang Wu (吳秀陽)

CSIE, NDHU, Taiwan, ROC

Motivation for Real-Time 
Stream Processing
 Data is being created at unprecedented rates
• Exponential data growth from mobile, web, social
• Connected devices: 9B in 2012 to 50B by 2020
• Over 1 trillion sensors by 2020
• Datacenter IP traffic growing at CAGR of 25%

 Many important applications must process large 
streams of live data and provide results in near-real-
time
◦ Social network trends
◦ Website statistics
◦ Ad impressions

◦ …
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Motivation
 How can we harness the data in real-time?
• Value can quickly degrade → capture value immediately

• From reactive analysis to direct operational impact

• Unlocks new competitive advantages

• Requires a completely new approach...

 Distributed stream processing framework is 
required to 
◦ Scale to large clusters (100s of machines)

◦ Achieve low latency (few seconds)
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Why Streaming?
 “Without stream processing there’s no big data and no 

Internet of Things” – Dana Sandu, SQLstream

 Operational Efficiency - 1 extra mph for a locomotive on it’s 
daily route can lead to $200M in saving (Norfolk Southern)

 Tracking Behavior - McDonalds (Netherlands) realized a 
700% increase in offer redemptions using personalized 
advertising based on location, weather, previous purchase, 
and preference.

 Predict machine failure - GE monitors over 5500 assets from 
70+ customer sites globally. Can predict failure and 
determine when something needs maintenance

 Improving Traffic Safety and Efficiency – According to EU 
Commission congestion in EU urban areas costs ~ €100 
billion or 1 percent of EU GDP annually
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Use Cases Across 
Industries

Credit
Identify
fraudulent transactions 
as soon as they occur.

Transportation
Dynamic
Re-routing
Of traffic or
Vehicle Fleet.

Retail
• Dynamic 
Inventory
Management
• Real-time
In-store
Offers and 
recommendations

Consumer 
Internet &
Mobile
Optimize user
engagement based
on user’s current
behavior.

Healthcare
Continuously
monitor patient
vital stats and 
proactively identify
at-risk patients.

Manufacturing
• Identify
equipment
failures and 
react instantly
• Perform
Proactive
maintenance.

Surveillance
Identify
threats
and intrusions
In real-time

Digital 
Advertising
& Marketing
Optimize and 
personalize content 
based on real-time 
information.
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From Volume and Variety 
to Velocity

Present

Batch + Stream Processing

Time to Insight of Seconds

Big-Data = Volume + Variety

Big-Data = Volume + Variety + Velocity

Past
Present

Hadoop Ecosystem evolves as well…

Past

Big Data has evolved

Batch Processing

Time to insight of Hours

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 6



CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 4

What is Spark Streaming?

 Provides efficient, fault-tolerant stateful stream 
processing

 Provides a simple API for implementing complex 
algorithms

 Integrates with Spark’s batch and interactive 
processing

 Integrates with other Spark extensions
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What is Spark Streaming?

 Extends Spark for doing large scale stream
processing 

 Scales to 100s of nodes and achieves second scale 
latencies

 Efficient and fault-tolerant stateful stream 
processing

 Simple batch-like API for implementing complex 
algorithms

 High throughput on large data streams
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Integration with Batch 
Processing
 Many environments require processing same data 

in live streaming as well as batch post processing

 Existing framework cannot do both
◦ Either do stream processing of 100s of MB/s with low 

latency 
◦ Or do batch processing of TBs / PBs of data with high 

latency

 Extremely painful to maintain two different stacks 
◦ Different programming models
◦ Double the implementation effort
◦ Double the number of bugs
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Stateful Stream Processing
 Traditional streaming 

systems have a record-
at-a-time processing 
model
◦ Each node has mutable 

state

◦ For each record, update 
state and send new 
records

mutable state

node 1

node 3

input 
records

node 2

input 
records

 State is lost if node dies!

 Making stateful stream processing fault-tolerant is 
challenging
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Existing Streaming Systems

 Storm
◦ Replays record if not processed by a node

◦ Processes each record at least once

◦ May update mutable state twice!

◦ Mutable state can be lost due to failure!

 Trident – Use transactions to update state
◦ Processes each record exactly once

◦ Per state transaction to external database is slow
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Spark Streaming
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High-level Architecture
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What is Spark Streaming?

 Receive data streams from input sources, process 
them in a cluster, push out to 
databases/dashboards

 Scalable, fault-tolerant, second-scale latencies
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Spark Streaming

 Incoming data represented as Discretized Streams 
(DStreams)

 Stream is broken down into micro-batches

 Each micro-batch is an RDD – can share code 
between batch and streaming
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Discretized Stream 
Processing
 Run a streaming computation as a series of very 

small, deterministic batch jobs

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results

 Chop up the live stream into 
batches of X seconds 

 Spark treats each batch of 
data as RDDs and processes 
them using RDD operations

 Finally, the processed results 
of the RDD operations are 
returned in batches
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Discretized Stream 
Processing 
 Run a streaming computation as a series of very 

small, deterministic batch jobs

 Batch sizes as low as ½  
second, latency of about 
1 second

 Potential for combining 
batch processing and 
streaming processing in 
the same system

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results
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Working of Spark 
Streaming
 It takes live input data streams and then divides them into 

batches. After this, the Spark engine processes those 
streams and generates the final stream results in batches.
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Note 10

Spark Streaming 
Programming Model

 Discretized Stream (DStream)
◦ Represents a stream of data

◦ Implemented as a sequence of RDDs

 DStreams API very similar to RDD API
◦ Functional APIs in Scala, Java

◦ Create input DStreams from different sources

◦ Apply parallel operations
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Example – Get hashtags
from Twitter 
val tweets = ssc.twitterStream()

DStream: a sequence of RDDs representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD 
(immutable, distributed)

Twitter Streaming API
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Example – Get hashtags
from Twitter 
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one DStream to create 
another DStream

new DStream

new RDDs created 
for every batch 

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, … ]
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“Micro-batch” Architecture
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch 
saved to HDFS
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Stream composed of 
small (1-10s) batch 

computations
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Note 12

Example – Get hashtags
from Twitter  
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.foreach(hashTagRDD => { ... })

foreach: do whatever you want with the processed data

flatMap flatMap flatMap

foreach foreach foreach

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

Write to database, update analytics 
UI, do whatever you want
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Languages
Scala

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Java

JavaDStream<Status> tweets = ssc.twitterStream()

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> {  })

hashTags.saveAsHadoopFiles("hdfs://...")

Function object

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 24



CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 13

Window-based Operations

 To apply transformations over a sliding window of 
data

 Two parameters
◦ Window length: the duration of the window

◦ Sliding interval: the interval at which the window 
operation is performed
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val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

Window-based 
Transformations

sliding window 
operation

window length sliding interval
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Arbitrary Stateful 
Computations

 Specify function to generate new state based on 
previous state and new data

 Example: Maintain per-user mood as state, and 
update it with their tweets

updateMood(newTweets, lastMood) => newMood

moods = tweets.updateStateByKey(updateMood _)
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Arbitrary Combinations of 
Batch and Streaming 
Computations

Inter-mix RDD and DStream operations!

◦ Example: Join incoming tweets with a spam HDFS file to 
filter out bad tweets

tweets.transform(tweetsRDD => {

tweetsRDD.join(spamHDFSFile).filter(...)

})
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DStream Input Sources
 Out of the box:

◦ Kafka, HDFS, Flume, Akka Actors, Raw TCP sockets

 Very easy to write a receiver for your own data 
source
◦ Define what to when receiver is started and stopped

 Also, generate your own sequence of RDDs, etc. 
and push them in as a “stream”
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Output Sinks

 HDFS, S3, etc (Hadoop API compatible filesystems)

 Cassandra (using Spark-Cassandra connector)

 HBase (existing Spark-Hbase connector can be 
used directly)

 Directly push the data anywhere
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Note 16

Spark Streaming

 Runs as a Spark job

 YARN or standalone for scheduling
◦ YARN has KDC(Kerberos Key Distribution Center)

integration

 Use the same code for real-time Spark Streaming 
and for batch Spark jobs.

 Integrates natively with messaging systems such 
as Flume, Kafka, Zero MQ….

 Easy to write “Receivers” for custom messaging 
systems.
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DStreams + RDDs = Power
 Combine live data streams with historical data

◦ Generate historical data models with Spark, etc.

◦ Use data models to process live data stream

 Combine streaming with MLlib, GraphX algos
◦ Offline learning, online prediction

◦ Online learning and prediction

 Interactively query streaming data using SQL
◦ select * from table_from_streaming_data
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Fault-tolerance: Worker
 RDDs remember the 

operations that created 
them

 Batches of input data are 
replicated in memory for 
fault-tolerance

 Data lost due to worker 
failure can be recomputed 
from replicated input data

 All transformed data is fault-
tolerant, and exactly-once 
transformations

input data 
replicated
in memory

flatMap

lost partitions 
recomputed on 
other workers

tweets
RDD

hashTags
RDD
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Fault-tolerance: Master

 Master saves the state of the DStreams to a 
checkpoint file
◦ Checkpoint file saved to HDFS periodically

 If master fails, it can be restarted using the 
checkpoint file

 More information in the Spark Streaming guide
◦ Link later in the presentation

 Automated master fault recovery coming soon
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Performance
 Can process 6 GB/sec (60M records/sec) of data 

on 100 nodes at sub-second latency
◦ Tested with 100 text streams on 100 EC2 instances with 4 

cores each
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Comparison with Storm 
and S4
 Higher throughput than Storm and S4

◦ Spark Streaming: 670k records/second/node

◦ Storm: 115k records/second/node

◦ Apache S4(Simple Scalable Streaming System): 7.5k 
records/second/node
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Fast Fault Recovery

 Recovers from faults/stragglers within 1 sec
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Real Applications: Mobile 
Millennium Project
 Traffic transit time estimation using online 

machine learning on GPS observations

 Markov chain Monte Carlo 
simulations on GPS 
observations

 Very CPU intensive, requires 
dozens of machines for 
useful computation

 Scales linearly with cluster 
size
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Real Applications: Conviva
 Real-time monitoring and optimization of video 

metadata
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 Aggregation of performance data 
from millions of active video 
sessions across thousands of 
metrics

 Multiple stages of aggregation

 Successfully ported to run on 
Spark Streaming 

 Scales linearly with cluster size
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Unifying Batch and Stream 
Processing Models

 Spark program on Twitter log file using RDDs
 val tweets = sc.hadoopFile("hdfs://...")

 val hashTags = tweets.flatMap (status => getTags(status))

 hashTags.saveAsHadoopFile("hdfs://...")

 Spark Streaming program on Twitter stream using 
DStreams

 val tweets = ssc.twitterStream()

 val hashTags = tweets.flatMap (status => getTags(status))

 hashTags.saveAsHadoopFiles("hdfs://...")

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 40



CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 21

Vision - one stack to rule 
them all
 Explore data 

interactively using 
Spark Shell to identify 
problems

 Use same code in 
Spark stand-alone 
programs to identify 
problems in 
production logs

 Use similar code in 
Spark Streaming to 
identify problems in 
live log streams

$ ./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = filtered.map(...)
...

object ProcessProductionData {
def main(args: Array[String]) {

val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs”)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}

object ProcessLiveStream {
def main(args: Array[String]) {

val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}
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Vision - one stack to rule 
them all

Ad-hoc 
Queries

Batch 
Processing

Stream 
Processing

Spark
+

Spark SQL
+

Spark 
Streaming
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Conclusions & References

 Integrated with Spark as an extension
◦ Takes 5 minutes to spin up a Spark cluster to try it out

 Streaming programming guide –
http://spark.incubator.apache.org/docs/latest/streaming-
programming-guide.html

 Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy 
Hunter, Scott Shenker, Ion Stoica. Discretized 
Streams: Fault-Tolerant Streaming Computation at 
Scale. ACM SOSP 2013.
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http://spark.incubator.apache.org/docs/latest/streaming-programming-guide.html

