
CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 1

Big Stream Processing 2:
Spark Streaming

Shiow-yang Wu (吳秀陽)

CSIE, NDHU, Taiwan, ROC

Motivation for Real-Time
Stream Processing
 Data is being created at unprecedented rates
• Exponential data growth from mobile, web, social
• Connected devices: 9B in 2012 to 50B by 2020
• Over 1 trillion sensors by 2020
• Datacenter IP traffic growing at CAGR of 25%

 Many important applications must process large
streams of live data and provide results in near-real-
time
◦ Social network trends
◦ Website statistics
◦ Ad impressions

◦ …

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 2

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 2

Motivation
 How can we harness the data in real-time?
• Value can quickly degrade → capture value immediately

• From reactive analysis to direct operational impact

• Unlocks new competitive advantages

• Requires a completely new approach...

 Distributed stream processing framework is
required to
◦ Scale to large clusters (100s of machines)

◦ Achieve low latency (few seconds)

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 3

Why Streaming?
 “Without stream processing there’s no big data and no

Internet of Things” – Dana Sandu, SQLstream

 Operational Efficiency - 1 extra mph for a locomotive on it’s
daily route can lead to $200M in saving (Norfolk Southern)

 Tracking Behavior - McDonalds (Netherlands) realized a
700% increase in offer redemptions using personalized
advertising based on location, weather, previous purchase,
and preference.

 Predict machine failure - GE monitors over 5500 assets from
70+ customer sites globally. Can predict failure and
determine when something needs maintenance

 Improving Traffic Safety and Efficiency – According to EU
Commission congestion in EU urban areas costs ~ €100
billion or 1 percent of EU GDP annually

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 4

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 3

Use Cases Across
Industries

Credit
Identify
fraudulent transactions
as soon as they occur.

Transportation
Dynamic
Re-routing
Of traffic or
Vehicle Fleet.

Retail
• Dynamic
Inventory
Management
• Real-time
In-store
Offers and
recommendations

Consumer
Internet &
Mobile
Optimize user
engagement based
on user’s current
behavior.

Healthcare
Continuously
monitor patient
vital stats and
proactively identify
at-risk patients.

Manufacturing
• Identify
equipment
failures and
react instantly
• Perform
Proactive
maintenance.

Surveillance
Identify
threats
and intrusions
In real-time

Digital
Advertising
& Marketing
Optimize and
personalize content
based on real-time
information.

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 5

From Volume and Variety
to Velocity

Present

Batch + Stream Processing

Time to Insight of Seconds

Big-Data = Volume + Variety

Big-Data = Volume + Variety + Velocity

Past
Present

Hadoop Ecosystem evolves as well…

Past

Big Data has evolved

Batch Processing

Time to insight of Hours

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 6

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 4

What is Spark Streaming?

 Provides efficient, fault-tolerant stateful stream
processing

 Provides a simple API for implementing complex
algorithms

 Integrates with Spark’s batch and interactive
processing

 Integrates with other Spark extensions

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 7

What is Spark Streaming?

 Extends Spark for doing large scale stream
processing

 Scales to 100s of nodes and achieves second scale
latencies

 Efficient and fault-tolerant stateful stream
processing

 Simple batch-like API for implementing complex
algorithms

 High throughput on large data streams

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 8

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 5

Integration with Batch
Processing
 Many environments require processing same data

in live streaming as well as batch post processing

 Existing framework cannot do both
◦ Either do stream processing of 100s of MB/s with low

latency
◦ Or do batch processing of TBs / PBs of data with high

latency

 Extremely painful to maintain two different stacks
◦ Different programming models
◦ Double the implementation effort
◦ Double the number of bugs

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 9

Stateful Stream Processing
 Traditional streaming

systems have a record-
at-a-time processing
model
◦ Each node has mutable

state

◦ For each record, update
state and send new
records

mutable state

node 1

node 3

input
records

node 2

input
records

 State is lost if node dies!

 Making stateful stream processing fault-tolerant is
challenging

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 10

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 6

Existing Streaming Systems

 Storm
◦ Replays record if not processed by a node

◦ Processes each record at least once

◦ May update mutable state twice!

◦ Mutable state can be lost due to failure!

 Trident – Use transactions to update state
◦ Processes each record exactly once

◦ Per state transaction to external database is slow

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 11

Spark Streaming

CSIE59830 Big Data Systems MapReduce & Hadoop 12

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 7

High-level Architecture

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 13

What is Spark Streaming?

 Receive data streams from input sources, process
them in a cluster, push out to
databases/dashboards

 Scalable, fault-tolerant, second-scale latencies

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 14

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 8

Spark Streaming

 Incoming data represented as Discretized Streams
(DStreams)

 Stream is broken down into micro-batches

 Each micro-batch is an RDD – can share code
between batch and streaming

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 15

Discretized Stream
Processing
 Run a streaming computation as a series of very

small, deterministic batch jobs

Spark

Spark
Streaming

batches of X
seconds

live data stream

processed
results

 Chop up the live stream into
batches of X seconds

 Spark treats each batch of
data as RDDs and processes
them using RDD operations

 Finally, the processed results
of the RDD operations are
returned in batches

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 16

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 9

Discretized Stream
Processing
 Run a streaming computation as a series of very

small, deterministic batch jobs

 Batch sizes as low as ½
second, latency of about
1 second

 Potential for combining
batch processing and
streaming processing in
the same system

Spark

Spark
Streaming

batches of X
seconds

live data stream

processed
results

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 17

Working of Spark
Streaming
 It takes live input data streams and then divides them into

batches. After this, the Spark engine processes those
streams and generates the final stream results in batches.

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 18

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 10

Spark Streaming
Programming Model

 Discretized Stream (DStream)
◦ Represents a stream of data

◦ Implemented as a sequence of RDDs

 DStreams API very similar to RDD API
◦ Functional APIs in Scala, Java

◦ Create input DStreams from different sources

◦ Apply parallel operations

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 19

Example – Get hashtags
from Twitter
val tweets = ssc.twitterStream()

DStream: a sequence of RDDs representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Twitter Streaming API

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 20

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 11

Example – Get hashtags
from Twitter
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one DStream to create
another DStream

new DStream

new RDDs created
for every batch

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 21

“Micro-batch” Architecture
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch
saved to HDFS

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 22

Stream composed of
small (1-10s) batch

computations

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 12

Example – Get hashtags
from Twitter
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.foreach(hashTagRDD => { ... })

foreach: do whatever you want with the processed data

flatMap flatMap flatMap

foreach foreach foreach

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

Write to database, update analytics
UI, do whatever you want

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 23

Languages
Scala

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Java

JavaDStream<Status> tweets = ssc.twitterStream()

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })

hashTags.saveAsHadoopFiles("hdfs://...")

Function object

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 24

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 13

Window-based Operations

 To apply transformations over a sliding window of
data

 Two parameters
◦ Window length: the duration of the window

◦ Sliding interval: the interval at which the window
operation is performed

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 25

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

Window-based
Transformations

sliding window
operation

window length sliding interval

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 26

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 14

Arbitrary Stateful
Computations

 Specify function to generate new state based on
previous state and new data

 Example: Maintain per-user mood as state, and
update it with their tweets

updateMood(newTweets, lastMood) => newMood

moods = tweets.updateStateByKey(updateMood _)

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 27

Arbitrary Combinations of
Batch and Streaming
Computations

Inter-mix RDD and DStream operations!

◦ Example: Join incoming tweets with a spam HDFS file to
filter out bad tweets

tweets.transform(tweetsRDD => {

tweetsRDD.join(spamHDFSFile).filter(...)

})

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 28

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 15

DStream Input Sources
 Out of the box:

◦ Kafka, HDFS, Flume, Akka Actors, Raw TCP sockets

 Very easy to write a receiver for your own data
source
◦ Define what to when receiver is started and stopped

 Also, generate your own sequence of RDDs, etc.
and push them in as a “stream”

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 29

Output Sinks

 HDFS, S3, etc (Hadoop API compatible filesystems)

 Cassandra (using Spark-Cassandra connector)

 HBase (existing Spark-Hbase connector can be
used directly)

 Directly push the data anywhere

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 30

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 16

Spark Streaming

 Runs as a Spark job

 YARN or standalone for scheduling
◦ YARN has KDC(Kerberos Key Distribution Center)

integration

 Use the same code for real-time Spark Streaming
and for batch Spark jobs.

 Integrates natively with messaging systems such
as Flume, Kafka, Zero MQ….

 Easy to write “Receivers” for custom messaging
systems.

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 31

DStreams + RDDs = Power
 Combine live data streams with historical data

◦ Generate historical data models with Spark, etc.

◦ Use data models to process live data stream

 Combine streaming with MLlib, GraphX algos
◦ Offline learning, online prediction

◦ Online learning and prediction

 Interactively query streaming data using SQL
◦ select * from table_from_streaming_data

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 32

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 17

Fault-tolerance: Worker
 RDDs remember the

operations that created
them

 Batches of input data are
replicated in memory for
fault-tolerance

 Data lost due to worker
failure can be recomputed
from replicated input data

 All transformed data is fault-
tolerant, and exactly-once
transformations

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 33

Fault-tolerance: Master

 Master saves the state of the DStreams to a
checkpoint file
◦ Checkpoint file saved to HDFS periodically

 If master fails, it can be restarted using the
checkpoint file

 More information in the Spark Streaming guide
◦ Link later in the presentation

 Automated master fault recovery coming soon

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 34

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 18

Performance
 Can process 6 GB/sec (60M records/sec) of data

on 100 nodes at sub-second latency
◦ Tested with 100 text streams on 100 EC2 instances with 4

cores each

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100

C
lu

st
e

r
Th

ro
u

gh
p

u
t

(G
B

/s
)

Nodes in Cluster

WordCount

1 sec

2 sec
0

1

2

3

4

5

6

7

0 50 100

C
lu

st
e

r
Th

h
ro

u
gh

p
u

t
(G

B
/s

)

Nodes in Cluster

Grep

1 sec

2 sec

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 35

Comparison with Storm
and S4
 Higher throughput than Storm and S4

◦ Spark Streaming: 670k records/second/node

◦ Storm: 115k records/second/node

◦ Apache S4(Simple Scalable Streaming System): 7.5k
records/second/node

0

10

20

30

100 1000

Th
ro

u
gh

p
u

t
p

e
r

n
o

d
e

(M

B
/s

)

Record Size (bytes)

WordCount

Spark

Storm

0

40

80

120

100 1000

Th
ro

u
gh

p
u

t
p

e
r

n
o

d
e

(M

B
/s

)

Record Size (bytes)

Grep

Spark

Storm

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 36

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 19

Fast Fault Recovery

 Recovers from faults/stragglers within 1 sec

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 37

Real Applications: Mobile
Millennium Project
 Traffic transit time estimation using online

machine learning on GPS observations

 Markov chain Monte Carlo
simulations on GPS
observations

 Very CPU intensive, requires
dozens of machines for
useful computation

 Scales linearly with cluster
size

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 38

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 20

Real Applications: Conviva
 Real-time monitoring and optimization of video

metadata

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100
A

ct
iv

e
 s

e
ss

io
n

s
(m

ill
io

n
s)

Nodes in Cluster

 Aggregation of performance data
from millions of active video
sessions across thousands of
metrics

 Multiple stages of aggregation

 Successfully ported to run on
Spark Streaming

 Scales linearly with cluster size

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 39

Unifying Batch and Stream
Processing Models

 Spark program on Twitter log file using RDDs
 val tweets = sc.hadoopFile("hdfs://...")

 val hashTags = tweets.flatMap (status => getTags(status))

 hashTags.saveAsHadoopFile("hdfs://...")

 Spark Streaming program on Twitter stream using
DStreams

 val tweets = ssc.twitterStream()

 val hashTags = tweets.flatMap (status => getTags(status))

 hashTags.saveAsHadoopFiles("hdfs://...")

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 40

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 21

Vision - one stack to rule
them all
 Explore data

interactively using
Spark Shell to identify
problems

 Use same code in
Spark stand-alone
programs to identify
problems in
production logs

 Use similar code in
Spark Streaming to
identify problems in
live log streams

$./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = filtered.map(...)
...

object ProcessProductionData {
def main(args: Array[String]) {

val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs”)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}

object ProcessLiveStream {
def main(args: Array[String]) {

val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 41

Vision - one stack to rule
them all

Ad-hoc
Queries

Batch
Processing

Stream
Processing

Spark
+

Spark SQL
+

Spark
Streaming

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 42

CSIE59830 Big Data Systems Lecture 11 Big Stream Processing 2 – Spark Streaming

Note 22

Conclusions & References

 Integrated with Spark as an extension
◦ Takes 5 minutes to spin up a Spark cluster to try it out

 Streaming programming guide –
http://spark.incubator.apache.org/docs/latest/streaming-
programming-guide.html

 Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy
Hunter, Scott Shenker, Ion Stoica. Discretized
Streams: Fault-Tolerant Streaming Computation at
Scale. ACM SOSP 2013.

CSIE59830 Big Data Systems Big Stream Processing 2 – Spark Streaming 43

http://spark.incubator.apache.org/docs/latest/streaming-programming-guide.html

