
CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 1

Outline
 Informal Design Guidelines for Relational

Databases
 Semantics of the Relation Attributes

 Redundant Information in Tuples and Update
Anomalies

 Null Values in Tuples

 Spurious Tuples

 Functional Dependencies (FDs)
 Definition of FD

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs

CSIE30600/CSIEB0290 Database Systems RDB Design I 2

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 2

Outline
Normal Forms Based on Primary Keys

 Normalization of Relations

 Practical Use of Normal Forms

 Definitions of Keys and Attributes Participating in
Keys

 First Normal Form

 Second Normal Form

 Third Normal Form

General Normal Form Definitions (For
Multiple Keys)

BCNF (Boyce-Codd Normal Form)
CSIE30600/CSIEB0290 Database Systems RDB Design I 3

Relational Database Design
 Relational database design requires that we find a

“good” collection of relation schemas

 A bad design may lead to

 Repetition of Information

 Inability to represent certain information

 Design Goals:

 Avoid redundant data

 Ensure that relationships among attributes are represented

 Facilitate the checking of updates for violation of database
integrity constraints

CSIE30600/CSIEB0290 Database Systems RDB Design I 4

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 3

Informal Design Guidelines (1)

What is relational database design?

 The grouping of attributes to form "good" relation
schemas

 Two levels of relation schemas

 The logical "user view" level

 The storage "base relation" level

 Design is concerned mainly with base
relations

 What are the criteria for "good" base
relations?

CSIE30600/CSIEB0290 Database Systems RDB Design I 5

Informal Design Guidelines (2)
 We first discuss informal guidelines for good relational

design

 Then we discuss formal concepts of functional

dependencies and normal forms

 1NF (First Normal Form)

 2NF (Second Normal Form)

 3NF (Third Normal Form)

 BCNF (Boyce-Codd Normal Form)

 Additional types of dependencies, further normal forms,

relational design algorithms by synthesis are discussed in

next lecture.

CSIE30600/CSIEB0290 Database Systems RDB Design I 6

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 4

Measures of Quality
Making sure attribute semantics are clear

Reducing redundant information in
tuples

Reducing NULL values in tuples

Disallowing possibility of generating
spurious tuples

CSIE30600/CSIEB0290 Database Systems RDB Design I 7

Guideline 1
 Design relation schema so that it is easy to explain its

meaning

 Each tuple in a relation should represent one entity or
relationship instance.

 Do not combine attributes from multiple entity types and
relationship types into a single relation

 Only foreign keys should be used to refer to other entities

 Entity and relationship attributes should be kept apart as
much as possible.

 Bottom Line: Design a schema that can be explained easily
relation by relation. The semantics of attributes should be
easy to interpret.

CSIE30600/CSIEB0290 Database Systems RDB Design I 8

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 5

Guideline 1 (cont’d.)
 Example of violating Guideline 1: Figure 14.3

CSIE30600/CSIEB0290 Database Systems RDB Design I 9

Example States for EMP_DEPT
and EMP_PROJ

CSIE30600/CSIEB0290 Database Systems RDB Design I 10

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 6

Design Choices: Small vs. Large
Schemas
 Which design do you like better? Why?

 An employee can be assigned to at most one project, many
employees participate in a project

CSIE30600/CSIEB0290 Database Systems RDB Design I 11

What’s wrong?
EMP(ENAME, SSN, ADDRESS, PNUM, PNAME,

PMGRSSN)

The description of the project (the name and
the manager of the project) is repeated for
every employee that works in that department.

Redundancy!

The project is described redundantly.

This leads to update anomalies.

CSIE30600/CSIEB0290 Database Systems RDB Design I 12

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 7

Redundant Information in Tuples
and Update Anomalies
If information is stored redundantly

Wastes storage

Causes problems with update anomalies

Types of update anomalies:

 Insertion anomalies

Deletion anomalies

Modification anomalies

CSIE30600/CSIEB0290 Database Systems RDB Design I 13

Example of an Update Anomaly
Consider the relation:

 EMP_PROJ(Emp#, Proj#, Ename, Pname,
No_hours)

Update Anomaly:

 Changing the name of project number P1 from
“Billing” to “Customer-Accounting” may cause this
update to be made for all 100 employees working on
project P1.

CSIE30600/CSIEB0290 Database Systems RDB Design I 14

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 8

Example of an Insert Anomaly
Consider the relation:

 EMP_PROJ(Emp#, Proj#, Ename, Pname,
No_hours)

 Insert Anomaly:

 Cannot insert a project unless an employee is
assigned to it.

Conversely

 Cannot insert an employee unless an he/she is
assigned to a project.

CSIE30600/CSIEB0290 Database Systems RDB Design I 15

Example of an Delete Anomaly
Consider the relation:

 EMP_PROJ(Emp#, Proj#, Ename, Pname,
No_hours)

Delete Anomaly:

 When a project is deleted, it will result in deleting
all the employees who work on that project.

 Alternately, if an employee is the sole employee on
a project, deleting that employee would result in
deleting the corresponding project.

CSIE30600/CSIEB0290 Database Systems RDB Design I 16

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 9

Guideline 2

Design base relation schemas so that no
update anomalies are present in the
relations

If any anomalies are present:

Note them clearly

Make sure that the programs that update the
database will operate correctly

CSIE30600/CSIEB0290 Database Systems RDB Design I 17

NULL Values in Tuples
Some designers may group many attributes

together into a “fat” relation

 Can end up with many NULLs

Problems with NULLs

 Wasted storage space

 Problems understanding meaning

CSIE30600/CSIEB0290 Database Systems RDB Design I 18

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 10

Guideline 3
Relations should be designed such that their

tuples will have as few NULL values as possible
 Attributes that are NULL frequently could be

placed in separate relations

 If NULLs are unavoidable:
 Make sure that they apply in exceptional cases only,

not to a majority of tuples

Reasons for NULL s:

 Attribute not applicable or invalid

 Attribute value unknown (may exist)

 Value known to exist, but unavailable

CSIE30600/CSIEB0290 Database Systems RDB Design I 19

Spurious(偽、假) Tuples
 Bad schema designs may result in erroneous results

for certain JOIN operations

 Figure 14.5(a)

 Relation schemas EMP_LOCS and EMP_PROJ1

 NATURAL JOIN

 Result produces many more tuples than the original set of
tuples in EMP_PROJ

 Called spurious tuples

 Represent spurious information that is not valid

CSIE30600/CSIEB0290 Database Systems RDB Design I 20

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 11

CSIE30600/CSIEB0290 Database Systems RDB Design I 21

Guideline 4
Design relation schemas to be joined with

equality conditions on attributes that are
appropriately related

 Guarantees that no spurious tuples are generated

The "lossless join" property is used to
guarantee meaningful results for join
operations (more about this later)

Avoid relations that contain matching
attributes that are NOT (foreign key, primary
key) combinations

CSIE30600/CSIEB0290 Database Systems RDB Design I 22

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 12

Summary of Design Guidelines
Anomalies cause redundant work to be done

Waste of storage space due to NULLs

Difficulty of performing operations and joins
due to NULL values

Generation of invalid and spurious data during
joins

A good design should avoid all problems above.

CSIE30600/CSIEB0290 Database Systems RDB Design I 23

Functional Dependencies (FDs)
Formal tool for analysis of relational schemas

Enables us to detect and describe some of the
above-mentioned problems in precise terms

Theory of functional dependency

CSIE30600/CSIEB0290 Database Systems RDB Design I 24

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 13

Definition of FDs
Constraint between two sets of attributes from

the database
 A set of attributes X functionally determines a

set of attributes Y if the value of X determines a
unique value for Y

Functional dependencies (FDs)
 Are used to specify formal measures of the

"goodness" of relational designs

 Are used to define normal forms for relations

 Are constraints that are derived from the meaning
and interrelationships of the data attributes

CSIE30600/CSIEB0290 Database Systems RDB Design I 25

Definition of FDs (2)
 X → Y holds if whenever two tuples have the same

value for X, they must have the same value for Y

 For any two tuples t1 and t2 in any relation instance r(R): If
t1[X]=t2[X], then t1[Y]=t2[Y]

 X → Y in R specifies a constraint on all relation
instances r(R)

 Written as X → Y; can be displayed graphically on a
relation schema as in Figures. (denoted by the arrow:
).

 FDs are derived from the real-world constraints on the
attributes

CSIE30600/CSIEB0290 Database Systems RDB Design I 26

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 14

Examples of FD Constraints (1)
 Social security number determines employee name

 SSN → ENAME

 Project number determines project name and
location
 PNUMBER → {PNAME, PLOCATION}

 Employee SSN and project number determines the
hours per week that the employee works on the
project
 {SSN, PNUMBER} → HOURS

CSIE30600/CSIEB0290 Database Systems RDB Design I 27

Examples of FD Constraints (2)
 Examples of functional dependencies:

employee-number → employee-name

course-number → course-title

movieTitle, movieYear→ length, filmType, studioName

 Examples that are NOT functional dependencies

employee-name → employee-number ×
two distinct employees can have the same name

course-number → book ×

a course may use multiple books

course-number → car-color ×

????

CSIE30600/CSIEB0290 Database Systems RDB Design I 28

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 15

What is functional in a FD?
 A1,…,An → B

 A FD is a function that takes a list of values (A1,…,An)
and produces a unique value B or no value at all (this
value can be the NULL value)

 We are looking for functional relationships (that must
occur in a relation) among attribute values

CSIE30600/CSIEB0290 Database Systems RDB Design I 29

More on FD Constraints
An FD is a property of the attributes in the

schema R

The constraint must hold on every relation
instance r(R)

 If K is a key of R, then K functionally
determines all attributes in R

 (since we never have two distinct tuples with
t1[K]=t2[K])

CSIE30600/CSIEB0290 Database Systems RDB Design I 30

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 16

Inference Rules for FDs (1)
 Given a set of FDs F, we can infer additional FDs that

hold whenever the FDs in F hold

 Armstrong's inference rules:

 IR1. (Reflexive) If Y subset-of X, then X → Y

 IR2. (Augmentation) If X → Y, then XZ → YZ

 (Notation: XZ stands for X U Z)

 IR3. (Transitive) If X → Y and Y → Z, then X → Z

 IR1, IR2, IR3 form a sound and complete set of inference

rules

 These are rules hold

 All other rules that hold can be deduced from these

CSIE30600/CSIEB0290 Database Systems RDB Design I 31

Inference Rules for FDs (2)
Some additional inference rules that are useful:

 Decomposition: If X → YZ, then X → Y and X →
Z

 Union: If X → Y and X → Z, then X → YZ

 Psuedotransitivity: If X → Y and WY → Z, then
WX → Z

The last three inference rules, as well as any
other inference rules, can be deduced from IR1,
IR2, and IR3 (completeness property)

CSIE30600/CSIEB0290 Database Systems RDB Design I 32

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 17

Example: Using Inference Rules
Prove that if X→Y and Z→W, then XZ→YW

1. X→Y (given)

2. XZ→YZ (1 and Augmentation)

3. Z→W (given)

4. YZ→YW (3 and Augmentation)

5. XZ→YW (2, 4, and Transitivity)

CSIE30600/CSIEB0290 Database Systems RDB Design I 33

Closure
 Closure of a set F of FDs is the set F+ of all FDs that can

be inferred from F

 Closure of a set of attributes X with respect to F is the set
X+ of all attributes that are functionally determined by X

 X+ can be calculated by repeatedly applying IR1, IR2, IR3
using the FDs in F

 If we know how to compute the closure of any set of
attributes, we can test if any given FD A1,…,An→B follows
from a set of FDs F

 Compute {A1,…,An}+

 If B ∈ {A1,…,An}+ , then A1,…,An → B

CSIE30600/CSIEB0290 Database Systems RDB Design I 34

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 18

Equivalence of Sets of FDs
 Two sets of FDs F and G are equivalent if:

 Every FD in F can be inferred from G, and

 Every FD in G can be inferred from F

 Hence, F and G are equivalent if F+ = G+

 Definition (Covers):

 F covers G if every FD in G can be inferred from F

 (i.e., if G+ subset-of F+)

 F and G are equivalent if F covers G and G covers F

 There is an algorithm for checking equivalence of sets
of FDs

CSIE30600/CSIEB0290 Database Systems RDB Design I 35

Minimal Sets of FDs (1)
 A set of FDs is minimal if it satisfies the following

conditions:

1. Every dependency in F has a single attribute for
its RHS.

2. We cannot remove any dependency from F and
have a set of dependencies that is equivalent to F.

3. We cannot replace any dependency X → A in F
with a dependency Y → A, where Y proper-
subset-of X (Y subset-of X) and still have a set of
dependencies that is equivalent to F.

CSIE30600/CSIEB0290 Database Systems RDB Design I 36

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 19

Minimal Sets of FDs (2)
Every set of FDs has an equivalent minimal set

There can be several equivalent minimal sets

There is no simple algorithm for computing a
minimal set of FDs that is equivalent to a set F
of FDs

To synthesize a set of relations, we assume that
we start with a set of dependencies that is a
minimal set

CSIE30600/CSIEB0290 Database Systems RDB Design I 37

Normal Forms Based on Primary
Keys
Normalization of relations

Approaches for relational schema design

 Perform a conceptual schema design using a
conceptual model then map conceptual design into
a set of relations

 Design relations based on external knowledge
derived from existing implementation of files or
forms or reports

CSIE30600/CSIEB0290 Database Systems RDB Design I 38

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 20

Normalization of Relations (1)
Normalization:

Takes a schema through a series of tests

Certify whether it satisfies a certain normal
form

Decompose unsatisfactory “bad” relations
into smaller “good” relations

Normal form:
Conditions that must be satisfied for a

relation schema to be in a particular “good”
form

CSIE30600/CSIEB0290 Database Systems RDB Design I 39

Normalization of Relations (2)
 2NF, 3NF, BCNF

 based on keys and FDs of a relation schema

4NF
 based on keys, multi-valued dependencies : MVDs;

 5NF

 based on keys, join dependencies : JDs

Additional properties may be needed to ensure
a good relational design

CSIE30600/CSIEB0290 Database Systems RDB Design I 40

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 21

Desirable Properties of Relational
Schemas
Nonadditive join property (lossless join)

• Extremely critical

Dependency preservation property

• Desirable but sometimes sacrificed for other factors

CSIE30600/CSIEB0290 Database Systems RDB Design I 41

Practical Use of Normal Forms
 Normalization is carried out in practice so that the resulting

designs are of high quality and meet the desirable properties

 The practical utility of these normal forms becomes

questionable when the constraints on which they are based are

hard to understand or to detect

 The database designers need not normalize to the highest

possible normal form

 (usually up to 3NF, BCNF. 4NF and further are rarely used)

 Denormalization:

 The process of storing the join of higher normal form relations as

a base relation—which is in a lower normal form

CSIE30600/CSIEB0290 Database Systems RDB Design I 42

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 22

Problems with Decompositions
There are three potential problems to consider:

 Some queries become more expensive.

 e.g., In which project does John work? (EMP2 JOIN X)

 Given instances of the decomposed relations, we
may not be able to reconstruct the corresponding
instance of the original relation!

 Checking some dependencies may require joining
the instances of the decomposed relations.

Tradeoff: Must consider these issues vs.
redundancy.

CSIE30600/CSIEB0290 Database Systems RDB Design I 43

Keys and Attributes (1)
A superkey of a relation schema R = {A1, A2,

...., An} is a set of attributes S subset-of R with
the property that no two tuples t1 and t2 in any
legal relation state r of R will have t1[S] = t2[S]

A key K is a superkey with the additional
property that removal of any attribute from K
will cause K not to be a superkey any more.

CSIE30600/CSIEB0290 Database Systems RDB Design I 44

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 23

Keys and Attributes(2)
 If a relation schema has more than one key,

each is called a candidate key.

 One of the candidate keys is arbitrarily designated
to be the primary key, and the others are called
secondary keys.

A prime attribute must be a member of some
candidate key

A nonprime attribute is not a prime
attribute—that is, it is not a member of any
candidate key.

CSIE30600/CSIEB0290 Database Systems RDB Design I 45

First Normal Form
Disallows

 composite attributes

 multivalued attributes

 nested relations; attributes whose values for an
individual tuple are non-atomic

Considered to be part of the definition of the
basic (flat) relational model

Most RDBMSs allow only those relations to be
defined that are in First Normal Form

CSIE30600/CSIEB0290 Database Systems RDB Design I 46

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 24

Normalizing into 1NF

CSIE30600/CSIEB0290 Database Systems RDB Design I 47

Normalizing Nested Relations into 1NF

CSIE30600/CSIEB0290 Database Systems RDB Design I 48

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 25

Second Normal Form (1)
 Uses the concepts of FDs, primary key

 Definitions

 Prime attribute: An attribute that is member of any
candidate key K

 Full functional dependency: a FD Y → Z where removal
of any attribute from Y means the FD does not hold any
more

 Examples:

 {SSN, PNUMBER} → HOURS is a full FD since neither SSN
→ HOURS nor PNUMBER → HOURS hold

 {SSN, PNUMBER} → ENAME is not a full FD (it is called a
partial dependency) since SSN → ENAME also holds

CSIE30600/CSIEB0290 Database Systems RDB Design I 49

Second Normal Form (2)
A relation schema R is in second normal

form (2NF) if every non-prime attribute A in R
is fully functionally dependent on the primary
key

R can be decomposed into 2NF relations via
the process of 2NF normalization

CSIE30600/CSIEB0290 Database Systems RDB Design I 50

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 26

Normalizing into 2NF

CSIE30600/CSIEB0290 Database Systems RDB Design I 51

Third Normal Form (1)
Transitive dependency :

 a FD X → Z that can be derived from two FDs X
→ Y and Y → Z

Examples:
 SSN → DMGRSSN is a transitive FD

 Since SSN → DNUMBER and DNUMBER → DMGRSSN
hold

 SSN → ENAME is non-transitive
 Since there is no set of attributes X where SSN → X and X
→ ENAME

CSIE30600/CSIEB0290 Database Systems RDB Design I 52

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 27

Third Normal Form (2)
 A relation schema R is in third normal form (3NF) if it is

in 2NF and no non-prime attribute A in R is transitively
dependent on the primary key

 R can be decomposed into 3NF relations via the process of
3NF normalization

 NOTE:

 In X → Y and Y → Z, with X as the primary key, we consider
this a problem only if Y is not a candidate key.

 When Y is a candidate key, there is no problem with the
transitive dependency .

 E.g., Consider EMP (SSN, Emp#, Salary).

 Here, SSN → Emp# → Salary and Emp# is a candidate key.

CSIE30600/CSIEB0290 Database Systems RDB Design I 53

Normalizing into 3NF

CSIE30600/CSIEB0290 Database Systems RDB Design I 54

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 28

Normalization into 2NF and 3NF

CSIE30600/CSIEB0290 Database Systems RDB Design I 55

Normalization into 2NF and 3NF

CSIE30600/CSIEB0290 Database Systems RDB Design I 56

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 29

Normal Forms Defined Informally
 1st normal form

 All attributes depend on the key

 2nd normal form

 All attributes depend on the whole key

 3rd normal form

 All attributes depend on nothing but the key

CSIE30600/CSIEB0290 Database Systems RDB Design I 57

General Definition of Second
Normal Form
The above definitions consider the primary key

only

The following more general definitions take

into account relations with multiple candidate

keys

A relation schema R is in second normal

form (2NF) if every non-prime attribute A in R

is not partially dependent on any key of R.

CSIE30600/CSIEB0290 Database Systems RDB Design I 58

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 30

General Definition of Third Normal
Form
Definition:

 Superkey of relation schema R - a set of attributes
S of R that contains a key of R

 A relation schema R is in third normal form
(3NF) if whenever a FD X → A holds in R, then
either:

 (a) X is a superkey of R, or

 (b) A is a prime attribute of R

NOTE: Boyce-Codd normal form (slide 61)
disallows condition (b) above

CSIE30600/CSIEB0290 Database Systems RDB Design I 59

Alternative Definition of 3NF
A relation schema R is in 3NF if every

nonprime attribute of R meets both of the
following conditions:

 It is fully functionally dependent on every
key of R.

 It is nontransitively dependent on every key
of R.

CSIE30600/CSIEB0290 Database Systems RDB Design I 60

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 31

BCNF (Boyce-Codd Normal Form)
 A relation schema R is in Boyce-Codd Normal Form

(BCNF) if whenever an FD X → A holds in R, then X

is a superkey of R

 Each normal form is strictly stronger than the

previous one

 Every 2NF relation is in 1NF

 Every 3NF relation is in 2NF

 Every BCNF relation is in 3NF

 There exist relations that are in 3NF but not in BCNF

 The goal is to have each relation in BCNF (or 3NF)
CSIE30600/CSIEB0290 Database Systems RDB Design I 61

Boyce-Codd Normal Form

CSIE30600/CSIEB0290 Database Systems RDB Design I 62

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 32

A relation in 3NF but not in BCNF

CSIE30600/CSIEB0290 Database Systems RDB Design I 63

Achieving BCNF by Decomposition(1)

Two FDs exist in the relation TEACH:

 fd1: { student, course} → instructor

 fd2: instructor → course

 {student, course} is a candidate key for this

relation and that the dependencies shown

follow the pattern in Figure 14.13 (b).

 So this relation is in 3NF but not in BCNF

CSIE30600/CSIEB0290 Database Systems RDB Design I 64

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 33

BCNF by Decomposition (2)
A relation NOT in BCNF should be

decomposed so as to meet this property, while

possibly forgoing the preservation of all

functional dependencies in the decomposed

relations.

Three possible decompositions for relation
TEACH
 {student, instructor} and {student, course}

 {course, instructor } and {course, student}

 {instructor, course } and {instructor, student}

CSIE30600/CSIEB0290 Database Systems RDB Design I 65

Achieving BCNF by Decomposition (3)

All three decompositions will lose fd1.
 We have to settle for sacrificing the functional dependency

preservation. But we cannot sacrifice the non-additivity
property after decomposition.

Only the 3rd decomposition will not generate
spurious tuples after join (and hence has the
non-additive property).

A test to determine whether a binary
decomposition (decomposition into two
relations) is non-additive (lossless) will be
discussed in the next lecture.

CSIE30600/CSIEB0290 Database Systems RDB Design I 66

CSIE30600/CSIEB0290 Database Systems Lecture 10 Relational Database Design I

Note 34

Lecture Summary
 Informal Design Guidelines for Relational

Databases

Functional Dependencies (FDs)

 Definition, Inference Rules, Equivalence of Sets of
FDs, Minimal Sets of FDs

Normal Forms Based on Primary Keys

General Normal Form Definitions (For
Multiple Keys)

BCNF (Boyce-Codd Normal Form)

CSIE30600/CSIEB0290 Database Systems RDB Design I 67

