
CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 1

Outline
 Introduction to Transaction Processing

Transaction and System Concepts

Desirable Properties of Transactions

Characterizing Schedules based on
Recoverability

Characterizing Schedules based on
Serializability

Transaction Support in SQL

Transactions 2CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 2

Transaction Processing
Single-User System:

 At most one user at a time can use the system.

Multiuser System:

 Many users can access the system concurrently.

Concurrency

 Interleaved processing:

 Concurrent execution of processes is interleaved in a
single CPU

 Parallel processing:

 Processes are concurrently executed in multiple CPUs.

Transactions 3CSIE30600/CSIEB0290 Database Systems

Transactions
 A Transaction:

 Logical unit of database processing that includes one or more

access operations (read -retrieval, write - insert or update, delete).

 A transaction (set of operations) may be stand-alone

specified in a high level language like SQL submitted

interactively, or may be embedded within a program.

 Transaction boundaries:

 Begin and End transaction.

 An application program may contain several

transactions separated by the Begin and End transaction

boundaries.

Transactions 4CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 3

Simple Model of a Database
A database is a collection of named data items

Granularity of data - a field, a record , or a
whole disk block (Concepts are independent of
granularity)

Basic operations are read and write
 read_item(X): Reads a database item named X

into a program variable. To simplify our notation,
we assume that the program variable is also named
X.

 write_item(X): Writes the value of program
variable X into the database item named X.

Transactions 5CSIE30600/CSIEB0290 Database Systems

Read and Write Operations
 Basic unit of data transfer (from disk to computer

memory) is one block. In general, a data item (what is
read or written) will be the field of some record in the
database, although it may be a larger unit such as a
record or even a whole block.

 read_item(X) command includes the following
steps:

 Find the address of the disk block that contains item X.

 Copy that disk block into a buffer in main memory (if that
disk block is not already in some main memory buffer).

 Copy item X from the buffer to the program variable named
X.

Transactions 6CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 4

Read and Write Operations (contd.)
write_item(X) command includes the

following steps:
 Find the address of the disk block that contains

item X.

 Copy that disk block into a buffer in main memory
(if that disk block is not already in some main
memory buffer).

 Copy item X from the program variable named X
into its correct location in the buffer.

 Store the updated block from the buffer back to
disk (either immediately or at some later point in
time).

Transactions 7CSIE30600/CSIEB0290 Database Systems

Sample Transactions
 FIGURE 20.2 Two sample transactions:

 (a) Transaction T1

 (b) Transaction T2

Transactions 8CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 5

Why Concurrency Control ?
 The Lost Update Problem

 This occurs when two transactions that access the same database items
have their operations interleaved in a way that makes the value of some
database item incorrect.

 The Temporary Update (or Dirty Read) Problem
 This occurs when one transaction updates a database item and then the

transaction fails for some reason (see Section 17.1.4).

 The updated item is accessed by another transaction before it is changed
back to its original value.

 The Incorrect Summary Problem
 If one transaction is calculating an aggregate summary function on a

number of records while other transactions are updating some of these
records, the aggregate function may calculate some values before they
are updated and others after they are updated.

Transactions 9CSIE30600/CSIEB0290 Database Systems

Lost Update

Transactions 10CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 6

Temporary Update

Transactions 11CSIE30600/CSIEB0290 Database Systems

Incorrect Summary

Transactions 12CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 7

Why Recovery ?
(What causes a Transaction to fail)

1. A computer failure (system crash):
A hardware or software error occurs in the computer
system during transaction execution. If the hardware
crashes, the contents of the computer’s internal
memory may be lost.

2. A transaction or system error:
Some operation in the transaction may cause it to fail,
such as integer overflow or division by zero.
Transaction failure may also occur because of
erroneous parameter values or because of a logical
programming error. In addition, the user may
interrupt the transaction during its execution.

Transactions 13CSIE30600/CSIEB0290 Database Systems

Why Recovery ? (contd.)
(What causes a Transaction to fail)

3. Local errors or exception conditions detected by
the transaction:
Certain conditions necessitate cancellation of the transaction. For

example, data for the transaction may not be found. A
condition, such as insufficient account balance in a banking
database, may cause a transaction, such as a fund withdrawal
from that account, to be canceled.

A programmed abort in the transaction causes it to fail.

4. Concurrency control enforcement:
The concurrency control method may decide to abort the

transaction, to be restarted later, because it violates
serializability or because several transactions are in a state of
deadlock (see Chapter 21).

Transactions 14CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 8

Why Recovery ? (contd.)
(What causes a Transaction to fail)

5. Disk failure:

Some disk blocks may lose their data because of a read or
write malfunction or because of a disk read/write head
crash. This may happen during a read or a write operation
of the transaction.

6. Physical problems and catastrophes:

This refers to an endless list of problems that includes
power or air-conditioning failure, fire, theft, sabotage,
overwriting disks or tapes by mistake, and mounting of a
wrong tape by the operator.

Transactions 15CSIE30600/CSIEB0290 Database Systems

Transaction Concepts
 A transaction is an atomic unit of work that is either

completed in its entirety or not done at all. (all or
none)

 For recovery purposes, the system needs to keep
track of when the transaction starts, terminates,
and commits or aborts.

 Transaction states:

 Active state

 Partially committed state

 Committed state

 Failed state

 Terminated State

Transactions 16CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 9

Transaction Execution States

Transactions 17CSIE30600/CSIEB0290 Database Systems

Transaction Concepts (2)
 Recovery manager keeps track of the following

operations:
 begin_transaction: This marks the beginning of

transaction execution.
 read or write: These specify read or write

operations on the database items.
 end_transaction: This specifies that read and

write transaction operations have ended and marks
the end limit of transaction execution.
 At this point it may be necessary to check

whether the changes introduced by the
transaction can be permanently applied to the
database or whether the transaction has to be
aborted because it violates concurrency control or
for some other reason.

Transactions 18CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 10

Transaction Concepts (3)
 Recovery manager keeps track of the following

operations (cont):

 commit_transaction: This signals a successful end
of the transaction so that any changes (updates)
executed by the transaction can be safely
committed to the database and will not be undone.

 rollback (or abort): This signals that the
transaction has ended unsuccessfully, so that any
changes or effects that the transaction may have
applied to the database must be undone.

Transactions 19CSIE30600/CSIEB0290 Database Systems

Transaction Concepts (4)
Recovery techniques use the following

operators:

 undo: Similar to rollback except that it applies to a
single operation rather than to a whole transaction.

 redo: This specifies that certain transaction
operations must be redone to ensure that all the
operations of a committed transaction have been
applied successfully to the database.

Transactions 20CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 11

System Log
Log or Journal: The log keeps track of all

transaction operations that affect the values of
database items.

 This information may be needed to permit recovery
from transaction failures.

 The log is kept on disk, so it is not affected by any
type of failure except for disk or catastrophic
failure.

 In addition, the log is periodically backed up to
archival storage (tape) to guard against such
catastrophic failures.

Transactions 21CSIE30600/CSIEB0290 Database Systems

Log Records
 T in the following discussion refers to a unique

transaction-id that is generated automatically by the

system and is used to identify each transaction:

 Types of log record:

 [start_transaction,T]: Records that transaction T

has started execution.

 [write_item, T, X, old_value, new_value]: Records

that transaction T has changed the value of

database item X from old_value to new_value.

Transactions 22CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 12

Log Records (cont)
 [read_item, T, X]: Records that transaction T has

read the value of database item X.

 [commit, T]: Records that transaction T has

completed successfully, and affirms that its effect

can be committed (recorded permanently) to the

database.

 [abort, T]: Records that transaction T has been

aborted.

Transactions 23CSIE30600/CSIEB0290 Database Systems

Log Records (cont)
Protocols for recovery that avoid cascading

rollbacks do not require that read operations be
written to the system log, whereas other
protocols require these entries for recovery.

Strict protocols require simpler write entries
that do not include new_value (see Section
21.4).

Transactions 24CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 13

Recovery Using Log Records
 If the system crashes, we can recover to a consistent

database state by examining the log and using one of
the techniques described in Chapter 19.

1. Because the log contains a record of every write operation
that changes the value of some database item, it is possible
to undo the effect of these write operations of a
transaction T by tracing backward through the log and
resetting all items changed by a write operation of T to
their old_values.

2. We can also redo the effect of the write operations of a
transaction T by tracing forward through the log and
setting all items changed by a write operation of T (that
did not get done permanently) to their new_values.

Transactions 25CSIE30600/CSIEB0290 Database Systems

Commit Point
Definition a Commit Point:

 A transaction T reaches its commit point when all
its operations that access the database have been
executed successfully and the effect of all the
transaction operations on the database has been
recorded in the log.

 Beyond the commit point, the transaction is said to
be committed, and its effect is assumed to be
permanently recorded in the database.

 The transaction then writes an entry [commit,T]
into the log.

Transactions 26CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 14

Transaction Roll Back
Roll Back of transactions:

 Needed for transactions that have a

[start_transaction,T] entry into the log but no

commit entry [commit,T] into the log.

Transactions 27CSIE30600/CSIEB0290 Database Systems

Transaction Redo
Redoing transactions:

 Transactions that have written their commit entry
in the log must also have recorded all their write
operations in the log; otherwise they would not be
committed, so their effect on the database can be
redone from the log entries. (Notice that the log file
must be kept on disk.

 At the time of a system crash, only the log entries
that have been written back to disk are considered
in the recovery process because the contents of
main memory may be lost.)

Transactions 28CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 15

Force Write
Force writing a log:

 Before a transaction reaches its commit point, any
portion of the log that has not been written to the
disk yet must now be written to the disk.

 This process is called force-writing the log file
before committing a transaction.

Transactions 29CSIE30600/CSIEB0290 Database Systems

ACID Properties
 Atomicity: A transaction is an atomic unit of processing; it is

either performed in its entirety or not performed at all.

 Consistency preservation: A correct execution of the
transaction must take the database from one consistent state to
another.

 Isolation: A transaction should not make its updates visible to
other transactions until it is committed; this property, when
enforced strictly, solves the temporary update problem and
makes cascading rollbacks of transactions unnecessary (see
Chapter 21).

 Durability or permanency: Once a transaction changes the
database and the changes are committed, these changes must
never be lost because of subsequent failure.

Transactions 30CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 16

Schedules
 Transaction schedule or history:

 When transactions are executing concurrently in an

interleaved fashion, the order of execution of operations

from the various transactions forms what is known as a

transaction schedule (or history).

 A schedule (or history) S of n transactions T1, T2, …, Tn:

 It is an ordering of the operations of the transactions subject

to the constraint that, for each transaction Ti that

participates in S, the operations of Ti in S must appear in

the same order in which they occur in Ti .

 Note, however, that operations from other transactions Tj

can be interleaved with the operations of Ti in S.

Transactions 31CSIE30600/CSIEB0290 Database Systems

Transactions 32CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 17

Characterizing Schedules
Schedules classified on recoverability:

 Recoverable schedule:

 One where no committed transaction needs to be

rolled back.

 A schedule S is recoverable if no transaction T in S

commits until all transactions T’ that have written an

item that T reads have committed.

 Cascadeless schedule:

 One where every transaction reads only the items that

are written by committed transactions.

Transactions 33CSIE30600/CSIEB0290 Database Systems

Characterizing Schedules (2)
Schedules requiring cascaded

rollback:

A schedule in which uncommitted
transactions that read an item from a failed
transaction must be rolled back.

Strict Schedules:

A schedule in which a transaction can
neither read or write an item X until the last
transaction that wrote X has committed.

Transactions 34CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 18

Serializability
Serial schedule:

 A schedule S is serial if, for every transaction T

participating in the schedule, all the operations

of T are executed consecutively in the schedule.

 Otherwise, the schedule is called nonserial schedule.

Serializable schedule:

 A schedule S is serializable if it is equivalent to

some serial schedule of the same n transactions.

Transactions 35CSIE30600/CSIEB0290 Database Systems

Result Equivalent
 Result equivalent:

 Two schedules are called result equivalent if they
produce the same final state of the database.

 Two different schedules may accidentally produce the
same final state.

 Not a good definition of equivalence of schedules.

Transactions 36CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 19

Conflict Serializability
 Two operations are conflict if

 They belong to different transactions.

 They access the same database item.

 At least one of them is write.

 Conflict equivalent:

 Two schedules are said to be conflict equivalent if the order
of any two conflicting operations is the same in both
schedules.

 Conflict serializable:

 A schedule S is said to be conflict serializable if it is conflict
equivalent to some serial schedule S’.

Transactions 37CSIE30600/CSIEB0290 Database Systems

Serializability
Being serializable is not the same as being

serial

Being serializable implies that the
schedule is a correct schedule.

 It will leave the database in a consistent state.

The interleaving is appropriate and will
result in a state as if the transactions were
serially executed, yet will achieve efficiency
due to concurrent execution.

Transactions 38CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 20

Checking Serializability
Serializability is hard to check.

 Interleaving of operations occurs in an
operating system through some scheduler

Difficult to determine beforehand how the
operations in a schedule will be interleaved.

Transactions 39CSIE30600/CSIEB0290 Database Systems

Ensouring Serializability
Practical approach:

 Come up with methods (protocols) to ensure
serializability.

 It’s not possible to determine when a schedule begins
and when it ends.

 Hence, we reduce the problem of checking the whole
schedule to checking only a committed project of the
schedule (i.e. operations from only the committed
transactions.)

 Current approach used in most DBMSs:

 Use of locks with two phase locking (2PL)

Transactions 40CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 21

View Serializability
View equivalence:

A less restrictive definition of equivalence of
schedules(next slide)

View serializability:

Definition of serializability based on view
equivalence.

A schedule is view serializable if it is view
equivalent to a serial schedule.

Transactions 41CSIE30600/CSIEB0290 Database Systems

View Equivalent Conditions
 Two schedules S and S’ are said to be view equivalent if

the following conditions hold:

1. The same set of transactions participates in S and S’, and S
and S’ include the same operations of those transactions.

2. For any operation Ri(X) of Ti in S, if the value of X read by
the operation has been written by an operation Wj(X) of Tj

(or if it is the original value of X before the schedule
started), the same condition must hold for the value of X
read by operation Ri (X) of Ti in S’.

3. If the operation Wk(Y) of Tk is the last operation to write
item Y in S, then Wk (Y) of Tk must also be the last
operation to write item Y in S’.

Transactions 42CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 22

View Equivalence
The premise behind view equivalence:

As long as each read operation of a
transaction reads the result of the same write
operation in both schedules, the write
operations of each transaction must produce
the same results.

 “The view”: the read operations are said to
see the same view in both schedules.

Transactions 43CSIE30600/CSIEB0290 Database Systems

View and Conflict Equivalence
The two are same under constrained write

assumption which assumes that if T writes
X, it is constrained by the value of X it read;
i.e., new X = f(old X)

Conflict serializability is stricter than view
serializability. With unconstrained write (or
blind write), a schedule that is view
serializable is not necessarily conflict
serializable.

Any conflict serializable schedule is also view
serializable, but not vice versa.

Transactions 44CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 23

View and Conflict Equivalence
 Relationship between view and conflict equivalence

(cont):

 Consider the following schedule of three transactions

 T1: r1(X), w1(X); T2: w2(X); and T3: w3(X):

 Schedule Sa: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

 In Sa, the operations w2(X) and w3(X) are blind writes,

since T2 and T3 do not read the value of X.

 Sa is view serializable, since it is view equivalent to the serial

schedule T1, T2, T3.

 However, Sa is not conflict serializable, since it is not

conflict equivalent to any serial schedule.

Transactions 45CSIE30600/CSIEB0290 Database Systems

Testing Conflict Serializability
Algorithm 20.1:

 Looks at only read_Item(X) and write_Item(X)
operations

 Constructs a precedence graph (serialization graph)
- a graph with directed edges

 An edge is created from Ti to Tj if one of the
operations in Ti appears before a conflicting
operation in Tj

 The schedule is serializable if and only if the
precedence graph has no cycles.

Transactions 46CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 24

Transactions 47CSIE30600/CSIEB0290 Database Systems

Precedence Graphs

Transactions 48CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 25

Another Example of
Serializability Testing

Transactions 49CSIE30600/CSIEB0290 Database Systems

Another Example of
Serializability Testing (2)

Transactions 50CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 26

Another Example of
Serializability Testing (3)

Transactions 51CSIE30600/CSIEB0290 Database Systems

Transactions 52CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 27

Other Types of Equivalence
Under special semantic constraints,

schedules that are otherwise not conflict
serializable may work correctly.

Using commutative operations of addition
and subtraction (which can be done in any
order) certain non-serializable transactions
may work correctly

Transactions 53CSIE30600/CSIEB0290 Database Systems

Other Types of Equivalence
 Example: bank credit /debit transactions on a given item

are separable and commutative.

 Consider the following schedule S for the two transactions:

 Sh : r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);

 Using conflict serializability, it is not serializable.

 However, if it came from a (read, update, write) sequence as
follows:

 r1(X); X := X – 10; w1(X); r2(Y); Y := Y – 20; w2(Y);
r1(Y); Y := Y + 10; w1(Y); r2(X); X := X + 20; w2(X);

 Sequence explanation: debit, debit, credit, credit.

 It is a correct schedule for the given semantics

Transactions 54CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 28

Transaction Support in SQL2
 A single SQL statement is always considered to be

atomic.

 Either the statement completes execution without error or it
fails and leaves the database unchanged.

 With SQL, there is no explicit Begin Transaction
statement.

 Transaction initiation is done implicitly when particular
SQL statements are encountered.

 Every transaction must have an explicit end statement,
which is either a COMMIT or ROLLBACK.

Transactions 55CSIE30600/CSIEB0290 Database Systems

Transaction Support in SQL2
Characteristics specified by a SET TRANSACTION

statement in SQL2:

 Access mode:

 READ ONLY or READ WRITE.

 The default is READ WRITE unless the isolation level of READ
UNCOMITTED is specified, in which case READ ONLY is
assumed.

 Diagnostic size n, specifies an integer value n,
indicating the number of conditions that can be held
simultaneously in the diagnostic area.

Transactions 56CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 29

Transaction Support in SQL2
Characteristics specified by a SET TRANSACTION

statement in SQL2 (contd.):

 Isolation level <isolation>, where <isolation> can be
READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ or SERIALIZABLE. The default is
SERIALIZABLE.

 With SERIALIZABLE: the interleaved execution of
transactions will adhere to our notion of serializability.

 However, if any transaction executes at a lower level, then
serializability may be violated.

Transactions 57CSIE30600/CSIEB0290 Database Systems

Transaction Support in SQL2
Potential problems with lower isolation levels:

 Dirty Read:

 Reading a value that was written by a transaction which failed.

 Nonrepeatable Read:

 Allowing another transaction to write a new value between
multiple reads of one transaction.

 A transaction T1 may read a given value from a table. If another
transaction T2 later updates that value and T1 reads that value
again, T1 will see a different value.

 Consider that T1 reads the employee salary for Smith.
Next, T2 updates the salary for Smith. If T1 reads
Smith's salary again, then it will see a different value
for Smith's salary.

Transactions 58CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 30

Transaction Support in SQL2
Potential problem with lower isolation

levels (contd.):
Phantoms:

 New rows being read using the same read with a
condition.
 A transaction T1 may read a set of rows from a table,

perhaps based on some condition specified in the SQL
WHERE clause.

 Now suppose that a transaction T2 inserts a new row
that also satisfies the WHERE clause condition of T1,
into the table used by T1.

 If T1 is repeated, then T1 will see a row that previously
did not exist, called a phantom.

Transactions 59CSIE30600/CSIEB0290 Database Systems

Sample SQL Transaction
EXEC SQL whenever sqlerror go to UNDO;

EXEC SQL SET TRANSACTION

READ WRITE

DIAGNOSTICS SIZE 5

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT

INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)

VALUES ('Robert','Smith','991004321',2,35000);

EXEC SQL UPDATE EMPLOYEE

SET SALARY = SALARY * 1.1

WHERE DNO = 2;

EXEC SQL COMMIT;

GOTO THE_END;

UNDO: EXEC SQL ROLLBACK;

THE_END: ...

Transactions 60CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 12 Transactions

Note 31

Possible Violation of
Serializability

Type of Violation

Isolation Dirty nonrepeatable
level read read phantom

READ UNCOMMITTED yes yes yes
READ COMMITTED no yes yes
REPEATABLE READ no no yes
SERIALIZABLE no no no

Transactions 61CSIE30600/CSIEB0290 Database Systems

Summary
Transaction and System Concepts

Desirable Properties of Transactions

Characterizing Schedules based on
Recoverability

Characterizing Schedules based on
Serializability

Transaction Support in SQL

Transactions 62CSIE30600/CSIEB0290 Database Systems

