CSIE30600/CSIEB0290 Database Systems, Fall 2020 Midterm Exam

Name: \qquad Student ID: \qquad

1. ($\mathbf{3 0}$ points) Based on the problem type in parentheses (True/False, fill in the Blank (FIB), or briefly answer (ANS)), answer the following questions.

1-1 What is data independence? What is the main mechanism to facilitate data independence? Why is it important to database systems?
Capacity to change the schema at one level w/o having to change the schema at the next higher level._Three-level architecture with schema mapping is the main mechanism. This allow us to change the structure of data at one level without affecting existing operations of other levels. Each level can be improved and optimized independently. \qquad (ANS)
1-2 A database system contains not only data itself but also the description of data (meta-data). What is the term we use to describe such a property? _self-describing \qquad (FIB)

1-3 Since database systems for different applications have different domains, they must use different DBMSs. \qquad False \qquad (True/False)
1-4 What are the advantages of three-level architecture in database systems? What is its relationship with schema mapping?
___ Data independence, separation of concerns, modularity, flexibility \qquad
\qquad The structure and schema of each level is independent from other levels. \qquad
\qquad Schema mapping is the process of converting data in one level to the \qquad
\qquad schema structure in another level._When one level is changed, only the \qquad ___ mapping need to be changed without affecting other \qquad (ANS)
1-5 The result of a relational expression is always a relation. \qquad True \qquad (True/False)
1-6 Give an example of a multi-value composite attribute.
\qquad $\{$ (Colledge, Major, Year, Degree) \} \qquad (FIB)
1-7 Briefly describe what does referential integrity constraint mean.
\qquad When a referencing tuple refers to a referenced tuple through a foreign key,
\qquad the referenced tuple must exists. \qquad
\qquad
\qquad
\qquad (ANS)
1-8 In the relational model, what is the main property for a set of attributes to form a key? __can uniquely identify a tuple \qquad (FIB)

1-9 A candidate key is a minimal superkey and therefore must be a superkey with fewest number of attributes. \qquad False \qquad (True/False)

1-10 A DELETE operation may violate all types of integrity constraints.
\qquad False \qquad (True/False)
1-11 What does it mean by specifying the CASCADE option for database updates? What is(are) its implication?
\qquad CASCADE option means that if the referenced rows are updated, the referencing row is also updated accordingly.
\qquad
\qquad
\qquad
1-12 As the name suggest, the Structured Query Language (SQL) is a language just for querying existing databases. \qquad False \qquad (True/False)
1-13 What are the correspondences between the SELECT, FROM, and WHERE clauses of SQL to the relational algebra operations?
\qquad SELECT \rightarrow projection attributes \qquad
\qquad FROM \rightarrow the target relations, \times, join \qquad
\ldots WHERE \rightarrow selection condition, join condition \qquad
\qquad
\qquad
1-14 How do we describe the property of relational algebra that the result of any expression is also a relation? \qquad The algebra is closed. \qquad (FIB)

1-15 What does it mean by saying that the set of six relational algebra operations $\{\sigma$, $\pi, \cup, \rho,-, \times\}$ is complete? What about other operations?
_ The set of operations is complete since any other relational algebra \qquad operation can be expressed as a sequence of operations from the set.
___Other operations are provided for convenient of expression. \qquad
\qquad
\qquad
2. ($\mathbf{1 5}$ points) You are called upon to design a database system for an international conference on the COVID-19 pandemic. In the system, we need to keep track of the following types of data and the associated information (at least):

- Countries: Information of countries around the world. A country record contains a name, geographical region, population, size(area), classification (developed, developing, or underdeveloped).
- DiseaseStatus: A daily update about the disease status of all countries around the world. Each record contains the country name, total confirmed cases, total deaths, total recoveries, daily new cases, daily reported deaths, and date.
- ConferenceRooms: A room has a room number, name, and capacity of the room.
- Representatives: The representatives from all countries. A representative has an ID, name, country, and title.
- Attenders: Officially invited experts to attend the meeting. An attender has an ID, name, country, title, seniority level, and subjects of expertise. Note that an attender may have expertise in more than one subjects
- Subjects: The subjects of discussion in the conference. A subject record contains a subject name, subject area (medical, economical, ...), and severity level,
- Meetings: A meeting has an ID, title, subject of discussion, room of the meeting, and date. A meeting should invite all attenders with expertise in the subject of discussion.
2a) Design a set of relational schemas for the target database above. Draw the schema diagram for your design. Indicate the primary keys, foreign keys and any integrity constraints that need to be satisfied.
2b) Are the schemas you just designed good enough for keeping various information about the conference? For example, where do you keep the information about the all subjects of expertise of a particular attender? What about the attenders of each Meeting?
2c) If the answer to question 2(b) above is negative, then how do you refine your schemas to cover that information? If the answer is positive, can your design be further improved in any other way?
(This page is left empty for you to answer the exam question.)
2a)
Countries

name	region	population	size	class

DiseaseStatus

cname	date	total_cases	total_deaths	total_revoveries	new_cases	new_deaths

F.K.

ConferenceRooms

rnumber	rname	capacity

Representatives

pID	pName	pCountry	pTitle
F.K.			

Attenders

aID	aname	acountry	title	seniority
F.K.				

Subjects

sName	area	severity

Meetings

$\underline{\text { mID }}$	mTitle	subject	room	date

2b)
Expertises

aID	sName

F.K. F.K.
3. ($\mathbf{5}$ points) Let \mathbf{r} and \mathbf{s} be two relations:

\mathbf{r}			
A	B	C	D
a1	b1	10	d1
a1	b2	30	d2
a2	b1	10	d3
a2	b3	20	d4
a2	b1	20	d4
a1	b1	30	d1
a1	b2	30	d3
a1	b3	30	d4
a3	b1	20	d1
a4	b1	20	d2
a4	b2	40	d3
a2	b2	20	d2
a3	b1	10	d4
a2	b2	40	d3
a4	b1	40	d2
a4	b2	30	d2
a4	b1	40	d1

s

B	C	D
b1	10	d1
b2	35	d2
b2	25	d3
b1	20	d2
b3	30	d4
b2	40	d2
b2	15	d3

Evaluate the result of the relational algebra expression $r \div \pi_{B, D}\left(\sigma_{C \geqq 30}(s)\right)$
b2 d2
b3 d4

A	C
a1	30
a2	20

4. ($\mathbf{2 5}$ points) Consider the following simple relational schema:

Students(sID, sname, dID, year, advisorID)
Professors(pID, pname, dID, rank)
Department(dID, dname, office, chairID)
Courses(cID, cname, dID, year, pID)
Grades(cID, year, sID, grade)
Specify relational algebra expressions to answer the following queries.
4a) Find the department names and years of all courses offered by professor Wu.
$\pi_{\text {dname, year }}\left(\right.$ Courses $*\left(\sigma_{\text {pname }}={ }^{\prime}{ }^{W}{ }^{\prime}\right.$ Professors $) *$ Department $)$

4b) Find the names, departments(names) and years of all students whose advisor is professor Wu.
$\pi_{\text {sname, dname, year }}\left(\left(\right.\right.$ Students ${ }^{\bowtie}$ advisorID=pID $\left(\sigma_{\text {pname }}{ }^{\prime}{ }^{\prime}\right.$ Wu ${ }^{\prime}$ Professors $\left.)\right)$
*Department)

4c) Find the names of departments with more than 300 students but less than 10 professors.
$\pi_{\text {dname }}\left(\left(\pi_{\text {dID }}\left(\mathrm{dID} \mathscr{F}_{\text {count }}\right.\right.\right.$ (sID $)>300$ Students $) \cap$
$\left.\pi_{\mathrm{dID}}\left(\mathrm{dID}^{\mathscr{F}_{\text {count }}(\mathrm{pID})<10}{ }^{\text {Professors }}\right)\right) *$ Department $)$

4d) Find the names of students who obtain grade "A" on ALL courses of the CSIE department.
$\pi_{\text {sname }, \text { cID }}\left(\sigma_{\text {grade }}{ }^{\prime} A^{\prime}\left(\right.\right.$ Students $*$ Courses ${ }^{*}$ Grades $\left.)\right) \div\left(\pi_{\text {cID }}(\right.$ Courses

* $\sigma_{\text {dname }}=$ 'CSIE, Department $)$)

5. ($\mathbf{2 5}$ points) This problem is based on the relations:

Students(sid: string, sname: string, age: integer, gender: string, country: string)
Courses(cid: string, cname:string, credit: integer, year: integer, instructor:string)
Enrolled(sid: string, cid: string, year:integer, grade:real)
The key fields are underlined, and the domain of each field is listed after the field name. Thus, sid is the key for Students, cid is the key for Courses, and sid, cid and year together form the key for Enrolled. The meaning of these relations is straightforward; for example, Enrolled has one record per student-course-year for each student who enrolled in that class. Express the following queries in SQL statements.

5a) Find the names of all courses that the student with sid "610971" enrolled in year 2020.

5b) Find the names and years of courses enrolled by both student " 610971 " and "70483".

5c) Find the names of students who have not enrolled in any class at year 2020 .
5d) Find the names of the students who have enrolled all courses offered by Professor Wu.

5e) Find the names of the courses which have more than 50 students enrolled.

5a)

SELECT C.cname
FROM Courses C, Enrolled E
WHERE C.cid=E.cid AND E.sid='610971' AND E.year=2020;

5b)
SELECT C.cname, C.year
FROM Courses C, Enrolled E
WHERE C.cid=E.cid AND E.sid='610971';
INTERSECT
SELECT C.cname, C.year
FROM Courses C, Enrolled E
WHERE C.cid=E.cid AND E.sid='70483';

5c) There are many ways to express this query.
SELECT sname
FROM Students
WHERE sid NOT IN (
SELECT sid

FROM Enrolled
WHERE year=2020);
(SELECT sname
FROM Students)
EXCEPT
(SELECT S.sname
FROM Students S, Enrolled E
WHERE E.year=2020 AND E.sid=S.sid);

SELECT S.sname
FROM Students S
WHERE NOT EXISTS (
SELECT *
FROM Enrolled
WHERE Enrolled.sid=S.sid AND Enrolled.year=2020);

5d)
SELECT S.sname
FROM Students as S
WHERE NOT EXISTS (
(SELECT cid
FROM Courses
WHERE instructor='Wu')
EXCEPT
(SELECT C.cid
FROM Courses as C, Enrolled as E
WHERE C.cid=E.cid AND E.sid=S.sid)
);

5e)
SELECT C.cname
FROM Courses as C
WHERE C.cid IN (
SELECT E.cid
FROM (
SELECT E.cid, COUNT(*)
FROM Enrolled as E

```
                GROUP BY E.cid
                HAVING COUNT(*) > 50)
    )
);
```

