
1 INTRODUCTION

Computer simulations are indispensable in the design
and analysis of complex dynamic systems, especially
for the testing and validation of structural and
functional behavior at different levels of details (L.
Žlajpah, 2008). It is even more important for
autonomous vehicle design since not only the vehicle
status but also all possible interactions with
surrounding objects must be taken into consideration.
Most existing systems are restricted to limited aspects
such as lane keeping, driving patterns, electronic
systems, fleet control, etc. but fail to correspond with
reality in complex and volatile environments (Ş. Y.
Gelbal et al. 2017, P. Nilsson et al. 2017, Q. Li et al.
2012, A. Marjovi et al. 2015). We proposed a CPVS-
based simulation framework for V2X and driving
control in autonomous vehicles. The framework is
built on top of ROS2 that integrates physical system,
navigation control and sensor data on the vehicle with
cyber system on Unity for scene generation, test data
provisioning and vehicle status visualization. The
simulation can be conducted in two modes: real-time
scene rendering and vehicle monitoring mode for
online simulation and visualization, as well as scene

restoring mode for error analysis. A scene editor
subsystem is provided to layout any desired scene and
trigger the generation of simulated data for the testing
and evaluation of simulated or physical vehicles.
With special emphasis on cyber-physical interactions,
the framework facilitates tight correspondence
between simulated environment and reality which is
the key to effective design, testing, and co-
optimization.

The paper is organized as follows. Section 2
presents existing CPVS and related systems for
autonomous vehicles, especially ROS2 and Unity-
based systems. Section 3 describes the architectural
design and system components of our CPVS-based
simulation system. Section 4 continues with detail
analysis of the key characteristics and main
advantages. In Section 5, we discuss the
implementation and evaluation of our framework.
Section 6 concludes the paper.

2 LITERATURE REVIEW

CPS facilitates tight integration of virtual and
physical systems on computing, communication, and

A Simulation Framework for V2X Autonomous Vehicles Based on
CyberPhysical Vehicle Systems Technologies

Ming-Jui Ho and Tsung-Ying Sun
Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan, ROC

Shiow-yang Wu*
Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien,
Taiwan, ROC

Corresponding author. Tel.: +886-3-8905020; Fax: +886-3-8900168

E-mail: showyang@gms.ndhu.edu.tw

ABSTRACT: Autonomous vehicle technology has been advancing rapidly. Comprehensive testing is essential
before road deployment. However, no test can cover every possible situation. Thus, a good simulation system
is necessary. Most existing systems are restricted to limited aspects that fail to correspond with reality in
complex and volatile environments. Cyber-Physical Vehicle System (CPVS) technology enables the simulation
systems to integrate more closely with actual vehicles. Nevertheless, the behavior analysis and decision-making
capabilities are still far from perfect. The proposed framework is based on CPVS that integrates physical sensors
and mechanical components on vehicle with a ROS2-based cyber-system receiving messages through WAN
for cooperative optimization. The messages are conformed to IEEE and SAE standards integrated with
RealSense, Lidar, IMU sensor data and mechanical components information to display the vehicle status with
Unity graphics in two modes: real-time scene rendering and vehicle monitoring mode for vehicle monitoring,
and scene restoring mode for error analysis. We emphasize the cyber-physical interaction in which physical
system serves feedback data for model building and scene construction while cyber system tests the controller
with various simulated scenes. A scene editor subsystem is provided to visually layout static/moving objects on
a virtual plane to construct any desired scene and trigger Unity to generate simulated sensor data for evaluating
the reactions of simulated or physical vehicle. The CPVS is used in the design of an autonomous ground vehicle
(AGV) simulated and tested using serval situations layout with the scene editor. Compared with testing the
AGV in real environments, the result is highly satisfactory.
Keywords—Cyber-Physical Vehicle System, V2X, autonomous vehicles, digital simulation, Robot Operate System

control to achieve stability, performance, reliability,
robustness, and efficiency on many application
domains (H. Wang, M. Xu et al., 2018). CPVS is the
extension of CPS on ground, aerial, and maritime
vehicles. It is more challenging due to the need to deal
with not only surrounding objects but also complex
issues such as weather, regulations and social
interactions. The size and resource limits on vehicles
make everything trickier. On-road deployment brings
even more uncertainty. With tight integration of all
modules and components between cyber and physical
systems, CPVS facilitates close coordination and co-
optimization in both design and operation to meet the
demanding requirements of autonomy, adaptability,
reliability, effectiveness, robustness and safety as
illustrated in Figure 1 (J. M. Bradley and E. M.
Atkins, 2015).

In our framework, ROS2 is chosen as the kernel of
the physical system. ROS2 is a meta operating system
and a set of tools for robots. It is highly versatile and
very popular among roboticists ever since its first
release (S. Macenski, T. Foote, B. Gerkey et al.,
2022). With its concise yet comprehensive
considerations of embedded systems, diverse
networks, real-time processing, security and product
readiness, it is now widely used in the autonomous
systems such as robots and AGVs. The cross-
platform support of ROS2 allows us to integrate
seamlessly with Unity for the cyber system part of our
CPVS framework. However, our framework is
flexible enough to adopt other 3D simulation tools
such as Gazebo and CoppelizSim (formely V-Rep).
Most existing systems that integrate Unity and ROS2
are restricted to limited functionalities or one-way
communication (E. Sita, C. M. Horváth, T.
Thomessen et al,. 2017; A. Hussein, F. García, and C.
Olaverri-Monreal, 2018). Our CPVS-based
framework achieves tight integration of cyber and
physical systems for the design, simulation, testing
and optimization of autonomous vehicles.

The scope of AGV control has been extended from
vehicle control to V2V (communicating with
surrounding vehicles) to V2X (interacting with all
objects on road such as traffic signals and
pedestrians). With increasing need of V2X
communication, the interoperability of vehicles and
objects of different nations, brands and models must

be established. International standards such as IEEE
802.11p and SEA J2735 are becoming more mature
and popular (SAE, 2022). Our system abides by the
international standards above to cover V2X.

3 SYSTEM DESCRIPTION

A. Framework
The CPVS-based framework we proposed and
implemented is built on top of ROS2 and Unity as
illustrated in Figure 2. ROS2 is the operation platform
of the physical system to support navigation control,
object recognition, and all sensor modules. The cyber
system is modeled and visualized by Unity. A
common ROS2 substrate is used for the connection
and message exchange between the two. A scene
editor subsystem is provided to design test scenarios
and trigger the object generator in Unity to construct
corresponding simulated scenes for testing and
evaluation. More details in the following sections.

1) ROS2
The physical system (vehicle) is composed of
multiple ROS2 nodes to manage underlying
mechanical components as well as different types of
on-vehicle sensors for camera image capturing, IMU
data collection and filtering, voltage measurement,
wheel speed detection/control, etc. The information
feedback from the physical system is crucial. After
applying the control commands, the ROS2 nodes can
capture vehicle status information such as wheel
speed, turning angle, acceleration and other data for
the cyber system to reconstruct vehicle state
dynamically on the simulator GUI. This can be used
for system modeling and monitoring to facilitate
system design, decision making, testing and co-
optimization.

2) Unity Game Engine
The cyber system is driven by the Unity game engine.
Upon receiving the data captured and transmitted
from ROS2, the Unity engine compares and adjusts
the cyber vehicle state to truthfully represent the
physical vehicle so that the simulation and analysis
results can be more reliable and useful.

Figure 1. Cyber-Physical Vehicle System concepts.
Figure 2. The proposed CPVS system architecture.

 For more comprehensive simulation, our system
can reconstruct not only the dynamic vehicle state
such as coordinate, orientation, acceleration and
trajectory, but also the interactions of the vehicle with
surrounding objects. This is achieved by a set of
virtual sensors provided by our CPVS system. For
example, a virtual RealSense camera can simulate
and render the image and depth data similar to a real
camera. A virtual LiDAR can reflect the distance
between objects in the simulated scene and render it
with PhysicsRaycast in Unity.
 The flexibility and versatility of Unity on scene
construction enable us to achieve high diversity in
simulation. Simple scenes can be constructed with
built-in obstacles in Unity for initial testing. For
complex scenes in real world, we can import 3D
models built by tools such as AutoCAD, Blander, etc.
as well as the rich 3D model resources provided by
the open-source community. With model importing
function, our system can potentially simulate any real
world scene to significantly extend the coverage of
testing with very low cost.

3) ROS2 and UNITY Connection
The connection between cyber and physical systems
is done through message exchange between ROS2
and Unity. The message header contains information
such as ID, timestamp, data format, encoding, etc.
Control and sensing data such as motor control
commands, data from various sensors, and calculated
output are transmitted in the message payload. The
message transmission is through the LAN using the
official Unity-Robotics-Hub (Unity Technologies,
2022).

B. V2X
Compared with the information collected by sensors,
the data provided by V2X is richer and more accurate,
which is of great value to the prediction and decision
making in AGV. V2X can also provide field of vision
of obscured objects and blind spots through
intermediate vehicles. Most existing V2X simulators
are aimed at the testing and verification of
communication protocols. To test the operation of the
AGV control system in V2X environment, existing
test sites are very rare and expensive, and almost all
of them are closed sites. As an important feature of
our framework, we introduce V2X into our system to
test the AGV control responses on V2X events. Our
message format is defined based on the Basic Safety
Message format released by SEA, without the fields
that are not used in our system, such as Brake Applied
Status as presented in Table 1.

C. Real-Time Scenes Rendering and Vehicle
Monitoring Mode

This is one of the two primary operation modes
provided by the cyber system. When Unity receives
the physical- system data provided by ROS2, it

restores the current state of the vehicle and
surrounding scenes in the simulator. The speed,
acceleration, and attitude of the vehicle are
determined by the IMU, and the wheel speed, battery
voltage, system power, temperature, etc. can be
obtained from corresponding sensors. Driving
environment data, including other vehicles,
pedestrians, traffic signs, obstacles, etc., can be
detected not only by cameras and LiDAR, but also
from V2X information which allow us to create more
accurate scenes.
 It is essential to correctly model and simulate the
interactions of the AGV control system with all other
objects in the driving environment so as to make
proper decisions. Under this mode, the cyber system
can present the users with detailed physical data of
the vehicle as well as all interactions with other
objects in real time. In addition to facilitating remote
real-time monitoring, a great opportunity for the
optimization of the AGV decision-making system is
at hand.

D. Scene Restoring Mode
The second primary mode of the cyber system is to
record and store essential data during real-time
simulation and rendering so that critical scenarios can
be reconstructed repeatedly for controller adjustment
and system optimization. The stored information can
also be used on other controllers for the purposes of
comparison and evaluation. System optimization is
not limited to current controller on the vehicle. It can
be applied to test the controllers in all stages of system
design, even on the optimization of mechanical
structure.

E. Scene Editor Subsystem
To achieve comprehensive testing of the control
system, solely relying on the test data recorded by
actual vehicles is not enough. The cost of collecting
test data for all possible scenarios is prohibitively
high. Some experimental vehicles may not even be
allowed to test on the road without legal approval.
 For this reason, we propose a Scene Editor
Subsystem that can design and edit test scenarios.
Through this system, a scene containing multiple
dynamic and static objects, such as an intersection
with cars and pedestrians, can be edited with a

TABLE 1. V2X Message Packet Definition

Data Element Format unit
Vehicle ID Text
Position Vector3 m
Position accuracy Float m
Liner Speed Vector3 m/sec
Liner acceleration Float m/sec
Heading Float rad
Turn angle Float rad
Turn rate Float rad/sec
Control status Text
Vehicle size Vector3 m

concise and friendly user interface to generate a
corresponding script. Unity engine can simulate the
test scenario through running the script and analyze if
the simulated AGV meets the expected control
results.
 As illustrated in Figure 3, after designing the layout
and arranging the movement of all objects in the
scene editor subsystem, the generated script can be
executed by Unity to create the scene dynamically.
They provide the driving environment data for the
simulated vehicle on ROS2 for further simulation and
control. Simulation results can be visualized in
different ways as demonstrated in Figure 4.

4 SYSTEM CHARACTERISTICS

A. Control System Evaluation
When testing on the simulator, the focus is often on
whether it can truthfully reflect the actual running
state and provide reference information for
optimization. During the testing of controller, if the
thresholds of proper responses can be determined
according to the test data, then an evaluation function
can be devised to measure the controller performance.
To the best of our knowledge, neither the current
simulation software nor the test equipment for self-
driving cars can offer this function.

The advantage of CPVS is that the physical and
cyber systems are closely integrated, and various
information in both systems can be exchanged

comprehensively. For example, if we want to test the
decision-making of an AGV control system in
response to a sudden obstacle in V2X environment.
Existing simulation software can only simulate roads
with different types of traffic flow or generate V2X
information independently on the road. The proposed
CPVS architecture can record the sensing time of the
control system, the control commands output, vehicle
movement data, etc. during the execution of the
script. Upon judging whether the controller achieves
the designated task, it can also evaluate the quality of
the decision process. For the above mentioned case,
we can evaluate if the vehicle always stops at a certain
distance before the obstacle. Other metrics such as the
time point when the object is recognized, the time and
cost of calculation, and the vehicle deceleration
behavior, etc. also need to be analyzed to set proper
thresholds. By obtaining these detailed information,
the system components can be optimized separately
and as a whole.

B. Cooperative Optimization
The main purposes of using a traditional simulator is
to investigate and evaluate control system behavior
for controller optimization through simulated system
operation and data analysis. In our CPVS
architecture, however, not only the control system
and mechanical structure on the physical system can
be optimized, but also the restoration of the simulated
vehicle and the generation of the simulated
environment in the cyber system.

Take the development process of an AGV as an
example. After setting the vehicle mission, the target
driving environment and terrain can be generated in
the cyber system. Then the designated vehicle model
can be tested and adjusted to meet the requirements.
After model adjustment, various simulated sensors
can also be configured and installed on the virtual
model. With satisfactory simulation results, the actual
vehicle can be built based on the successful model in
the cyber system. In addition to cost saving, the
simulations also ensure a certain level of applicability
and reliability of the physical vehicle. After vehicle
construction is completed, physical system can
provide true data with loaded sensors and compare it
with that of simulated vehicle. System identification
is used to ensure the consistency between the
simulated vehicle with the actual vehicle, so as to
match simulation to reality. This makes the
subsequent design and optimization of the control
system in the simulator more compatible with the
actual vehicle. After the deployment of the vehicle
loaded with the control system, the operating
environment data collected by the vehicle can be used
to further optimize the cyber system, such as
introducing real-world noise to the sensors and V2X
data of the simulator, or making the characteristics of
generated scenes more similar to real world
environments and so on.

Figure 3. Scene editor subsystem (left) and scenes construction
in Unity (right).

Figure 4. ROS2 visualization. Pointcloud (left), camera (top
right) and object ID (bottom right).

The above is a legitimate development process
using our CPVS framework but not the only one. Our
system can offer invaluable assistance to many AGV
design, testing, and manufacturing tasks. In
particular, the physical system and cyber system can
be continuously improved at different stages and
layers to achieve cooperative optimization.

C. Decision-Making
In addition to the co-operation of the cyber and
physical systems, our system can also generate
possible future scenes dynamically based on certain
conditions and parameter changes, then predict the
decision in advance according to the situation at hand
or ahead of time. This allow the system to make more
resourceful and reliable decisions.

5 EXPERIMENTS

A. Platform Description

1) Physical System
The physical system includes the physical vehicle
with ROS2 kernel for the control system. The
controller consists of upper level calculation and
control algorithms with lower level motor control and
sensor receptors. The ROS2 employed is the Foxy
Fitzroy release. NVIDIA Jetson Nano Developer Kit
is chosen as the development platform. Each
component is modeled by a ROS2 node including
each sensor, remote control, navigation, and Unity
connector. The sensors include RealSense, 2D
LiDAR, IMU, wheel-speed sensor, voltage sensor,
and power sensors.

2) Cyber System
The cyber system consists of a Unity 20203.11f
kernel on Win10 driven by Intel i7-7700 CPU with 16
GB RAM. The simulator consists of two parts, a
simulated vehicle and an object generator.

The simulated vehicle is the 3D model of the target
vehicle under simulation. They have the same
structure and simulated components with the same set
of simulated sensors: a virtual RealSense, virtual 2D
LiDAR and virtual IMU.

The object generator generates static and dynamic
objects based on the script exported from the Scene
Editor Subsystem. The script is an XML file with
object definitions, object types, coordinates, size, and
the designed scenes along the timeline. Each scene
contains all the objects in the scene and
where/when/how each object moves. Unity executes
the script and renders the objects accordingly to
create the scene dynamically.

To simulate V2X environment, each object in the
running scene, including pedestrians, vehicles, traffic
signals, trees and obstacles, has a corresponding data
publisher to publish data according to Table 1.

The simulated vehicle receives the commands
from the remote control or autonomous controller on
the physical vehicle to determine how to move. When
both the simulated vehicle and the physical vehicle
receive the commands and act accordingly, the
system is in real-time monitoring mode. If only the
simulated vehicle is operating without corresponding
physical vehicle, it is in scene restoring mode. With
various scene editing, restoration and simulation, we
can test the vehicle system comprehensively with
very low cost.

B. Validation Use Cases
We design a test scene on the Scene Editor Subsystem
and export the script to Unity. The simulated vehicle
accepts control commands and sensor data from
Unity without corresponding physical vehicle. With
cyber only vehicle, we can easily and repeatedly test
the controller and modify the code if necessary. The
initial controller and corresponding AGV trajectory is
depicted as blue line in Figure 5.

To correspond closely with physical vehicle, a
calibration process is necessary so that the control
properties of both systems can be consistent. In this
case, we need to calibrate wheel speed, DC motor
response time and the PI control parameters of the
servo motor. After calibration, the cyber vehicle and
physical vehicle are now in line with each other as
illustrated by the orange and green lines in Figure 5.

We now apply the controller on the cyber vehicle
to the physical vehicle and arrange a real-world scene
which mimics the script scene. The trajectory and
control output of the physical vehicle coincide closely
with that of the cyber vehicle as illustrated in Figure
6. The controller designed and optimized in the cyber
system can be used directly on the physical system
without modification or adjustment, which
demonstrates the effectiveness of our CPVS-based
simulation framework.

The integration of V2X information is an
important feature of our framework. As illustrated in
Figure 7, upon traversing on a target path (blue line),
the on-vehicle LiDAR can only detect visible
obstacles within sensing range (the purple circle) and
trigger dynamic obstacle avoidance locally (the green
line). With V2X information (the orange dots), the
control system can recognize obstacles along the
target path far ahead of local sensing range to

Figure 5. Simulated AGV trajectory and control output.

facilitate global optimal path planning instead of local
adjustment.

6 CONCLUSIONS

 We proposed and implemented a CPVS-based
framework for autonomous vehicle development and
simulation. The framework integrates ROS2-based
physical system with Unity-based cyber system such
that the control system developed, simulated and
tested on the cyber system can be used directly on the
physical system without modification yet still
exhibits almost identical behavior. A Scene Editor
Subsystem makes the framework even more versatile
and useful.
 The framework can be extended with more tools
for validation and performance evaluation. We plan
to devise precise metrics to measure the effectiveness
of simulation and the quality of control system.

7 REFERENCES

L. Žlajpah, "Simulation in robotics," Mathematics and
Computers in Simulation, vol. 79, no. 4, pages 879-897,
2008.

Ş. Y. Gelbal, S. Tamilarasan, M. R. Cantaş, L. Güvenç, and B.
Aksun-Güvenç, "A connected and autonomous vehicle
hardware-in-the-loop simulator for developing automated
driving algorithms," in 2017 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), 2017, pp. 3397-
3402.

P. Nilsson, L. Laine, and B. Jacobson, "A Simulator Study
Comparing Characteristics of Manual and Automated

Driving During Lane Changes of Long Combination
Vehicles," IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 9, pages 2514-2524, 2017.

Q. Li, W. Chen, Y. Li, S. Liu, and J. Huang, "Energy
management strategy for fuel cell/battery/ultracapacitor
hybrid vehicle based on fuzzy logic," International Journal
of Electrical Power & Energy Systems, vol. 43, no. 1, pages
514-525, 2012.

A. Marjovi, M. Vasic, J. Lemaitre, and A. Martinoli,
"Distributed graph-based convoy control for networked
intelligent vehicles," in 2015 IEEE Intelligent Vehicles
Symposium (IV), 2015, pp. 138-143.

H. Wang, M. Xu, F. Zhu, Z. Deng, Y. Li, and B. Zhou, "Shadow
traffic: A unified model for abnormal traffic behavior
simulation," Computers & Graphics, vol. 70, no. pages 235-
241, 2018.

J. M. Bradley and E. M. Atkins, "Optimization and Control of
Cyber-Physical Vehicle Systems," Sensors, vol. 15, no. 9,
pages 23020-23049, 2015.

S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W.
Woodall, "Robot Operating System 2: Design, architecture,
and uses in the wild," Science Robotics, vol. 7, no. 66, pages
eabm6074, 2022.

E. Sita, C. M. Horváth, T. Thomessen, P. Korondi, and A. G.
Pipe, "ROS-Unity3D based system for monitoring of an
industrial robotic process," in IEEE/SICE International
Symposium on System Integration (SII), 2017, pp. 1047-
1052.

A. Hussein, F. García, and C. Olaverri-Monreal, "ROS and
Unity Based Framework for Intelligent Vehicles Control and
Simulation," in IEEE International Conference on Vehicular
Electronics and Safety (ICVES), 2018, pp. 1-6.

Soc. Automotive Eng. J2735 V2X Communications Message
Set Dictionary, 2022-11. [Online]. Available:
http://www.sae.org

Unity Technologies. (2022). Unity-Robotics-Hub. [Online].
Available: https://github.com/Unity-Technologies/Unity-
Robotics-Hub

Figure 6. Scenario for demonstrating the close correspondence
between cyber and physical vehicle in our system.

Figure 7. V2X information for the control system to plan ahead.

