
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Bitboard knowledge base system and elegant search architectures for Connect6

Shi-Jim Yen a,⇑, Jung-Kuei Yang b, Kuo-Yuan Kao c, Tai-Ning Yang d

a Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan
b Department of Applied Foreign Languages, Lan Yang Institute of Technology, I Lan, Taiwan
c Department of Information Management, National Penghu University, Penghu, Taiwan
d Department of Computer Science and Information Engineering, Chinese Culture University, Taipei, Taiwan

a r t i c l e i n f o

Article history:
Available online 25 May 2012

Keywords:
Bitboard
Connect6
Connect-k games
Threat Space Search
Proof Number Search

a b s t r a c t

Efficiency is critical for game programs. This paper improves the search efficiency of Connect6 program
by encoding connection patterns and computing the inherent information in advance. Such information
is saved in a bitboard knowledge base system, where special bitwise operations are designed. This paper
also proposes efficient methods of generating threat moves and the Multistage Proof Number Search. The
methods reduce the time complexity of generating threat moves. The search improves the search perfor-
mance by developing candidate moves in stages according to their importance. In brief, this paper pro-
poses an efficient knowledge base system and elegant search architectures for Connect6. It is expected
that the proposed methods can be applied to all kinds of Connect-k games.

Crown Copyright � 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Since Wu [30] developed k-in-a-row or Connect-k games in
2005, Connect (19, 19, 6, 2, 1) or Connect6, which is derived from
Gomoku, has been a popular research topic [30–32,38]. In Connect
(m, n, k, p, q), two players alternately place p stones on an m � n
board for each move except for that the first player places q stones
for the first move. Still, the player who gets k consecutive stones of
her own first wins [31].

Connect6 has two important features: numerous candidate
moves and sudden-death property. Numerous candidate moves
lead to complex search and the sudden-death characteristic in-
creases the search complexity. The possibility of sudden-death
should be considered in every game position. The player who ne-
glects this feature may lose the game.

Victory in Connect6 requires achieving a configuration of six or
more consecutive stones positioned in a straight line. The first
player who achieves this goal will win this game. Threatening at-
tempts to establish such a position is an important message. Wu
and Huang mentioned that threats are the key to play Connect6
as well as Connect-k games. This paper follows the definitions of
threats and threat moves by [30] and [31].

This paper aims to provide efficient search architecture for
Connect-k games. Firstly, the bitboard knowledge base system
and bitwise operations are proposed. Secondly, this paper
describes how to generate threat moves efficiently. Finally, the

Multistage Proof Number Search (PNS) is proposed. The proposed
methods are implemented on a Connect6 program, named Kavalan.
Kavalan won all the silver medals in 2010 Computer Olympiad,
2010/2011 TAAI and 2011 TCGA tournaments [18,33,37,39].

This paper is organized as follows: In Section 2, we review the
background and the related work. Multistage Search, Threat Space
Search and Proof Number Search are discussed. Section 3 and
Section 4 present the bitboard knowledge base system and related
bitwise operation algorithms for Connect6. Section 5 describes the
issue for the methods of generating threat moves. Section 6
provides the Multistage PNS. Section 7 contains the experimental
results and our discussions. Finally, Section 8 is our conclusion.

2. Background and related work

This section discusses Multistage Search, Threat Space Search
and Proof Number Search.

2.1. Multistage search in Connect6

Search tree is a tool for describing the changing positions of
players in a game, and AND/OR search tree can be used to describe
searches in the case of Connect6. The player who plays moves first
is called offensive side or Attacker and the other player is called
defensive side or Defender as in Fig. 1. The root node is level 0 of
the search tree. Meanwhile, level 1 of the search tree comprises
the candidate moves of offensive side that are generated according
to the root position.

In Connect6, each level of the search tree involves a large
number of candidate moves. The state space of the search tree is

0950-7051/$ - see front matter Crown Copyright � 2012 Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2012.05.002

⇑ Corresponding author. Tel.: +886 3 8634031; fax: +886 3 634010.
E-mail addresses: sjyen@mail.ndhu.edu.tw (S.-J. Yen), jungkuei@gmail.com (J.-K.

Yang), stone@npu.edu.tw (K.-Y. Kao), tnyang@faculty.pccu.edu.tw (T.-N. Yang).

Knowledge-Based Systems 34 (2012) 43–54

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

Author's personal copy

extremely large. The concept of multistage search is to control the
timing of the generating different candidate moves. In any game
position, candidate moves are classified to various types, and are
generated in multistage search based on the types. In Connect6,
those types are double-threat, single-threat and non-threat. Numer-
ous differences exist among the types. For example, in the case of
double-threat moves, because Defender requires two stones to
block threats, it has fewer branching factors. Thus, search of dou-
ble-threat is faster than that of other types.

2.2. Threat space search

Threat Space Search (TSS) [30] is a common searching method
in Connect-k games. TSS focuses on the moment when Attacker
plays threat move, at which point Defender should play the corre-
sponding blocking move. TSS uses the threat moves to control the
response moves of Defender. Attacker then performs a deeper
search. TSS is divided to double-threat TSS and single-threat TSS
based on the number of threats generated by the move.

For double-threat TSS, Defender needs two stones for blocking
threats. In contrast, for single-threat TSS, Defender needs only
one stone for blocking. Therefore, Defender is free to place the
other stone. The branching factors of double-threat TSS are smaller
than that of single-threat TSS.

In a node of a Connect6 search tree, the subtree of the node
formed by double-threat TSS is called T2 subtree. In a T2 subtree,
if Attacker can identify to achieve a win, Attacker is said to have
identified its T2 solution. Otherwise, this T2-subtree is labeled T2
Fail.

In a node of a Connect6 search tree, the subtree of the node
formed by Attacker’s double-threat and single-threat moves is
called TSS subtree. In a TSS subtree, Attacker is said to have ob-
tained its TSS solution when it identifies a process to achieve a
win. Otherwise, this TSS subtree is labeled TSS Fail.

According to the blocking moves played by Defender while
searching, double-threat TSS is divided into Normal TSS and Con-
servative TSS, as detailed below:

2.2.1. Normal TSS
In a game position, a defense set is a set of Defender’s moves that

block threats of Attacker. If Defender can only place two stones of
the defense set based on the rules of Connect6, this search method
is called Normal TSS, or simply TSS. In Fig. 2, the defense set in-
cludes the stones 1–4. This search should expand the move as in
(A), (B), and (C) of Fig. 2, separately. If the T2 solution is very deep,
the state space of the search will be large.

2.2.2. Conservative TSS (CTSS)
CTSS assumes Defender can place all stones of the defense set at

a time [30], like (D) in Fig. 2. Because there is only one child node of
defensive side, CTSS can search toward very deep levels.

2.3. Proof-Number Search

Proof-Number Search (PNS), developed by Allis [2] and [4], is a
reliable algorithm that aims to prove or disprove a binary goal. For
Connect6, this binary goal is the TSS solution. PNS was successfully
used to prove or solve theoretical values of game positions for
many games, such as Checkers, Chess, Connect-Four, Go, Gomoku,
Lines of Action, Renju, and Shogi [2–5,14,22,26,27,29]. The core
idea of standard PNS is to order moves efficiently. To achieve such
an ordering, the PNS algorithm selects moves based on two num-
bers in each node: proof number and disproof number. PNS uses
the AND/OR search tree. Table 1 lists the rules that PNS uses to se-
lect the most-proving node. In the OR-Node, PNS selects the mini-
mum proof number from its successors; while in the AND-Node, it
selects the minimum disproof number.

This kind of search skill focuses on the node with fewer
branches, which helps ensuring effectiveness and speed. The selec-
tion of the most-proving node R in Fig. 3 is given by the bold path.

3. Bitboard knowledge base design

Many researches use bits to encode the board states and the
related bitwise operations to model the real problems [12,19,28,
35,36]. This paper uses the bitboard concept to design a knowledge
base for Connect-k games. In Connect-k games, connection infor-
mation of cells is rather important. This property is different to
Chess, Shogi and other games [9,10,23].

Connection is an important property for Connect-k games. The
definition of connection was mentioned in [35,36]. The same idea
of the two papers is using a data structure to record the connection
information of each line of a game position. Then, these connec-
tions were stored in a knowledge base in advance. Xu’s paper
[35] defined the connection mathematically and focused on
decreasing the space complexity of the knowledge base of Con-
nect-k games with n � n board. Xu’s paper [35] also studied on a
precise classification criterion for connection and a precise classifi-
cation for the cells.

This paper follows the results of our previous work [36]. We de-
fine the data structures of the Line, Connection, and shape. Then,
the shape information table and Connection set table are designed
for the knowledge base. Compared to Xu’s paper [35], our paper

B

L M

C

A

D G H

O Q R

E

Level 0
Offensive side to play

I J K

N P

F

S

AND-Node

OR-Node

Level 1
Defensive side to play

Level 2
Offensive side to play

Level 3
Defensive side to play

Fig. 1. An AND/OR search tree. The rectangle represents an OR-Node (Offensive
side), and the circle represents an AND-Node (Defensive side).

Fig. 2. The double-threat pattern and its blocking stones. (A), (B), and (C) refer to
the normal defense, while (D) refers to the conservative defense.

Table 1
Rules which PNS uses to select the most-proving node.

Rules for AND-node Rules for OR-node

pnðnÞ ¼
P

s2successor ðnÞ
pnðsÞ pnðnÞ ¼ min

s2successor ðnÞ
fpnðsÞg

dnðnÞ ¼ min
s2successor ðnÞ

fdnðsÞg dnðnÞ ¼
P

s2successor ðnÞ
dnðsÞ

44 S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54

Author's personal copy

focuses on improving the search performance by the bitboard
knowledge base and related bitwise operation algorithms for Con-
nect-k games with m � n board.

3.1. Basic analysis of board in Connect-k games

Bitboard is a way to model states of board by binary encoding,
and uses bitwise operations to accelerate the process and to im-
prove the efficiency of searching. A popular application of bitboard
is the Chess design. It uses 64 bits to represent 64 locations on the
board, and employs all kinds of search by using the efficiency of
bitwise operators.

For an m � n board, the number of vertical lines is m, and the
number of horizontal lines is n. The intersection is named cell (I
for short). A cell is either empty or occupied by a stone. Cells could
be labeled by the board coordinate or the board index. The board
coordinates of cells are constructed by horizontal X-axis and verti-
cal Y-axis. Both of them start from the upper left corner of the
board. The board coordinate of cells are represented by I(x,y).
Fig. 4A shows the board coordinates of cells in a 9 � 9 board. An-
other way to label the cells is the index. The board index number
is starting from zero on the upper left corner of the board as well
as accumulating one from left to right, top to down. Fig. 4B shows
the index of the cell.

3.1.1. Line
A cell-array is an array of consecutive cells. There are four direc-

tions on a board: vertical, horizontal, slash west and slash east, as in
Fig. 5. A Line is the maximal cell-array with the same direction in a
straight line on the board. If we want to check whether the two
cells (x1, y1) and (x2, y2) are in the same Line or not, their board
coordinate should be examined in the four direction. Four condi-
tions for that of the four directions are stated as follows,
respectively.

Vertical direction: x1 = x2

Horizontal direction: y1 = y2

Slash West direction: x1 � y1 = x2 � y2

Slash East direction: x1 + y1 = x2 + y2

Each Line has two end cells. This paper uses bigger index to de-
note start-cell and the smaller index for terminal-cell. The length of a
Line is the number of cells from start-cell to terminal-cell. A cell
(x1, y1) exists in four Lines with respect to four directions. The
lengths of the four Lines are calculated with respect to the four
directions as follows, respectively.

Vertical Lines: n
Horizontal Lines: m
Slash west Lines:

nþ x� y; if ðx� yÞ þ n < Minfm;ng
Minfm;ng if Minfm;ng 6 ðx� yÞ þ n 6 Maxfm;ng
m� ðx� yÞ; if Maxfm;ng < ðx� yÞ þ n

8><
>:

Slash east Lines:

xþyþ1; if ðxþyÞ<Minfm;ng�1
Minfm;ng if Minfm;ng�16 ðxþyÞ6Maxfm;ng�1
Minfm;ng�ððxþyÞ�Maxfm;ngþ1Þ; if Maxfm;ng�1< ðxþyÞ

8><
>:

The Line has four attributes: direction, start-cell, terminal-cell
and length. When the length of a Line is smaller than k in a Con-
nect-k game, this Line is useless. Otherwise, the Line is useful. In
an m � n board, the number of useful lines is 3m + 3n � 4k + 2.

3.1.2. Connections of a game position
In a game position, if all the stones in a cell-array are the same

color, this cell-array is pure. Connection is a segment of a Line of a
game position. It is the longest pure cell-array of the pure cell-
arrays where contain the same cell state in the Line [35]. In other
words, given a specific stone, the maximal region that the stone
can extend in a useful Line is its Connection with respect to the
Line [36]. Several Connections may exist in a Line in the same time.
Two Connections may contain the same empty cell(s) in a Line.

The four attributes of Line are also used in Connection. In a
game, each value of the four attributes of Line is fixed, but that
of Connection is changeable with respect to different game posi-
tion. Except for the four attributes, Connection has another two
attributes: the stone color and the shape. Shape of a Connection
is a binary array, where each array bit corresponds to each state
of the cell array in the Connection. If the cell state is empty, the
corresponding bit is set to 0. Otherwise, the bit is set to 1.

This paper uses binary encoding to transfer shape to shape code
as an unsigned integer. In Fig. 6A, the shape is encoded as
‘‘000111100’’, so the number is 60.

If we only use an unsigned integer value to identify the shape in
a Connection, errors will happen in some cases. In Fig. 6, the two
shapes with different lengths, ‘‘000111100’’ and ‘‘0111100’’, have
the same encoding value, 60, but the two shapes are different to

B

M N

1,1

C

A

D G H I

P R S

1,3

4,1

3,3

E

1,11,11,11,1

1,1 1,1 1,1

1,1 1,1 1,1

3,2

2,2

3,1 2,1

Attacker

Defender

Defender

Attacker

J K L

O Q

F
1,1

Attacker

Fig. 3. PNS tree. The numbered pair comprises the proof (left) and disproof (right)
numbers.

Fig. 4. Board coordinates and indexes of cells in a 9 � 9 board.

SEVSW

H

Fig. 5. The four directions on a board.

S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54 45

Author's personal copy

each other. This mistake can be fixed by comparing the length of
the two shapes. Thus, when a shape is encoded, the length of the
shape (shape length) is also recorded.

3.2. Design of the bitboard knowledge base

The goal of Connect-k games is to form a Connection with a con-
secutive k stones. Most of the searching methods used in Connect6
program is threat-based search, such as TSS [30,31] and Relevance-
Zone-Oriented Proof (RZOP) search [32]. In those searching meth-
ods, shape information is very important because it can speed up
the understanding of threats on the board, and offers possible
moves for threat based search. Shape information is developed
base on pattern. Pattern is a special kind of shape. If a shape has
a special meaning, it is called pattern. For the meaning and devel-
opment of pattern, please refer to [30,31,35].

Connection set table and shape information table are the two
main important components of the bitboard knowledge base.
When playing a game, the program analyzes the game position
and stores the information of all Connections of a game position
in the Connection set table. The evaluation value of an empty cell
is calculated by the information of its Connections. An empty cell
may fall into different Connections; the cell gets different score
with respect to different Connection from the shape information
table. We sum up these scores as the cell’s final evaluation value.

3.2.1. The shape information table
This paper encodes each shape of all possible Connections in

Connect6 and calculates its inherent information in advance. This
information is put into the shape information table. Any Connec-
tion’s shape information can be retrieved from the table in con-
stant time.

The number of all possible shapes with length n is 2n. This paper
starts the encoding from the shortest shape with length k for Con-
nect-k games, and the range of the values in the encoding is from 0
to 2k � 1. In the shape information table, the encoding shape index
is from the shortest shape to the longest shape. In Connect-k
games, the shape index is calculated by the following formula:

Uðn; cÞ ¼ 2n � 2k þ c

where n is the length of the shape, c is the shape code. For example,
if the length of a Connection is 10, and the shape code is 128, the
shape index will be 1088 in Connect6. Fig. 7 shows that the struc-
ture of the shape information table. There are two fields in the
information table: number of threats and type. In Connect6, the
length of the table is 220 � 26 � 1.

3.2.2. Connection set table
A Connection set is a set of all Connections in a specific Line. For

a game board, each useful Line is assigned a serial number as Line
index. The Line index is given as the formula in Table 2. Starting
from 0 and based on the order of the four direction: vertical, slash
west, horizontal and slash east. The Line index is the index of the
Connection set table. Given the board coordinate of a cell, the cor-
responding four Connection sets can be found in the Connection
set table. The formulas are shown in Table 2. Fig. 8 illustrates the
concept of addressing method from the board coordinate of cells
to the index of related Connection set.

4. Bitwise operation algorithms on the bitboard information

Most programming languages offer bitwise operators. Bitwise
operators are very efficient. Based on the proposed bitboard

(A)

(B)

Fig. 6. The shape code of the shape in the Connection.

2
1

3

0

26-1

0

0

0

0

Shape
index

Fields

#threats

Dead 1

Dead 1

Dead 2

Empty

type

...

...

220-26-1 Connected

... ...

Fig. 7. The structure of the shape information table.

Table 2
The Line index and mapping functions of a cell.

Direction length Line index Line index of cell (x, y)

Vertical m From 0 to m � 1 x
Slash west m + n � 2k + 1 From m to 2m + n � 2k m + n + x � y � k
Horizontal n From 2m + n � 2k + 1 to

2(m + n � k)
2m + n � 2k + y + 1

Slash east m + n � 2k + 1 From 2(m + n � k) + 1 to
3m + 3n � 4k + 1

2(m + n � k) + x + y + 1

Fig. 8. Illustration of the Connection set table and the Line index.

46 S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54

Author's personal copy

knowledge base, three bitwise operation algorithms are proposed
to improve three basic Connect6 functions: modifying Connections
after playing a stone, checking whether the game is over, and
counting the number of threats in a Connection, respectively.

The bitmask is a data structure for bitwise operations in bitwise
computing. Take the bitmask insertion (MASK (Insert) for short) as
an example in Connect6. If a stone is inserted into a Connection
with the same color, the bitwise operation needs a bitmask that
can represent the location of the cell related to its shape.

As described in the encoding of a shape, the cells occupied by
stones are encoded as ‘‘1’’; therefore, the location where the player
places a stone on the cell is also encoded as ‘‘1’’ in the MASK (In-
sert) and the other cells are encoded as ‘‘0’’. Fig. 9 shows an exam-
ple of the MASK (Insert) and the location where the player inserts a
stone into the Connection is the ninth cell from the right end cell of
the Connection.

4.1. Modifying a Connection after placing a stone

When placing a stone on a cell, the program will modify the re-
lated Connections. We find out the indexes of the Lines belonging
to the updated cell, and search the related Connections based on
these indexes. When modifying a Connection for an updated cell
with the same color, we only change the shape of the Connection.
At this time, all we need to do is to change the shape by using bit-
wise operator ‘‘OR’’ to compute the new shape. Fig. 9 shows the
operation in this case.

It is more complex to modify a Connection for an updated cell
with different color stone. In this case, it may result two or three
new Connections from the old Connection. The attributes of each
new Connection should be calculated, separately. If the length of
a new Connection is less than k, the Connection is useless. The
algorithm is as follows:

Step 1: Use bitwise AND to compute the Mask (Right) and the
shape, we get the new shape that is in the right side of
the original Connection: 11100000.

Step 2: Use bitwise AND to compute the Mask (Left) and the
shape, we get the new shape that is in the left side of
the original Connection: 000011.

Step 3: Finally, scan from the inserting cell to its left and right
side, the shape in the middle part of the Connection can
be sure.

Fig. 10 is an example for this case. The example only explains
how to get the right shape of the new Connection.

4.2. Checking whether the game is over

There are many ways to check whether the game is over or not.
For example, we can check from the four directions of the updated
cell. If there is a consecutive k stones, the game is over. This paper
uses bitwise operations on the checking process. The starting point
is the location from the updated cell to k � 1 distance toward the
start-cell of the Connection. This is based on the situation if there
is sufficient distance between the updated cell and the start-cell

of the Connection. Fig. 11 shows how to check whether the game
is over.

Because the required length of the consecutive stones is k, the
checking length of the bitmask is k in every inspection. Therefore,
from the starting point to the terminal-cell of the Connection, we
make a bitmask whose encoding length of ‘‘1’’ is k and the other
cells are encoded as ‘‘0’’ as showed in Fig. 11.

The checking must cooperate with a bitwise operator ‘‘AND’’.
The return value is calculated by the AND operation on the shape
and the bitmask. If the return value is equal to the value of bitmask,
the Connection has a consecutive k stones in this segment. The
algorithm takes turns to use this inspection method to finish the
whole checking process, and the number of checking is k times
in a Connection at most. The algorithm is as follows:

Step 1: Prepare the MASK (Check) to do checking.
Step 2: if ((new shape & MASK (Check))==MASK (Check))

The game is over;
else

MASK (Check) � = 1;

4.3. Counting the number of threats

Wu’s algorithm to count the number of threats in one Connec-
tion is as follows [31]:

1. For a Connection, slide a window of size six from start-cell
to terminal-cell.

2. Repeat the following step for each sliding window.
3. If the sliding window contains no marked cell and at least

four occupied cells, add one more threat and mark all the
empty cells in the window. Note that in fact we only need
to mark the rightmost empty cell. The window satisfying
the condition is called a threat-window.

Fig. 12A shows the concept of the algorithm. The algorithm can
correctly figure out the number of threats in a Connection. This pa-
per uses two ways to improve the algorithm as follows:

First, when the sum of stones is less than four in sliding win-
dow, we can jump over some checking cells according to the

Fig. 9. Modifying a Connection for an updated cell with the same color. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 10. Modifying a Connection for an updated cell with different color. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 11. Checking whether the game is over.

S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54 47

Author's personal copy

sum of stones checked in a sliding window. The number of jumping
equals to the number of stones to form a threat window minus the
sum of stones in a sliding window and minus one. Take Fig. 12B as
an example. In the round one of sliding window checking pro-
cesses, the starting point is the first cell as in Fig. 12B. In the first
sliding window, there is only one stone; therefore, the second
checking point is the fourth cell. The reason is that it is impossible
to meet a threat window inside two rounds of checking. Therefore,
rounds two and three are omitted in Fig. 12A.

Secondly, if the inspection meets a threat window, we go onto
check behind the farthest empty cell inside the Threat Window.
In Fig. 12B, the inspection in round three meets the threat window,
so the next checking point is that of the round four as in this figure.
In Wu’s algorithm, when sliding window becomes threat window,
it marks all the empty squares in the window. It means that it does
not jump over the threat window.

5. Generating threat move

As mentioned in [30–32], threats are the key to play Connect6
as well as Connect-k games. For a game position with n Connec-
tions, the time complexity of traditional method for generating
threat moves is O(n2). This section introduces two efficient algo-
rithms for generating two kinds of threat moves, respectively.
The time complexities of the two algorithms are O(n), which is bet-
ter than the traditional method.

5.1. Connection diversity

Connections are divided into three types as follows:

� Threat-Connection: If Attacker can generate k consecutive
stones by placing one or two stones on a Connection, this Con-
nection is a threat Connection. If Defender can block the threat
by a single stone, the Connection is a single-threat Connection.
A single-threat Connection has a threat. Meanwhile, a double-
threat Connection has two threats and can only be defended
by two Defender’s stones.

� Attack-Connection: The Connection itself has no threat, but
Attacker can generate the Threat-Connection on it by one or
two stones. The Attack-Connection provides the basis of TSS.
In TSS, if a threat move can generate another Attack-
Connection, TSS can perform a deeper search on the new
Attack-Connection.
� Indirect-Attack-Connection: The Connection is neither a Threat-

Connection nor a Attack-Connection. If one stone is enough to
make threats in TSS, the Indirect-Attack-Connection can be pro-
moted to the Attack-Connection by another stone. Then TSS can
generate more threat moves.

The general threat move generating method is to check the pat-
terns of the Attack-Connections in a game position. For example,
given a1live-2 Attack-Connection, Attacker can generate a live-4
Threat-Connection. When search all the threat moves on the board,
if multiple Attack-Connections exist, it is necessary to consider
whether an intersection cell exist between Attack-Connections or
not. In Fig. 13, if Attacker places a stone on the intersection cell,
the two dead-3 Connections will transform to two dead-4 Attack-
Connections, respectively.

Checking whether an intersection cell exists between Connec-
tions associated with a position is a complex problem. It is neces-
sary to examine whether an intersection exists between each pair
of Attack-Connections. Suppose the number of Attack-Connections
is n, the time complexity of the examination is O(n2).

5.2. Threat-cell and threat-pair

This subsection provides the definitions of Threat-Cell and the
Threat-Pair. Threat-Cell and Threat-Pair are the main concepts for
generating threat moves in this section.

Definition 1. In a game position, if threats can be generated after
playing a stone on an empty cell, this cell is labeled Threat-Cell. If a
Threat-Cell can form one threat, that cell is labeled T1-Cell. If a
Threat-Cell can form two threats, the cell is labeled T2-Cell. Tn-Cell
set is the set of Tn-Cell.

Definition 2. In a game position, if two empty cells can generate a
threat, the cell pair is labeled Threat-Pair. If the Threat-Pair can
generate one threat, the pair is labeled T1-Pair. If the number of
threats formed by a Threat-Pair equals two, the Threat-Pair is
labeled the T2-Pair. Tn-Pair set is the set of Tn-Pairs.

Table 3 lists transitions of different Attack-Connection patterns.
The table lists the changes in patterns after playing one or two
stones, and related Threat-Cell and Threat-Pair.

In TSS, Attacker should generate one or two threats so Attacker
can continue TSS. When generates the threat moves, Attacker
should also consider Defender’s threat. If Defender has no threat,

(A)

(B)

Fig. 12. The concept for counting the number of threats in a shape.

Fig. 13. Intersection cell of two Connections. White can use a single stone to make
two threats according to the two dead-3 Connections.

Table 3
Patterns, Threat-Cells, and Threat-Pairs.

Pattern The pattern after
adding one stone

Set of used
Threat-Cell

The pattern after
adding two stones

Set of used
Threat-Pair

Live-3 Live-4 T2-Cell set Live-5 T2-Pair set
Dead-4 T1-Cell set Dead-5 T1-Pair set

Dead-3 Dead-4 T1-Cell set Live-5 T2-Pair set
Dead-5 T1-Pair set

Live-2 Live-4 T2-Pair set
Dead-4 T1-Pair set

Lead-2 Dead-4 T1-Pair set

1 Live-2 is a Connect6 pattern, and so as live-n and dead-n, where n is between 1
and 5 [30].

48 S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54

Author's personal copy

Attacker seeks the threat move by using two stones. Section 5.3 de-
scribes the algorithm for generating the threat move using two
stones. If Defender has one threat, Attacker must use a stone to
block that threat. Then Attacker has only one stone for generating
the threat move. The algorithm for generating the threat move
using a single stone is in section 5.4.

5.3. Generating the threat move using two stones

Suppose Defender has no threat, Attacker can seek to deploy
two stones for the threat move. The data used in this subsection
are T2-Cell set, T1-Cell set, T2-Pair set and T1-Pair set.

5.3.1. Algorithm for generating the threat move using two stones

Step 1: Search all Attack-Connections for a specific position, and
divide them into live-3, dead-3, live-2, dead-2 and live-1
sets according to its Pattern, respectively.

Step 2: If the live-3 set is not empty then deal with the live-3 set
as follows:
(a) If there are more than one live-3 connections, take two

Connections to form the winning move and end the
search. Otherwise, resolve the situation as follows:

(b) Generate corresponding Threat-Cells and Threat-Pairs
based on every live-3, and enter them into the T2-Cell
set, T1-Cell set, T2-Pair set and T1-Pair set.

Step 3: If the dead-3 set is not empty, deal with every Connection
in the dead-3 set sequentially as follows:
(a) Generate the T1-Cell set.
(b) If T2-Cell set has previously been generated, combine

this T1-Cell set and T2-Cell set as a double-threat
move. If these two sets contain an intersection cell,
that cell must be winning cell, forming a winning
move to end the search.

(c) Combine this T1-Cell set with the formerly generated
T1-Cell set to create the T2-Pairs, and assign these
pairs to the T2-Pair set.

(d) If an intersection cell exists between this T1-Cell set
and the formerly generated T1-Cell set, include this
cell in the T2-Cell set. If this cell is included in the
T2-Cell set, it must be the winning cell, forming a win-
ning move and thus ending the search.

(e) Examine the intersection cell of this T1-Cell set with
the formerly generated T1-Pair set and T2-Pair set.

(f) Generate the Threat-Pair of the dead-3 Connection and
individually include it in the T1-Pair and T2-Pair sets.

Step 4: If the live-2 set is not empty, generate a correspondent
Threat-Pair for every Connection in the live-2 set in order,
and include that pair in the T2-Pair set and T1-Pair set.
(a) Examine the intersection of the T2-Pair set with the

formerly generated T1-Cell and T2-Cell sets.
(b) Examine the intersection of the T1-Pair set with the

formerly generated T1-Cell and T2-Cell sets.
Step 5: If the dead-2 set is not empty, generate the correspondent

Threat-Pair according to Connections in the dead 2 set in
order, and assign it to the T1-Pair set.
(a) Examine the intersection of the T1-Pair set with the

formerly generated T2-Cell and T1-Cell sets.
Step 6: According to the T2-Cell set, T1-Cell set, T2-Pair set and

T1-Pair set generated from steps 2 to 5, generate individ-
ual correspondent threat moves.
(a) Generate double-threat moves for the cells in the T2-

Cell set and Indirect-Attack-Connection. Because a
T2-Cell can form two threats using a single stone, the
other stone can promote the Indirect-Attack-Connec-
tion, for example turning live-1 to live-2.

(b) Generate double-threat moves based on the T2-Pair in
the T2-Pair set.

(c) Generate single-threat moves for the cells in the T1-
Cell set and Indirect-Attack-Connection. Because a
T1-Cell can generate a single threat using a single
stone, the other stone can promote the Indirect-
Attack-Connection.

(d) Generate single-threat moves for the T1-Pair in the T1-
Pair set.

5.3.2. Analysis
Suppose the number of Attack-Connections is n. The time com-

plexity of Step 1 is O(n). The time complexity is O(n) from Steps 2
to 5, and that of Step 6 is O(1). Thus, the time complexity of the
whole algorithm is O(n).

Some properties of the Threat-Cell and Threat-Pair used in the
algorithm are stated as follows. Since the proofs of Properties 3–7
are similar to that of Properties 1 and 2, this paper ignores the
proofs. In each of the following Properties, we assume the two given
sets are not empty and generated from two different Connections.

Property 1. Given the two T2-Cell sets S1 and S2, for any two different
cells c12 S1 and c2 2 S2, Attacker can win by playing on c1 and c2.

Proof. Because the T2-Cell can forms two threats using a single
stone, place stones on c1 and c2 will make two double-threat pat-
terns in the two Attack-Connections, respectively. Blocking a dou-
ble-threat pattern requires two stones, which are on the same line.
Only one intersection cell exists in two lines, blocking the two
Threat-Connection requires at least three stones. h

Property 2. Given the T1-Cell set S1 and T2-Cell set S2, if there is an
intersection cell cxof the two sets, Attacker can win by playing on
the cx.

Proof. The cell c22 S2 can generate the double-threat pattern, and
c12 S1 can the generate single-threat pattern. Therefore, c1 and c2

can generate three threats. However, if cx is empty after Defender
plays the two stones, Defender may block the three threats by
playing on cx and another stone. h

Property 3. Given the two T1-Cell sets S1 and S2, for any two different
cells c1 2 S1 and c2 2 S2, Attacker can make a double-threat pattern by
playing on the c1 and c2.

Property 4. Given the T2-Cell set Sc and T2-Pair set Sp, for any cell
c1 2 Sc and any cell pair (cp1, cp2) 2 Sp, if c1 is equal to either cp1 or
cp2, Attacker can win by playing on the cp1 and cp2.

Property 5. In Property 4, if Sp is a T1-Pair set, Attacker can also win
by playing on the cp1 and cp2.

Property 6. In Property 4, if Sc is a T1-Cell set, Attacker can also win
by playing on the cp1 and cp2.

Property 7. In Property 4, if Sc is a T1-Cell set and Sp is a T1-Pair set,
Attacker can make a double-threat pattern by playing on the cp1 and
cp2.

Property 8. It is impossible for the T2-Pair or T1-Pair sets share the
same intersection Pair.

S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54 49

Author's personal copy

Proof. For two T1-Pair sets, since each of the T1-Pair set is
formed by a single Attack-Connection, a T1-Pair set generated
by Attack-Connection must be located on the same straight line
as the Connection definition. A maximum of one intersection
can exist for two lines on the board. Thus, giving two T1-Pairs,
the Connections forming these T1-Pairs must be the same Con-
nection, contradicting the definition of Connection. Conversely,
the intersection Pair differs between the T2-Pair and T1-Pair
sets. h

5.4. Generating the threat move using a single stones

In a game position, if Attacker should use a single stone to block
the threat of Defender, only one stone is available to generate the
threat move. Attacker generates double-threat and single-threat
moves based on every blocking cell. The algorithm is as follows.
The analysis of this algorithm is similar to the algorithm in Section
5.3. The time complexity is also O(n).

5.4.1. Algorithm for generating the threat move using a single stone

Step 1: Use the following steps to deal with every blocking cell in
order.

Step 2: Examine the new position after playing a stone on the
blocking cell. Search all the Threat-Connections and
Attack-Connections of Attacker, and classify the Attack-
Connections according to the Pattern.
(a) Calculate the sum of the threats generated by the

blocking cell based on the Threat-Connection.
(b) If the blocking cell generates more than two threats, it

is termed a winning cell, and makes a winning move
to end the search.

Step 3: Generate the T2-Cell set for every live-3, and generate the
T1-Cell set for every dead-3.
(a) If the generated T2-Cell set intersects with the previ-

ous one, this intersection must indicate a winning cell,
forming a winning move together with the blocking
cell to end search.

(b) When generating the T1-Cell set, if an intersection
exists with the previous T1-Cell set, this cell is a T2-
Cell, and thus is included in the T2-Cell set. If this
T2-Cell intersects with the T2-Cell set, it must be a
winning cell, and thus forms a winning move together
with the blocking cell to end the search.

Step 4: If a blocking cell generates two threats according to Step 2,
the situation is dealt with as follows:
(a) If the T2-Cell or T1-Cell sets is not empty, a winning

move is performed together with the blocking cell to
end the search.

(b) Otherwise generate double-threat moves sequentially
for the Connections live-2, live-1, dead-2 and dead-1.

Step 5: If a blocking cell generates one threat according to Step 2,
the situation is dealt with as follows:
(a) If T2-Cell set is not an empty set, a winning move is

formed together with the blocking cell to end the
search.

(b) If T1-Cell set is not an empty set, a single-threat move
is formed together with the blocking cell.

(c) Check if the Threat-Connection can play another stone
to form a double-threat move, as the two special dead-
4 in Fig. 14.

Step 6: If the blocking cell generates no threat according to Steps
2, this algorithm generates corresponding threat moves
based on the T2-Cell set and T1-Cell set formed in Step 3.

(a) Check if an intersection cell exists between the T2-Cell
set and the T1-Cell set generated from different Con-
nections. If such a cell exists, this cell is a winning cell,
which forms a winning move together with the block-
ing cell and thus ends the search.

(b) Make the blocking cell and T2-Cell set form double-
threat moves.

(c) Make the blocking cell and T1-Cell set form single-
threat moves.

(d) Check if the Threat-Connection can play another stone
to form a double-threat move.

6. Multistage Search and PNS implementation

Multistage Search is based on the concept that, at any game po-
sition, different candidate moves can be developed in different
stages according to their importance, respectively. This design is
mainly used for sudden-death games. For Connect-k games, the
priority of candidate move depends on number of threats by the
move. Monte-Carlo Tree Search (MCTS) is a best-first search, which
uses stochastic simulations[1,6–8,15,25]. It has advanced the
development of computer Go substantially [6,16,40]. The 2-Stage
MCTS for Connect6 was proposed in [38]. This paper proposes
Multistage PNS. The two searching methods are compared in
Section 7.

PNS was proposed by Allis et al. [2,4]. PNS was successfully used
to prove or solve of game positions for many games
[2–5,14,22,26,27,29]. Many variations of PNS were proposed, such
as DF-PN, PDS, PN⁄, PN2, and parallel PNS [5,11,13,21,22,24,27,29,
34]. This paper provides the Multistage PNS search for Connect6.
In practice, the proposed Multistage PNS may be combined with
some of the variations to improve the efficiency.

6.1. Search architecture

Three kinds of moves exist in Connect6: double-threat, single-
threat and non-threat moves. Thus, Multistage Search is divided
into four strategies with respect to the combinations of the three
kinds of candidate moves, as listed in Table 4.

Fig. 15 shows the architecture of Multistage PNS. Candidate
moves of each node are generated via stages. The timing of the
generation of different candidate moves are based on the stage

Fig. 14. One stone can transform the dead-4 into a live-5.

Table 4
The kinds of moves in different Multistage Searches.

Strategy Stage

First stage Second stage Third stage

1-Stage Double-threat
Single-threat
Non-threat

Type-I 2-stage Double-threat Single-threat
Non-threat

Type-II 2-stage Double-threat Non-threat
Single-threat

3-Stage Double-threat Single-threat Non-threat

50 S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54

Author's personal copy

strategy and the stage-transition condition. The implementation of
3-stage PNS in Connect6 is explained in the next subsection.

6.2. Three-stage PNS implementation

6.2.1. First stage – Double-threat move search
The first stage focuses on the double-threat solution. As the def-

initions in Section 2, the T2-subtree is a tree where Attacker only
searches for the double-threat moves of Attacker. If Attacker can-
not identify any suitable double-threat move in an OR-Node, this
node is labeled T2 Fail. In Fig. 16, because Attacker cannot identify
any double-threat move in node T, node T is T2 Fail. In a T2-sub-
tree, if one of the successors of Defender node is T2 Fail, Defender
node is T2 Fail. In Fig. 16, Defender node B is T2 Fail. If all the suc-
cessors of Attacker node are T2 Fail, the Attack node is T2 Fail. In
Fig. 16, Attacker node J is T2 Fail. If the root node of T2-subtree
is T2 Fail, Attacker of this T2-subtree fails in searching double-
threat moves. Attacker node A is T2 Fail in Fig. 16.

In the T2-subtree, the calculation of the proof and disproof
number of each node is the same as that of PNS, as listed in Table
1. When Attacker node of the T2-subtree is T2 Fail, this node
should add single-threat moves to the calculation. The proof and
disproof numbers of the entire T2-subtree thus become the proof
and disproof numbers of the TSS-subtree. Finally, if TSS-subtree
is TSS Fail, the calculation of the proof and disproof number must
consider the non-threat moves.

6.2.2. Second stage – single-threat move search
The second stage focuses on the single-threat solution. In Con-

nect6, it is harder to find TSS solution than that of T2 solution be-
cause Defender only needs one move to block the single-threat.
Therefore, another move of Defender is free to play on any empty
cell.

The TSS Fail is judged using the same criteria as the T2 Fail. This
paper takes Attacker node of the TSS-subtree as the criterion. If At-

tacker cannot keep generating threat move, TSS is Fail. In the node
of the TSS-subtree, if TSS fails, non-threat moves will be incorpo-
rated into the calculation of the proof and disproof numbers.

6.2.3. Third Stage – non-threat move search
We design some criteria for increasing search efficiency of gen-

erating non-threat moves. To avoid generating too many candidate
moves, we generate candidate moves based on a deeper search on
a probing cell and assess whether the proof number of an AND-
node exceeds a certain value. We add new candidate moves when
it is appropriate. Proof number represents that proving nodes must
exist under this node. If the proof number is too big, this paper be-
gins seeking new candidate moves.

6.2.4. Node evaluation
Node evaluation is designed to assess the node position and

determine the action of generating candidate moves based on the
position. Regarding the algorithm used to form threat moves,
please refer to Section 5. When using CTSS seeks double-threat
solution, the search speed is very fast; therefore, when performing
node evaluation, our system specifically performs CTSS for double-
threat moves.

7. Experiments and discussion

There are many strong state-of-the-art Connect6 programs, such
as Cloudict.Connect6, Morethanfive, NCTU6, and TD6 [17,18,33,37].
This paper does not compare the performance with them, because
the strength of Connect6 programs may mainly depend on the heu-
ristic and evaluation functions and we do not have their functions.

This paper only describes the experiments on bitboard design
and Multistage PNS. We ignore that of the algorithms for generat-
ing threat moves. The algorithm for generating threat move can
decrease the time complexity from O(n2) to O(n), where n is num-
ber of Attack Connections. Therefore, a program with the algorithm
for generating threat move is surely fast than that of the known
traditional methods on Connect6.

This paper gathered all the puzzles of the two main puzzle sets
(2007 series and 2008 series) from the Taiwanese Connect6 website
[20], and examines 58 puzzles as the experimental test benchmark
for the proposed algorithms. The benchmark is basically the same
as in [38] except the extra added puzzles in 2007 series. Those puz-
zles are the most up-to-date puzzles published on the website.
Among the 58 puzzles, this paper excludes 2007-Q4-1-5, 2008-
Q1-1-3, and 2008-Q3-1-4 because they lack the T2 or TSS solution.
The remaining 55 puzzles are divided into two types, T2 and TSS
solutions. The experiments were performed on Intel 2.0 GHz ma-
chine with 2 GB memory.

7.1. Analysis of the bitboard knowledge base system

The system computes all diversity of connection patterns that
may occur in advance, and stores them in a knowledge base. In
searching, the system does not need to compute the information
of a Connection because the information can be retrieved by look-
ing it up in the knowledge base. It is obvious that the bitboard de-
sign can conduct lots of computation in advance. The time of
update and access for information of a cell is constant. Besides,
the system also supports some very efficient Bitwise operation
algorithms for Connect6.

For the comparison, we use 2-stage PNS (Type II) as the search
algorithm and the puzzles which solution can be found by the
search algorithm (total 24 puzzles of 2008 series in Tables 7 and
8). Table 5 shows the result, and it shows that the improved

Fig. 15. Multistage Proof Number Search architecture.

Fig. 16. First stage – double-threat search.

S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54 51

Author's personal copy

efficiency is about 10 times. Therefore, bitboard knowledge base
significantly improves the search efficiency.

7.2. Multistage PNS experimental results

The accuracy and efficiency of the Multistage PNS are analyzed
in this section. Since Multistage PNS is a best-first search, it re-
quires of maintaining the whole search tree in memory. Thus,
many variations were proposed to avoid this problem [5,21,
22,34]. In this paper, the total memory space of the Multistage
PNS tree is restricted to 60,000 nodes. This number is enough to

solve most puzzles in the experiments. The limit time for each side
in a game is 30 min in most tournaments. The restricted number is
also enough to let Kavalan finish each game in those tournaments.

The 55 test puzzles contains T2 solution and TSS solution puz-
zles. Five algorithms are implemented for performing the compar-
ison. The first and second algorithms are brute-force algorithms:
depth-first search (DFS) and breadth-first search (BFS). Basic DFS
has no depth limit, but the outcome is bad for these puzzles with
T2 and TSS solutions. Therefore, this paper tests the results of lim-
iting the search depth of DFS to 14. Besides, the search of DFS and
BFS is limited to threat moves, and excludes other candidate moves
(non-threat moves). The third algorithm is Standard PNS. It gener-
ates candidate moves by using heuristic knowledge to order empty
cells and uses them to generate moves. The fourth algorithm is
type-I 2-stage PNS, and generates double and single-threat moves
in stages. Finally, the fifth algorithm is type-II 2-stage PNS, and
does not especially distinguish the threat moves.

This paper limits the memory space of search tree developed
from the five algorithms to 60,000 nodes, the number of probing
cells to 12. The information of the five algorithms is as in Table 6.

In the experiment, the bitboard knowledge base system is
used in every algorithm. The search time and the number of
searching nodes (inside the parenthesis) of the results are listed
in Tables 7 and 8. The unit of time is second. The searching nodes
include the nodes used in CTSS for node evaluation as described
in Section 6.2.4. If the CTSS fails, the memory space of the nodes
in the CTSS will be released. Thus, the total number of searching
nodes may be larger than 60,000. The experimental results of 2-
Stage MCTS (Type-II) are from [38] except the puzzles of 2008
series.

From the experimental results, the search efficiency of brute-
force algorithms is low. They cannot find the solution on most
TSS solution puzzles, especially DFS. Therefore, the brute-force
algorithms are only suitable on simple puzzles. In comparison to
the success rate of finding the solution of puzzles, standard PNS
is worse than 2-stage PNS. Thus, standard PNS is not suitable for
sudden-death game.

For the three 2-stage algorithms, Type-II 2-stage MCTS is gener-
ally better in Table 7. However, the difference is not significant be-
cause the state space of the T2 solution is small.

Table 5
The efficiency of the knowledge base system.

Type-II Multistage PNS
Total time
(24 puzzles of 2008 series)

Use the system 474.367 (s)
Does not use the system 4512.006 (s)

Table 7
The result for the puzzles with T2 solution.

Puzzles Algorithms

DFS with depth limit to 14 BFS Standard PNS Type-I 2-stage PNS Type-II 2-stage PNS Type-II 2-stage MCTS [34]

2007-Q4-2-5 3.859 (51,458) 6.218 (65,959) X 0.015 (238) 0.015 (238) 0.062 (238)
2007-Q4-2-6 0.031(638) 0.015 (517) 0.031 (197) 0.062 (1061) 0.062(1061) 0.062(1061)
2007-Q4-3-1 X 0.296 (4312) 0.001 (221) 0.001 (61) 0.001 (61) 0.001 (61)
2007-Q4-3-4 X 0.687 (9058) 0.015 (500) 0.015 (517) 0.015 (517) 0.031 (517)
2007-Q4-3-5 X 6.000 (60,901) 0.015 (154) 0.001 (131) 0.001 (131) 0.001 (131)
2007-Q4-3-6 0.156 (2480) 0.001 (104) 0.001 (23) 0.001 (22) 0.001 (22) 0.015 (22)
2007-Q4-4-4 0.015 (134) 0.001 (224) 0.001 (119) 0.001 (43) 0.001 (43) 0.001 (43)
2007-Q4-4-6 X 8.046 (70,102) X 0.171 (3024) 0.421 (3681) 1.046 (4911)
2007-Q4-5-1 0.046 (892) 0.001 (72) 18.156 (147,298) 0.001 (144) 0.031 (144) 0.015 (144)
2007-Q4-5-2 X 0.001 (238) 0.001 (58) 0.001 (31) 0.001 (31) 0.015 (31)
2007-Q4-5-3 0.015 (334) 0.078 (982) 0.001 (42) 0.001 (38) 0.001 (38) 0.015 (38)
2007-Q4-5-4 0.001 (56) 0.001 (247) 0.001 (55) 0.001 (30) 0.001 (30) 0.001 (30)
2008-Q1-1-1 0.219 (4785) 0.016 (202) 0.001 (78) 0.016 (84) 0.001 (84) 0.001 (84)
2008-Q1-1-2 0.391 (8062) 11.469 (70,263) X 0.031 (554) 0.031 (554) 0.031 (554)
2008-Q1-2-1 0.984 (23,071) 0.078 (884) 0.001 (97) 0.001 (89) 0.001 (89) 0.001 (89)
2008-Q1-2-2 2.906 (70,184) 0.953 (10,003) 0.094 (1311) 2.921 (4475) 0.265 (4475) 0.406 (4475)
2008-Q1-3-1 4.281 (103,946) 0.078 (705) 0.031 (610) 0.047 (563) 0.047 (563) 0.031 (563)
2008-Q1-3-2 5.250 (120,907) 0.031 (581) 12.890 (105,130) 0.001 (27) 0.016 (27) 0.001 (27)
2008-Q2-1-1 1.203 (26,558) 1.672 (15,734) X 0.359 (54) 0.438 (54) 0.001 (54)
2008-Q2-1-2 1.719 (43,917) 3.062 (15,661) 0.453 (67) 0.172 (50) 0.188 (50) 0.001 (50)
2008-Q2-2-1 0.046 (914) 0.047 (487) 0.313 (48) 0.219 (56) 0.266 (56) 0.016 (56)
2008-Q2-2-2 0.609 (13,320) 0.250 (2263) 0.219 (46) 0.188 (29) 0.172 (29) 0.001 (29)
2008-Q3-1-1 9.813 (233,264) 0.016 (168) 6.156 (1610) 0.234 (1200) 0.359 (1200) 0.031 (208)
2008-Q3-1-2 0.001 (26) 0.031 (202) 0.234 (54) 0.172 (18) 0.172 (18) 0.001 (18)

Table 6
The search strategy of different algorithms.

Algorithm Search strategy

DFS � DFS with depth limit to 14.
� When DFS searches T2 solution, it focuses the candidate

moves on double-threat moves.
� When DFS searches TSS solution, it generates double and

single-threat moves at the same time.

BFS � When BFS searches T2 solution, it focuses the candidate
moves on double-threat moves.
� When BFS searches TSS solution, it generates double and

single-threat moves at the same time.

Standard PNS � Using empty cell score to generate candidate moves
� If the proof number of an OR-Node is bigger than 66, it

adds new candidate moves.

Type-I 2-
stage PNS

� Generating single-threat moves after double-threat
moves search fail.

Type-II 2-
stage PNS

� Generating double-threat and single-threat moves at the
same time.

52 S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54

Author's personal copy

For these puzzles with TSS solution, the two 2-stage PNS algo-
rithms do not differ significantly from each other. However, in
some special game positions including numerous double-threat
moves without any T2 solution, an excessive amount of time is
wasted in the first stage of Type-I 2-stage PNS.

In Table 8, in comparison to Type-II 2-stage MCTS, 2-stage PNS
performs better for 16 of the given 31 puzzles, but worse for 10 of
the others. It is hard to conclude which one is better. The reason is
similar to the anomaly phenomenon mentioned in [34]. When
solving some puzzles or playing in a competition with a multi-core
computer in practice, a possible solution is to use the two search
algorithms simultaneously.

8. Conclusions

Connect6 is an interesting board game. This paper proposes a
bitboard knowledge base system and an efficient search architec-
ture for Connect-k games. The proposed methods have been imple-
mented in a Connect6 program Kavalan.

We summarize the conclusions of this study as follows: Firstly,
a bitboard knowledge base system with bitwise operation algo-
rithms is proposed. The experimental result shows that the effi-
ciency is improved by about 10 times in Connect6. Secondly, this
paper describes how to generate threat moves efficiently. Suppose
that the number of Attack-Connections is n for a game position,
this algorithm significantly lowers the time complexity of generat-
ing threat moves from O(n2) to O(n).

Finally, a 2-stage PNS is proposed. The experimental results on
Connect6 suggest that Multistage Search has satisfactory perfor-
mance for sudden-death games. Although this paper only uses a
primitive version of PNS to develop the Multistage PNS, the pro-
posed Multistage PNS may be combined with other variations of
PNS to improve the efficiency.

Acknowledgments

The authors thank anonymous reviewers for their valuable
comments, and thank the National Science Council of the Republic
of China (Taiwan) for financial support of this research under con-
tract numbers NSC 96-2628-E-259-020-MY3 and NSC 98-2221-E-
259-021-MY3.

References

[1] H. Akiyama, K. Komiya, Y. Kotani, Nested Monte-Carlo search with simulation
reduction, Knowledge-Based Systems (2011), http://dx.doi.org/10.1016/
j.knosys.2011.11.015.

[2] L.V. Allis, Searching for solutions in games and artificial intelligence, Ph.D.
Thesis, University of Limburg, Maastricht, The Netherlands, 1994.

[3] L.V. Allis, H.J. van den Herik, M.P.H. Huntjens, Go-Moku solved by new search
techniques, Computational Intelligence 12 (1) (1996) 7–23.

[4] L.V. Allis, M. van der Meulen, H.J. van den Herik, Proof-number search, Artificial
Intelligence 66 (1) (1994) 91–124.

[5] D.M. Breuker, J. Uiterwijk, H.J. van den Herik, The PN2-search algorithm’, in:
H.J. van den Herik, B. Monien (Eds.), Advances in Computer Games, IKAT,
Universiteit Maastricht, Maastricht, The Netherlands, 2001, pp. 115–132.

[6] K.-H. Chen, Dynamic randomization and domain knowledge in Monte-Carlo
tree search for Go knowledge-based systems, Knowledge-Based Systems
(2011), http://dx.doi.org/10.1016/j.knosys.2011.08.007.

[7] R. Coulom, Efficient selectivity and backup operators in Monte-Carlo tree
search, in: H.J. van den Herik, P. Ciancarini, H.J. Donkers (Eds.), Proceedings of
the 5th International Conference on Computer and Games, Lecture Notes in
Computer Science (LNCS 4630), 2007, pp. 72–83.

[8] S. Gelly, D. Silver, Monte-Carlo tree search and rapid action value estimation in
computer Go, Artificial Intelligence 175 (11) (2011) 1856–1875.

[9] R. Grimbergen, Using bitboards for move generation in Shogi, ICGA Journal 30
(1) (2007) 25–34.

[10] E.A. Heinz, How dark thought plays chess, ICCA Journal 20 (3) (1997) 166–176.
[11] H.J. van den Herik, M.H.M. Winands, Proof-number search and its variants,

Oppositional Concepts in Computational Intelligence (2008) 91–118.
[12] R. Hyatt, Rotated bitmaps, a new twist on an old idea, ICCA Journal 22 (4)

(1999) 213–222.
[13] A. Kishimoto, Y. Kotani, Parallel AND/OR tree search based on proof and

disproof numbers, in: Proceedings of the 5th Games Programming Workshop,
IPSJ Symposium Series, vol. 99(14), 1999, pp. 24–30.

Table 8
The result for the puzzles with TSS solution.

Puzzles Algorithms

DFS with depth limit to 14 BFS Standard PNS Type-I 2-stage PNS Type-II 2-stage PNS Type-II 2-stage MCTS [34]

2007-Q4-1-1 X X X X X X
2007-Q4-1-2 X 18.500 (310,280) 1.359 (24,551) 1.625 (28,225) 0.265 (4203) 0.390 (3384)
2007-Q4-1-3 X X 9.500 (93,583) 19.453 (230,023) 3.937 (52,168) 78.031 (781,178)
2007-Q4-1-4 X X X X 48.406 (539,170) X
2007-Q4-2-1 X X X X X 12.078 (102,098)
2007-Q4-2-2 X X X 30.171 (355,780) X 5.828 (54,794)
2007-Q4-2-3 X X X X 38.687 (359,600) 0.812 (9163)
2007-Q4-2-4 X 36.562 (613,438) 0.640 (14,453) 7.625 (83,954) 0.609 (9467) 0.968 (12,752)
2007-Q4-3-2 X 63.500 (929,075) X 0.484 (10,911) 0.187 (1967) 1.437 (10,608)
2007-Q4-3-3 X 0.921 (15,966) X 6.125 (90,060) 0.546 (15,855) 4.468 (99,971)
2007-Q4-4-1 X 149.062 (2,518,898) X 1.390 (30,094) 7.093 (89,261) 0.609 (2154)
2007-Q4-4-2 X X X 413.296 (4,973,584) 58.859 (640,402) 5.156 (40,317)
2007-Q4-4-3 X X X X X X
2007-Q4-4-5 X X 149.812 (1,491,658) 171.640 (1,963,234) 2.281 (16,379) 6.375 (25,369)
2007-Q4-5-5 X X 11.484 (114,332) X X 12.281 (129,631)
2008-Q1-1-4 X X X 3.469 (62,209) 2.953 (32,299) 3.047 (32,767)
2008-Q1-1-5 X X X X X X
2008-Q1-2-3 X X X X X 173.938 (1,224,641)
2008-Q1-2-4 6.015 (100,011) 0.001 (152) 0.016 (197) 0.015 (154) 0.001 (154) 0.001 (154)
2008-Q1-2-5 X 246.828 (3,916,209) 660 (5,013,875) 0.172 (3297) 0.203 (3684) 1.267 (14,538)
2008-Q1-3-3 X 99.421 (1,362,512) 8.671 (77,554) 324.515 (2,226,606) 324.266 (2,589,807) 178.875 (1,697,174)
2008-Q1-3-4 X X X X 48.750 (329,571) 86.063 (399,731)
2008-Q1-3-5 X X X X X 1912.343 (16,786,491)
2008-Q2-1-3 X 7.703 (129,573) X 1.016 (16,717) 0.375 (5786) 2.734 (20,458)
2008-Q2-1-4 X 12.281 (199,448) 0.250 (3407) 0.375 (4488) 0.140 (1175) 3.063 (11,941)
2008-Q2-1-5 X X X 128.047 (1,556,262) 11.937 (154,639) X
2008-Q2-2-3 X X 51.781 (512,988) 0.375 (6689) 4.000 (18,935) X
2008-Q2-2-4 X 5.468 (171,519) X 0.250 (4751) 0.078 (1810) 0.141 (2217)
2008-Q2-2-5 X X X X X X
2008-Q3-1-3 X 14.765 (384,205) 0.172 (3258) 22.687 (143,071) 0.500 (8258) 0.563 (4528)
2008-Q3-1-5 X X X 109.594 (1,341,419) 89.266 (901,372) 8.797 (81,888)

S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54 53

Author's personal copy

[14] A. Kishimoto, M. Müller, Search versus knowledge for solving life and death
problems in Go, in: Twentieth National Conference on Artificial Intelligence
(AAAI-05), 2005, pp. 1374–1379.

[15] L. Kocsis, C. Szepesvári, Bandit based Monte-Carlo planning, in: J. Fürnkranz, T.
Scheffer, and M. Spiliopoulou, (Eds.), Proceedings of the 17th European
Conference on Machine Learning (ECML), 2006, pp. 282–293.

[16] C.-S. Lee, A. Rimmel, O. Teytaud, S.-R. Tsai, S.-J. Yen, M.-H. Wang, Current
frontiers in computer Go, IEEE Transactions on Computational Intelligence and
AI in Games 2 (4) (2010) 229–238.

[17] P.-H. Lin, I-C. Wu, NCTU6 wins in the man–machine Connect6 championship
2009, ICGA Journal 32 (4) (2009) 230–232.

[18] H.-H. Lin, D.-J. Sun, I-C. Wu, S.-J. Yen, TAAI computer game tournament report
in 2010, ICGA Journal 34 (1) (2011) 51–54.

[19] P. San Segundo, R. Galan, D. Rodriguez-Losada, F. Matia, A. Jimenez, Efficient
search using bitboard models, in: Proceedings XVIII International Conference
on Conference on Tools for AI, Washington, 2006, pp. 132–138.

[20] Taiwan Connect6 Association, Connect6 homepage, <http://www.connect6.
org/>.

[21] A. Nagai, Df-pn algorithm for searching AND/OR trees and its applications, PhD
thesis, University of Tokyo, Japan, 2002.

[22] J. Pawlewicz, L. Lew, Improving depth-first PN-search: 1+e trick, 5th
International Conference on Computers and Games, in: H.J. van den Herik, P.
Ciancarini, H.H.L.M. Donkers (Eds.), Lecture Notes in Computer Science (LNCS
4630), Computers and Games, Springer, Heidelberg, 2007, pp. 160–170.

[23] F. Reul, New architectures in computer chess, Ph.D. thesis, Tilburg University,
Tilburg, The Netherlands, 1990.

[24] J.T. Saito, M.H.M. Winands, H.J. van den Herik, Randomized parallel proof-
number search. Advances in computer games conference (ACG’12), in: H. Jaap
van den Herik, Pieter Spronck, (Eds.), Lecture Notes in Computer Science (LNCS
6048), Palacio del Condestable, Pamplona, Spain, 2010, pp. 75–87.

[25] M.P.D. Schadd, M.H.M. Winands, M.J.W. Tak, J.W.H.M. Uiterwijk, Single-player
Monte-Carlo tree search for SameGame, Knowledge-Based Systems (2011),
http://dx.doi.org/10.1016/j.knosys.2011.08.008.

[26] J. Schaeffer, N. Burch, Y.N. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu, S.
Sutphen, Checkers is solved, Science 5844 (317) (2007) 1518–1552.

[27] M. Seo, H. Iida, J.W.H.M. Uiterwijk, The PN*-search algorithm: application to
tsumeshogi, Artificial Intelligence 129 (1-2) (2001) 253–277.

[28] S. Tannous, Avoiding rotated bitboards with direct lookup, ICGA Journal 30 (2)
(2007) 85–91.

[29] M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, PDS-PN: a new proof-
number search algorithm: application to Lines of action. Computers and
Games 2002, in: J. Schaeffer, M. Müller and Y. Björnsson (Eds.), Lecture Notes
in Computer Science (LNCS 2883), Computers and Games, Springer,
Heidelberg, 2003, pp. 61–74.

[30] I-C. Wu, D.-Y. Huang, H.-C. Chang, Connect6, ICGA Journal 28 (4) (2005) 235–
242.

[31] I-C. Wu, D.-Y. Huang, A new family of k-in-a-row games, the 11th Advances in
Computer Games Conference (ACG 2005), in: H. Jaap van den Herik, Shun-Chin
Hsu, Tsan-sheng Hsu, H.H.L.M. Donkers (Eds.), Proceedings of the 11th
Computers and Games, Lecture Notes in Computer Science (LNCS 4250),
2006, pp. 180–194.

[32] I-C. Wu, P.-H. Lin, Relevance-zone-oriented proof search for Connect6, IEEE
Transactions on Computational Intelligence and AI in Games 2 (3) (2010) 191–
207.

[33] I-C. Wu, P.-H. Lin, S.-J. Yen, Morethanfive wins Connect6 tournament, ICGA
Journal 33 (3) (2010) 179–180.

[34] I-C. Wu, H.-H. Lin, P.-H. Lin, D.-J. Sun, Y.-C. Chan, B.-T. Chen, Job-level proof
number search for Connect6, in: J. van den Herik, H. Iida, A. Plaat (Eds.),
Proceeding of the Computers and Games 2010, Lecture Notes in Computer
Science (LNCS 6515), 2011, pp. 11–22.

[35] C.-M. Xu, Z.-M. Ma, X.-H. Xu, A method to construct knowledge table-base in k-
in-a-row games, in: Proceedings of the 2009 ACM Symposium on Applied
Computing, 2009, pp. 929–933.

[36] S.-J. Yen, J.-K. Yang, The bitboard design and bitwise computing in Connect6,
in: Proceedings of the 14th Game Programming Workshop, 2009, pp. 95–98.

[37] S.-J. Yen, T.-C. Su, I-C. Wu, The TCGA 2011 computer-games tournament, ICGA
Journal 34 (2) (2011) 108–110.

[38] S.-J. Yen, J.-K. Yang, Two-stage Monte Carlo tree search for Connect6, IEEE
Transactions on Computational Intelligence and AI in Games 3 (2) (2011) 100–
118.

[39] S.-J. Yen, T.-C. Su, I-C. Wu, The TCGA 2011 computer-games tournament, ICGA
Journal 34 (2) (2011) 108–110.

[40] S.-J. Yen, C.-W. Chou, C.-S. Lee, H. Doghmen, O. Teytaud, The IEEE SSCI 2011
human vs. computer-Go competition, ICGA Journal 34 (2) (2011) 106–107.

54 S.-J. Yen et al. / Knowledge-Based Systems 34 (2012) 43–54

