
A positional Judgment System for Computer Go

Shi-Jim Yen, Shun-Chin Hsu
Department of Computer Science and Information Engineering of National Dong Hwa University, Taiwan

sjyen@mail.ndhu.edu.tw

Abstract

Computer Go offers researchers a new challenge and opens up a very wide scope of possibilities for
artificial intelligence. In a computer Go program, the most important element is a positional judgment
system. Following the methods of human Go experts, we designed and implemented a new model of
positional judgment for computer Go. This model was employed successfully in a computer Go program,
Jimmy-5.0, which beat the latest world-champion Go program, ManyFaces, in the 1998 FOST Go
contest.

Keywords: Computer Go, Artificial Intelligence, Positional Judgment.

1 Introduction

Despite the simplicity of the rules, Go is far more
complicated than other board games respective to
computer [Allis et. al., 1991]. 10**40 different board
configurations were estimated for Chess by A. Newell
[Newell et. al., 1958]. But compared to the complexity
of Go, these numbers are insignificant. Ignoring
complications produced by the removal of stones, the
number of legal sequences of stone placement in a Go
game is 361! - A value which reaches about 10**761.
Exhaustive searching of such a large game tree is an
impossible task even for the fastest computer in the
world. In fact, no two games with an identical
sequence of moves have ever been played through out
the entire history of Go [Hsu et. al., 1994].

Go is a two-player board game. Two players
alternate places a black and a white stone on some
empty intersection of a 19 by 19 grid. Stones are never
moved, and only removed, called captured or killed, if
they are completely surrounded. The objective of Go
game is to secure more territory than the opponent.
For more detailed description of the game and the
rules of Go, readers can visit American Go
Association Home Page: http://www.usgo.org/.

In computer chess, a program can play at the
master level by applying a few simple state space
search algorithms and some complex heuristic
functions [Berliner, 1974]. However, this does not
work very well with Go. One of the reasons is that a
quick and fine evaluation function is difficult to
develop. To solve the problem is the main topic of this
paper.

Since brute force search can not work in computer

Go, knowledge is expected to play a major role in this
domain. Computer Go programming often involves a
problem of simulation of human vision and perception
[Reitman and Wilcox, 1978]. Human master of Go
usually use “feeling” or sense as a guide to extract
important information from the spatial configuration
of stones on the board before making their moves.
However, it is not easy to simulate such a procedure in
computer Go programming. In order to solve this
problem, many data structures for simulating human’s
strategies was developed. Base on these data
structures, a positional judgment system was
constructed.

2. Basic data structure and basic tools

A good computer Go program should have the ability
to know the status of a game. This includes
recognition of stones, strings, links, groups and
influences. A string consists of identical color and
directly adjacent stones. When a string is graphically
associated with other identical color strings, we say
that there is a link between them. The link relationship
between strings is like the equality relationship in
mathematics. For example, i.e., if string a links to
string b, and string b links to string c, then string a
links to string c. When strings with link relationship to
each other form a group; if there is no link around a
string, the string forms a group itself. Finally, every
group radiates influences across the board. The values
of the influences depend on their type or status. The
purpose of influence structure is to represent the
concept of thickness.

 1

Figure 1 shows the relationship among their
structures. In Figure 2, Black stone 1 and stone 7 form
a string. Since there is a link denoted by “X” between
this string and stone 5, they form a group. Meanwhile,
white stone 4 and stone 8 form a string. Stone 6, stone
2 and this string form a group by the same reason.
Figure 3 shows the influences of each stone on the
board of figure 2.

Fig. 1. Data structure relationship.

Fig. 2. An example of data structure.

Fig. 3. An example of influences.

There are three situations for a group: alive,
dead or critical. A group is alive if we can always
prevent it from being captured no matter how the
opponent, playing first, attacks. A group is dead if the
opponent can always capture it, no matter how we,
playing first, defend. A group is critical it will be alive
if we move first and it will be dead if the opponent

moves first.
The main corresponding attributes of those data

structures are shown as follows.

(1) Point:
(a) Status: White, black or empty.
(b) Position: The horizontal and the vertical

show the stone’s position.
(2) String:

(a) Color: White or black.

Influence

Group

String Link

 Stone (b) Situation: Alive, dead or critical.
(c) Number of stones.

(3) Link:
(a) Status: If status is true, then all the strings

with the same color around the link
position belong to same group.

(4) Group:
(a) Color: White or black.
(b) Territory: The territories occupied by a

group.
(c) Situation: Alive, dead or critical.
(d) Outlet: The outlets of this group.

(5) Influence:
(a) Strength: Integer number, which is used to

represent the strength affected by each
group on the board.

6 1
5 4

8
2 3

7
Two important tools are used in our system.

One is a pattern match system; the other is a string
capture system. A pattern match system can recognize
a special pattern/shape and a string capture system can
recognize whether a string is dead or not. The details
of the two systems have been discussed in [Hsu et. al.,
1994][Hsu and Liu, 1991][Kojima et. al.,
1996][Lorentz, 1995][Müller, 1995].

3
5

2-25
-35

-55 -74
-119

-67 -6 -2
8

19
11 19

-49
-32

9 12 -10
7 8-3

-102
-32
-6

-179

-3
2 51

128
88
56

57
69
51
35

6
4
8

2
-95

3
13

5
-2

7
1

3. Requirements of a positional judgment
system

A positional judgment system is the basic element of a
computer chess program. There are many simple and
precise evaluation methods for computer chess. But it
seems difficult to analyze a Go game by a computer
program. Since the traditional methods for computer
chess could not work well in Go, new methods must
be developed. In this paper, we try to simulate the
method used by human Go experts.

Many theories of position judgment by human Go
experts are discussed, such as in [Cho, 1989]. Three
key elements must be considered: territory, thickness
and moyo. First, estimations of definite territory are
required as a guide at each stage of a game. Next, we
should count territory during the early stages or during
the fighting stage when things are still unclear.
One-question concerns strong outward facing shapes
which are equivalent to territory and form thickness or

 2

influence. Thickness of course cannot be called
definite territory. However, we must take such
potential territory into account or the analysis would
be incomplete. Thus, we can induct three main points
for positional judgment: counting definite territory,
counting thickness and counting moyo [Cho, 1989].

 3

Figure 4 shows the relationship between our data
structures and the three main points. From the group’s
information/attributes, we calculate the definite
territory by adding each group’s territories. For
counting thickness, first we should know the status of
each group, then consider their influences. Influences
can also help to estimate a moyo. By the above
discussion, we know that group information and
influences are the basic information for a positional
judgment system. If the precise values of them are
found, it is easy to analyze a Go game. Therefore, we
focus on how to recognize and quantify the group
information and influences in this paper.

Fig. 4. The relation ship between data structures and
three main points of game analysis.

4. The system

4.1 System configuration

The basic point of position judgment for Go is
identification of groups. Group identification in
computer Go is a difficult problem. In this paper, we
develop a new method by using strict definitions on
links and influences. Two subsystems are used to
recognize links. The links and rough influences
identify groups. Then we can rough analyze the
information/attributes of each group, such as
territories, outlets, and status. For a group with a lot of
territories, we know it is alive. For a group with outlet
and few territories, we use a searching subsystem to
judge if it is dead. In the first rough analysis of each
group, we can recognize stable groups (alive or dead).
That information can help us to analyze those unstable
groups (critical) in the second round. By the
information of all groups, more strict influences are
constructed. Finally, our system’s outputs are

constructed. The system configuration is shown in
figure 5. The Input of this system is a sequence of
moves of a Go game. The Outputs are group
information and final Influence.

Outputs

Influence

First
recognition

Group
identification

2nd recognition

Group identification

Dead groups

Pattern
match
system

Dead strings

String
identification

String
information

Rough
influence

String
kill &
defend
system

Links

Current board

Input

Influences

Group information

Counting moyo

Counting thickness

Counting definite territory

Fig. 5. The system configuration.

4.2 Rough influence

The concept of influence has been used many times in
computer Go. The reason is that influence can
simulate human player’s vision estimation of thickness.
Basic ideas of potential influence are described as
follows. Every stone on the board radiates influences
across the board. The influence value is maximum at
its immediate neighboring points and decays as
distance increases. The black (resp. white) influence is
the sum of influence of each black (resp. white) stone.
Total influence of a game is the difference of black
influence and white influence.

Some theories about influence were also
discussed by human Go experts [Cho, 1989]. There is
a common sense of thickness. The influence of a
single stone is about two lines and two connected

 stone can influence three line spaces. Therefore, three
stones connected side by side have influence of four
lines. Figure 6 shows an example of the influence
theory.

12

12

1212

12

12

12

12

12

12

12

 12

11

11

14

14

16

12

16

16 16

16

20

20

16 16

16

32

32

26

26

26

26 26

26

40

40 40

64

64

11143264

16 12

12

12

16

26

12

16

26

40

20

11

14

20

32

64

Fig. 8. Rough influence of a single stone.

6

6

6

6

6

6

6

6

8

8

8

8

8

8

13

13

13

1320

11143264

16 12

12

12

16

26

12

16

26

40

20

11

14

20

32

6420

Fig. 6. An example of the influence theory.

64
32
20
14
11

20
13
8
6

13
8
6

8
6

620
13
8
6

13
8
6

8
6

6

Fig. 9. Rough influence of the black stone.

Fig. 7. The potential influence table.

20

26 36 58 104

34

34

34 5353

53

32

64 6161

61

9797

97

40

40

40

40

40

40

20

20

20

22

22

22

22

22

22

22 22

22

11

11

11

11

12

12

12

12

12

12

12

12

12

12

20 11

112636

34

22

12

12

22

40

53

58

22

40

104

97

61

20

32
64

We will develop a new method to evaluate more
precise influence based on those ideas. First, a
potential influence table is constructed in figure 7.
This table constructs our rough influence with the
following method. When the system works on some
stone, the stone checks its adjacent four neighbors: up,
down, right and left. If there is no stone in some
direction, it adds the value in that direction (respective
to the table) to the rough influence. Figure 8 shows the
rough influence of a single black stone. Figure 9
shows another example. Since two white stones
obstruct the stone, the influence of the black stone in
figure 9 is weaker than the single stone in figure 8.

Fig. 10. Rough influence of three connected black
stones.

Figure 10 shows the rough influence of the
example in figure 6. In order to apply the common
sense of thickness, we say that a point is under black’s
(resp. white) influence when its value is over 25 (resp.
below -25), otherwise, it is under black’s (resp. white)
control if its value is over 100 (resp. below -100).

 4

4.3 Link

 We say that there is a link between two strings if the

two strings have the same color and the opponent can
not disconnect them or the opponent disconnect them
will get no benefit. Intuitively, search can get a better
result for recognizing link. But it will cause system
load overhead. Therefore, we try to recognize link by
minimum search. The link conditions are classified
into three cases. By solving those cases, almost any
link could be recognized. Those cases are stated and
analyzed as follows.

Fig. 12. Some link patterns.

4.4 Group identification

(a) When check some position, the position and near

positions match some pattern. Pattern match can
recognize most links. We create and correct many
link patterns by experience knowledge. In our
system, we build a database including about 100
patterns. From our experiences, pattern match can
recognize about 80% links correctly. Figure 11
and figure 12 show some link pattern examples.

(b) There is no opponent stone near the position and

there is a very heavy influence value in the
position. This case could replenish case a. Since
the position has no stone around the position and
the position has a very heavy influence value, if
the opponent try to cut those strings, the opponent
will get no benefit. Therefore, there is a link in
this position.

(c) There is an opponent’s dead string in the position.

When an opponent string breaks two strings with
same color, it is hard to recognize the link
between the two strings by pattern match. In order
to solve this situation, our system use the
opponent string information constructed by string
capture system and apply the following rule: if
some opponent string is dead, then each stone of
the string forms a link of its adjacent neighboring
opponent strings.

Our system recognizes links based on the three

cases. After testing more than 500 games, the system
makes mistakes about 2 %. (In a game with about 250
moves, it makes mistakes about 5 times.) The error
rate achieved by the system is similar to that of a
human player with 3-kyu. This result is sufficient to
construct a good Go program.

Fig. 11. Some link patterns.

When each link is recognized, it is easy to identify
groups. If there is a link between two strings with the
same color, the two strings will belong to the same
group. Since the link relationship between two strings
is similar to the equality relation in mathematics, we
only need to scan each string once and use a set
equality algorithm [Brassard and Bratley, 1988], then
each group can be identified.

Our methods for identifying groups are similiar
to those proposed by [Chen, 1989][Ryder
1971][Sanechika 1991][Zobrist 1969]. However, they
can identify groups more correctly by the following
reasons. First, by using influence function, patterns
and string information, our method can recognize links
more correctly. Second, we identify groups iteratively.
Therefore, if two groups with the same color are
disconnected by an opponent group which is dead, the
two groups will be combined into one group.

4.5 Group information

The most important information of group is the size of
each group’s territories. Figure 13 shows two
examples of the formed territories of a group. The
land, link, and edge-link are represented by square,
“X”, and “D”. (An edge-link is formed when a stone is
near to the edge and the around positions match some
pattern.) We can find that the territories are always
closed and formed by links and edge-links. Therefore,
if we can recognize links and edge-links, it is easy to
calculate a group’s territories. The method for
recognizing an edge-link is simulating to recognizing a
link. Figure 14 shows an example of an edge-link
pattern.

DD

D
D

Fig. 13. The formed territories of a group.

 5

Fig. 14. An edge-link pattern.

The other important information of a group is the
status of each group. For a group with few territories,
we detect the “eyes” of the group. If there are no
enough eyes, we test the closure of the group. First, we
consider if the group can connect to some live groups.
Then we consider the outlets of the group. There are
some methods for calculating the outlets of a group.
[Hwang and Hsu, 1994][Hsu and Liu, 1991]. In our
system, we calculate them by using rough influence
and a lot of patterns. If rough influence of the group is
heavy or more than two outlet patterns around the
group have been found, the group is alive, otherwise,
it is an unstable group. For an unstable group, if
opponent’s living groups surround it, then it is dead.

4.6 Final influence

Since the strength of each stone on the board is not the
same. We revise the rough influence after the status of
each group is found. If a group is alive, its final
influence is heavier. Otherwise if a group is dead,
there is no final influence of it. For an unstable group,
its final influence is weak.

5 The results

In this paper, we have described a new model for
positional judgment for computer Go. We also suggest
some new heuristic methods for recognizing links and
influences. The system has been used successfully in a
computer Go program Jimmy 5.0 which is one of the
best Go programs in the world. It beat the new
world-champion Go program, ManyFaces, in the 1998
FOST Go game. It took about two years to implement
these ideas in our program. The size of related codes
is about 5000 lines. We tested the system by playing
with human players or other computer programs about
500 games in a year. About 80% of the game analysis
is similar to a good human player. Despite the
judgment of the degree of an unstable group, the
position judgment of the system is almost the same as
that of a good human player. The result is satisfactory.
But for an unstable group, the system may make
mistakes in the estimation of its status. The most
important reason is that we only use local search to the
groups. A good human player can use global search to

judge the status of an unstable group and get a better
result.

D
D In order to test our system, we also choose a lot of

games played by human Go experts and analyze them
by the system. Compare to human player’s positional
judgment, the result is satisfactory, too. Figure 15 and
figure 16 show an example from the 7th Meijin title
match [Cho, 1989]. The players are Otake 9-dan and
Cho 9-dan. In figure 15, Cho says that Black makes
mistake when entering at the 3-3 point in the lower left
corner. White leads Black in this time. The result
analyze by our system is described as follows. The
definite territories of White are 40 points and the
definite territories of Black are 53 points. Except for
5.5 komi, Black lead about 7.5 points in definite
territory. But from the final influence values of our
system, we can find that 82 points are under influence
by White and 50 points are under influence by Black.
White lead Black 32 points here. Note that those
points, which are under influence by someone, will
increase his definite territory. Thus, the system outputs
that White slightly leads Black. This result is the same
as the judgment by Cho.

D

DD
DD

D
D

D

D

D

D

D D

D

D

D
D

DD D
D

D

D

D

D

Fig. 15. The 7th Meijin title match (1).

 6

 7

Fig. 16. The 7th Meijin title match (2).

Now consider the result of figure 16 computed by
our system. The definite territories of White are 47
points and the definite territories of Black are 59
points. The points, which are under influence by
White, are 44 points and under influence by Black are
ahead. Cho says that Black is even closer to victory
since Black has gradually whittled away at White’s
lower territory. This result is similar to the outputs of
the system.

6. Future work

Pattern match system and string capture system are
very important to our system. For the first subsystem,
it needs a lot of human Go expert knowledge. For the
other subsystem, programming technique is important.
To improve the two subsystems will help the main
system work more correctly. Identifying the degree of
an unstable group is also a challenge. It is an
important part of our system, too. We will discuss this
problem in the future.

References

[Allis et al., 1991] L.V. Allis, Van Den Herik, and
H.J. Herschberg. Heuristic Programming in
Artificial Intelligence 2, Ellis Horwood 1991.
[Berliner, 1974] H.J. Berliner. Chess as Problem
Solving: the Development of a Tactics Analyzer.
Ph.D. Dissertation, Carnegie-Mellon University,
Pittsburgh, 1974.
[Chen, 1989] Group identification in computer Go.
In D. N. L. Levy and D. F. Beal, editors, Heuristic

Programming in Artificial Intelligence: the First
Computer Olympiad, pages 195-210. Ellis
Horwood, Chichester.

D

D
D
D

D
D

D D

D

D

D

D

D

D

D

D

D

D

D
D

[Chen, 1990] Ken Chen. The move decision
process of Go intellect. Computer Go, No.14,
pages 9--17, 1990.
[Cho, 1989] Cho Chikun. Positional judgment
high-speed game analysis. Ishi Press, Inc. 1989.
[Hsu et al., 1994] S.C. Hsu, J.C. Yan, and H.
Chang. Design and implementation of a computer
Go program Archimage 1.1. Journal of Information
Science and Engineering 10, pages 239--258,
1994.
[Hsu and Liu, 1991] S.C. Hsu and D.Y. Liu. The
design and construction of the computer Go
program Dragon 2. Computer Go, No. 16, pages
3--14, 1991.
[Hwang and Hsu, 1994] Y.J. Hwang and S.C. Hsu.
Design and implementation of a position judgment
system for computer Go programs. Bulletin of the
College of Engineering, N.T.U., No. 62, pages
21--33, Oct. 1994.
[Kojima et.al., 1996] Takuya Kojima, Kazuhiro Ueda,
and Saburo Nagano. A case study on acquisition of
pattern knowledge in Go using ecological analogy.
Game programming workshop in Japan, pages
133--139, 1996.
[Lorentz, 1995] Richard J. Lorentz. Pattern matching
in a Go Playing Program. Game programming
workshop in Japan, pages 167--174, 1995.
[Müller, 1995] Martin Müller. Computer Go as a
Sum of Local Games: An Application of
Combinatorial Game Theory. Ph.D. Dissertation,
Swiss Federal Institute of Technology Zurich,
1995.
[Newell et al., 1958] A. Newell A., J.C. Shaw, and
H.A. Simon. Chess playing programs and the
problem of complexity. IBM Journal of Research
and Development, Vol. 4, No. 2. Pages 320--335,
1958.
[Reitman and Wilcox, 1978] Walter Reitman and
Bruce Wilcox. Pattern recognition and
pattern-directed inference in a program for playing
Go. Pattern-Directed Inference Systems, pages
503--523, 1978.
[Ryder 1971] Heuristic Analysis of Large Trees as
generated in the Game of Go. PhD thesis,
Department of Computer Science, Stanford
University., August.
[Sanechika 1991] The Specifications of "Go
Generation" ICOT TR-720.
[Zobrist 1969] A model of visual organization for
the game Go. In Proceedings of the Spring Joint
Computer Conference, volume 34, pages 103 - 112.

	Shi-Jim Yen, Shun-Chin Hsu
	Introduction
	5 The results
	References

