
Fuzzy algorithms for Robust Clustering

Tai-Ning Yang, Sheng-De Wang∗ and Shi-Jim Yen∗∗

Dept. of Computer Science, Chinese Culture University,
Dept. of Electrical Engineering, National Taiwan University∗ and

Dept. of Computer Science and Information Engineering, National Dong Hwa University∗∗

Abstract

In this paper, we consider the issue of clus-
tering when outliers exist. The outlier set is de-
fined as the complement of the data set. Following
this concept, a specially designed fuzzy membership
weighted objective function is proposed and the
corresponding optimal membership is derived. Not
like the membership of fuzzy c-means, the derived
fuzzy membership does not reduce with the increase
of the cluster number. A hard clustering algorithm
alleviating the prototype under-utilization problem
is also derived. Artificially generated data are used
for comparison.

1 Introduction

Clustering algorithms try to partition a set of
unlabeled input vectors into a number of sub-
sets(clusters) such that data in the same subset are
more similar to each other than to data in other
subsets. There are two kinds of unsupervised clus-
tering algorithms: hierarchical versus partitional.
Hierarchical clustering generates a sequence of
nested partitions from the proximity matrix. In
social, biological, and behavioral sciences, hierar-
chical clustering techniques are popular because of
the necessity to produce taxonomies. Partitional
clustering is used frequently in the engineering ap-
plications such as data compression and image seg-
mentation. A single partition of the data is gen-
erated in partitional clustering. Clustering algo-
rithms can also be divided into two types: hard
versus fuzzy. Hard (crisp or conventional) cluster-
ing assigns each input vector to exactly one clus-
ter. In fuzzy clustering, a given pattern does not
necessarily belong to only one cluster but can have
varying degrees of memberships to several clusters.
Many clustering algorithms could be found in the
the related books [1]- [4].

We propose a new family of clustering algo-
rithms called fuzzy robust clustering (FRC) with

the consideration of outliers. The size of updating
prototype is independent of the number of proto-
types and the influence of outliers is reduced.

The other parts of this chapter are organized
as follows. In section 2, we review fuzzy c-means
(FCM). The following section introduces our algo-
rithm called fuzzy robust clustering (FRC). The
prototype under-utilization problem of LVQ is ex-
plained and the proposed hard robust clustering
(HRC) algorithms are introduced in section 4.
Section 5 demonstrates the simulations. Section
6 contains the conclusions.

2 Fuzzy c-means and the outliers

Let X = {x1, x2, ..., xn} ⊂ Rm denote the input
sample set and c denote the number of nodes in the
output layer. The prototypes V = {v1, v2, ..., vc}
are cluster centers, where vi ∈ Rm for 1 ≤ i ≤
c. Let U denote the membership matrix. The
objective function in Fuzzy C-Means (FCM) [5]
is:

E(V, X) =
c∑

i=1

n∑

j=1

uij
m‖xj − vi‖2. (1)

In the above equation, m ∈ [1,∞) is a weight-
ing factor called fuzzifier. The elements uij in the
matrix U satisfy the following constraints: :

constraint 1. uij ∈ [0, 1] for all i,j.

constraint 2. 0 <
∑n

j=1 uij < n for all i,j.

constraint 3.
∑c

i=1 uij = 1 for all j.

Constraint 3 is a probabilistic premise. If it is
relaxed without modifying (1), a trivial solution in
which all memberships are zero will be produced.

Bezdek [5] applied the technique of Lagrange
multiplier and derived the optimal membership
function,

uij = (
c∑

r=1

‖xj − vi‖2/(m−1)

‖xj − vr‖2/(m−1)
)−1. (2)



The problem of Fuzzy c-means when outliers exist
could be found in the paper [6].

3 Fuzzy robust clustering algo-
rithms

Now, we propose our objective function. As-
sume that there is a noise cluster outside each data
cluster. The fuzzy complement of uij , f(uij) may
be interpreted as the degree to which xj does not
belong to the i-th data cluster. Thus the fuzzy
complement can be viewed as the membership of
xj in the noise cluster with the distance ηi. The
general form of the proposed objective function is:

FE(V,X) =
c∑

i=1

n∑

j=1

{
uij

md2(xj , vi) + (f(uij))mηi

}
.

(3)
d(xj , vi) is the distance measure from the data
point xj to prototype vi. A special version of (3)
with the derived algorithm called possibilistic c-
means (PCM) was proposed by R. Krishnapuram
and J. M. Keller [6]. They used the standard
fuzzy complement, f(uij) = 1− uij .

To minimize (3), various methods such as the
genetic approach, the simulated annealing, and
the alternating optimization could be used [7]. We
choose the alternating optimization for its pop-
ularity . The alternating optimization is driven
by necessary conditions of minimization. We se-
lect f(uij) = 1 + uij ∗ log(uij) − uij because of
the simplicity of its derivatives. It is easy to
prove that this setting of f(uij) satisfies the ax-
ioms of fuzzy complements, boundary conditions
and monotonicity [8]. For the ease of the follow-
ing discussion, we set m = 1. Thus, the proposed
fuzzy objective function becomes:

FE(V,X) =
c∑

i=1

n∑

j=1

uijd
2(xj , vi) + (4)

c∑

i=1

n∑

j=1

(1 + uij ∗ log(uij)− uij)ηi. (5)

The distance is usually set as the Euclidean dis-
tance, that is d(xj , vi) = ‖xj − vi‖. First, we com-
pute the gradient of FE with respect to uij . By
setting ∂FE(V,X)

∂uij
= 0, we get

uij = exp(−‖xj − vi‖2
ηi

). (6)

Substituting this membership back and after sim-
plification, we get

FE(V, X) =
c∑

i=1

ηi −
c∑

i=1

n∑

j=1

exp(−‖xj − vi‖2
ηi

)ηi.

(7)
The above reformulation is based on the

method proposed by Hathaway and Bezedek [10].
Following the multidimensional chain rule, when
xj is the current input data the gradient of FE
with respect to vi is

n∂FE(V,X)
∂vi

= uij

(∂‖xj − vi‖2
∂vi

)
(8)

= −2uij(xj − vi). (9)

In (6), ηi plays the role of a normalization pa-
rameter for the distance ‖xj − vi‖2 for the mem-
bership uij .

Fuzzy Robust Clustering (FRC) algorithm:

Input: all of the training feature vector set X =
{x1, x2, ..., xn} and the number of clusters c.

Output: the final prototypes of clusters V =
{v1, v2, ..., vc} .

Procedure:

step 1. Initially set the iteration count t = 1,
iteration bound T , learning coefficient α0 ∈
(0, 1].

step 2. Set the initial prototype set V =
{v1, v2, ..., vc} with a strategy.

step 3. Compute αt = α0(1− t/T ) and adjust ηi

with a strategy.

step 4. Sequentially take every sample xj from
X and update each prototype with vnew

i =
vold

i + αt(xj − vold
i )(exp(−‖xj−vi‖2

ηi
)).

step 5. Add 1 to t and repeat step 3 through step
5, until t is equal to T .

ηi plays an important role in (6) and deter-
mines the mobility of the corresponding proto-
type. There are many strategies for the adjusting
of ηi. We propose two strategies. One is initial-
izing ηi with the result of another clustering al-
gorithm. The other is initializing the prototypes
at different places with larger distances between
each other and setting a smaller α0 ∈ (0, 1] and
a larger T . In step 5, ηi is adjusted by the rule:



ηi = minj

{
‖vj − vi‖2

}
, j 6= i. The concept is to

set ηi with the minimum influence on the other
prototype. This is often referred as the alterna-
tion optimization approach [7]. It is hard to find
the membership function that is the critical point
of the following objection function:

FE(V, X) =
c∑

i=1

n∑

j=1

uij
md2(xj , vi) + (10)

c∑

i=1

n∑

j=1

(1 + uij ∗ log(uij)− uij)ηi. (11)

Alternatively, we could seek other optimization
approaches. The proposed membership (6) can
also be derived from the M estimator approach in
the field of robust statistics [11]. The M estimator
approach tries to minimize the function:

ME(v) =
n∑

i=1

θ(ri), (12)

where ri = xi−v is the residuals and θ()̇ is a sym-
metric positive-definite function. Various func-
tions for θ()̇ can be selected to reduce the influence
of large residuals. We propose θ(ri) = exp(−r2

i ).
The necessary condition for the minimum of (12)
is ∂ME(v)

∂v = 0. Thus,

n∑

i=1

(xi − v)exp(−r2
i ) = 0. (13)

We get

v =
∑n

i=1 exp(−r2
i )xi∑n

i=1 exp(−r2
i )

. (14)

Equation 14 shows v is a weighted mean of x. The
only difference between the weighting function and
the proposed fuzzy membership function is just
the normalization. Thus FRC algorithm can be
viewed as c M estimators work independently and
simultaneously.

Note that the membership function (6) is a spe-
cial case of

uij = exp(−(
‖xj − vi‖2

ηi
)p), (15)

that is used by Runkler and Bezdek without in-
dicating it is the objective function [7]. Here, we
propose the corresponding fuzzy objective func-
tion,

FF (V, X) =
c∑

i=1

n∑

j=1

uijd
p(xj , vi) + (16)

c∑

i=1

n∑

j=1

(1 + uij ∗ log(uij)− uij)ηi
p. (17)

Following the alternation optimization approach,
we compute the gradient of FF with respect to
uij . By setting ∂FF (V,X)

∂uij
= 0, we get

uij = exp(−(
‖xj − vi‖2

ηi
)p). (18)

The gradient of FF with respect to vi is

n∂FF (V,X)
∂vi

= (19)

−2uijpd(p−1)(xj , vi)(xj − vi). (20)

To ensure the convergence of the algorithm,
the product pd(p−1)(xj , vi) is removed. Since
pd(p−1)(xj , vi) is always positive, the removal does
not affect the modification direction of vi. We call
the corresponding algorithm FRC2. FRC2 is the
same as FRC except the computation of the mem-
bership function in step 4.

step 4. Sequentially take every sample xj from
X and update each prototype with vnew

i =
vold

i + αt(xj − vold
i )(exp(−(‖xj−vi‖2

ηi
)p)).

It may be interesting to compare the proposed
function(15) and the membership function pro-
posed by Raghu Krishnapuram et al. [9]

uij =
1

1 + (‖xj−vi‖2
ηi

)p
. (21)

The membership values of these two functions
relative to the normalized distance ‖xj−vi‖2

ηi
are

shown in Fig. 1. p is set from 1 to 10, respec-
tively. Properly used, the exponential parameter
p can produce various membership functions. The
two functions have the similar form because their
objective functions share the similar design logic.

Runkler and Bezdek [7] proposed a fuzzy clus-
tering scheme called alternating cluster estimation
with the above two membership functions as the
membership function tool bars.

4 Prototype under-utilization prob-
lem of LVQ and hard robust clus-
tering algorithms

Learning vector quantization (LVQ) is a neu-
ral network based method to find a good set of



Figure 1: Plot of the membership generated with
different p. The upper plot is the proposed mem-
bership function and the lower plot is proposed by
Raghu Krishnapuram et al.

Figure 2: An initialization problem of LVQ and
SHCM.

prototypes to store as the reference set for repre-
senting the cluster structure of the input data. Let
X = {x1, x2, ..., xn} ⊂ Rm denote the input sam-
ple set and c denote the number of nodes in the
output layer. The objective of LVQ is to minimize
the following function :

E(V,X) =
c∑

i=1

n∑

j=1

wij‖xj − vi‖2, (22)

where wij = 1 if vi is the winner else wij = 0.
It was found by Grossberg [12], Rumelhart,

and Zipser [13] that traditional hard cluster-
ing algorithms like the sequential hard c-means
(SHCM) and learning vector quantization (LVQ)
suffer from a severe initialization problem. If the
initial values of the prototypes are not in the con-
vex hull formed by the input data, the clustering
algorithms may not produce meaningful results.
This is called prototype under-utilization or dead
units problem since some prototypes, called dead
units, may never win the competition. The cause
of this problem is that these algorithms update
only the winning prototype for every input.

We use the following example to show that
LVQ suffers from the initialization problem. Sup-
pose that the input data X = {x1, x2, ..., x8}.
There are two classes X1 = {x1, x2, x3, x4} and
X2 = {x5, x6, x7, x8} in the data set. vi,j is the
prototype vi in the iteration j. The initial posi-
tions of two prototypes v1,0 and v2,0 are at x1 and
x2 as shown in Fig. 2. Since v2,0 is closer to other
six input data than v1,0, only v2,0 is updated. v1,0

never gets a chance to win. This result is not de-
sirable because it is only a local optimum.

A popular approach proposed to solve the ini-
tialization problem is frequency sensitive compet-
itive learning (FSCL) [14]. In FSCL, each proto-
type incorporates a count of the number of times
it has been the winner. The distance measure is
modified to give prototypes with a lower count
value a chance to win the competition.

FSCL algorithm:

step 1. Initially set the iteration count t = 1,
iteration bound T , learning coefficient α0 ∈
(0, 1] and winning count ui = 0.

step 2. Set the initial prototype set V =
{v1, v2, ..., vc} with some strategy.

step 3. Compute αt = α0(1− t/T ).

step 4. For k = 1, 2, .., n, find the winning
neuron vi, such that ui ∗ ‖xk − vi‖ =



min1≤j≤c {uj ∗ ‖xk − vj‖}. Update the win-
ner and winning count with vnew

i = vold
i +

αt(xk − vold
i ) and ui = ui + 1.

step 5. Add 1 to t and repeat step 3 through step
5, until t is equal to T .

According to the analysis by Pal, Bezdek, and
Tsao [15], the problem has two causes: (1) an
improper initialization of prototypes and (2) only
one prototype is updated in each input. To solve
(1), some researchers suggest to initialize proto-
types with random input vectors. This approach
reduces the probability of falling into this situation
but does not eliminate it.

Pal, Bezdek, and Tsao [15] suggest an algo-
rithm called GLVQ that gives the full member-
ship to the winner and the partial membership to
the loser. We found the inconsistent situation pro-
duced by GLVQ for a certain scaling of input data
and proposed a modified algorithm called gener-
alized competitive clustering (GCC) [16]. This
situation is also analyzed by Gonzalez et al. [17]
Another modified algorithm called GLVQ-F is de-
signed by Nikhil et al. [18] , where a modified func-
tion is proposed. Since GLVQ-F uses the mem-
bership derived from the FCM, it has the same
disadvantages of FCM when the cluster number is
large.

Following the concept of GLVQ-type algorithm,
we modify the FRC algorithm to give the winner
full membership. That is, ηi = ∞ if the i-th proto-
type is the winner. While the losers use the mem-
bership (6) with the finite η. We call the proposed
algorithm hard robust clustering (HRC). Like the
situation in FRC, the initial value and adjustment
of η in HRC is very important. In the current
version, we let the losers use the same η and re-
duce it as the training process prodceeds. The
initial value of η is set as a multiple of the squared
variance of the training data. Depending on the
distribution of the data and a priori information,
η can also be set with other strategies.

Hard Robust Clustering (HRC) algorithm:

Procedure:

step 1. Initially set the iteration count t = 1,
iteration bound T , learning coefficient α0 ∈
(0, 1].

step 2. Set the initial prototype set V =
{v1, v2, ..., vc} with a strategy.

step 3. Compute αt = α0(1 − t/T ) and η = K ∗
var2 ∗ η(1− t/T ). K is a constant and var is
the variance of the data set X.

step 4. For j = 1, 2, .., n, find the win-
ning neuron vi such that ‖xj − vi‖ =
min1≤k≤c {‖xj − vk‖}. Update the winner
with vnew

i = vold
i + αt(xk − vold

i ). Up-
date the others with vnew

k = vold
k + αt(xj −

vold
i )(exp(−‖xj−vi‖2

ηt
)).

step 5. Add 1 to t and repeat step 3 through step
5, until t is equal to T .

5 Simulations

5.1 Comparison of LVQ, FSCL and
HRC with same number of data in
four clusters

Input data: There are four clusters of samples,
and each cluster has 100 samples from four
Gaussian distributions centered at (0.1, 0),
(0, 0.1), (−0.1, 0), (0,−0.1), marked by As-
terisk.

Initialization: Initial positions of four proto-
types are all at (0.25, 0.25). We set T = 40,
c = 4, K = 3 and α0 = 0.8.

Results:

LVQ: The final positions of four prototypes
trained by LVQ are shown in Fig. 3. Two
prototypes stay at initial positions.

HRC and FSCL: All prototypes are used by
HRC and FSCL and the final positions are
near the actual centroids as shown in Fig. 4
and Fig. 5.

Discussions: The results correspond to the de-
signing purpose of the HRC and FSCL. Note
that the performance of HRC is not sensitive
to the setting of the constant K. A choice of
K in [1,10] produces the similar result.

5.2 Comparison of FSCL and HRC
with different number of data in
four clusters

This simulation is designed to test the robust-
ness of FSCL and HRC when the number of data
in each cluster is different. As shown in Fig. 5,
FSCL performs well. But if we change the num-
ber of data in clusters to 50, 50, 200, 200, the final
centroids trained by FSCL shift along the direc-
tion from the sparse cluster to the dense cluster



as shown in Fig. 6. This is caused by the win-
ning frequency used in FSCL. HRC does not use
the frequency as one of the training coefficients,
therefore the produced prototypes will not be af-
fected by the number of data in clusters as shown
in Fig. 7. Note that in the above simulations,
the results of FRC depend on the initialization. It
performs like HRC if the prototypes are initialized
properly or it fails like LVQ.

5.3 Comparison of FRC and HRC

Input data: There are four clusters of samples,
and each cluster has 100 samples from four
Gaussian distributions marked by dot. There
are 100 outliers marked by ”+”.

Initialization: Initial positions of four proto-
types are at (0.2, 0.2), (0.2, -0.2), (-0.2, 0.2)
and (-0.2, -0.2). We set T = 40, c = 4, K = 3
and α0 = 0.2. The initial value of vi and ηi

of FRC is set with the result of HRC.

Results: As shown in Fig. 8, the final positions
of prototypes in HRC are greatly affected by
the outliers. The final prototypes of FRC are
near the actual centroids as shown in Fig. 9.

Discussions: Following the progress of the train-
ing process, η of the losers reduces and the
behavior of HRC is more and more like the
LVQ. Thus the final prototypes are affected
by the outliers. Since all prototypes in FRC
use the fuzzy membership, the influence field
is limit. FRC alleviates the effect from the
outliers but its prototype mobility is also re-
stricted.

5.4 Comparison of PCM and FRC

Although the PCM and FRC2 have similar
membership function, they still perform differ-
ently in some simulations.

Input data: There are two clusters of samples.
The left cluster has 100 and the right cluster
has 300 samples from two Gaussian distribu-
tions marked by dot.

Initialization: Initial positions of two prototypes
are at (0, 0). We set T = 40, p = 2, c = 2
and α0 = 0.2.

Results: As shown in Fig. 10, the final positions
of prototypes in FRC are satisfied. The fi-
nal prototypes are near the actual centroids.

While in the PCM, the left prototype is af-
fected by the right cluster as shown in Fig.
11.

Discussions: From the memberships shown in
Fig. 1, when the normalized distance is
greater than 1, PCM membership is usually
greater than FRC membership. Thus the left
prototype of PCM is affected by the right
cluster and the greater bias appears.

6 Conclusions

Through the definition of outliers as the fuzzy
complement, we release the probabilistic con-
straint and propose a family of robust clustering
objective functions. A detailed example of such
algorithms is given.

Compared with other clustering algorithms,
FRC and FRCSS alleviate the influence from the
outliers. We also modify FRC to be a hard ro-
bust clustering algorithm for solving the proto-
type under-utilization problem. As supported by
the experiments, the proposed algorithms not only
perform well under the assumed model, but also
produce a satisfactory result under the noisy en-
vironment.

References

[1] K. Nadler and E. P. Smith, Pattern Recogni-
tion Engineering, John Wiley & Sons, 1993.

[2] G. J. McLachlan, Discriminant Analysis and
Statistical Pattern Recognition, John Wiley &
Sons, 1992.

[3] A. K. Jain and R. C. Dubes, Algorithms
for Clustering Data. Eaglewood Cliffs, NJ:
Prentice-Hall. 1988.

[4] J. C. Bezdek and S. K. Pal, Eds., Fuzzy Mod-
els for Pattern Recognition. New York: IEEE
Press. 1992.

[5] J. C. Bezdek, Pattern Recognition with Fuzzy
Objective Function Algorithms. New York:
Plenum, 1981.

[6] R. Krishnapuram and J. M. Keller, “A possi-
bilistic approach to clustering,” IEEE Trans.
Fuzzy sys., vol. 1, pp. 98–110, 1993.



[7] T. A. Runkler and J. C. Bezdek, “Alternating
cluster estimation: a new tool for clustering
and function approximation,” IEEE Trans.
Fuzzy sys., vol. 7, no. 4, pp. 377–393, 1999.

[8] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy
Logic. Prentice-Hall Inc., pp. 51–61, 1995.

[9] R. Krishnapuram, O. Nasraoui, and H.
Frigui, “The fuzzy c spherical shells algo-
rithm: a new approach,” IEEE Trans. Neural
Net., vol. 3, no. 5, pp. 663–671, 1992.

[10] R.
J. Hathaway and J. C. Bezdek,“Optimization
of clustering criteria by reformulation,” IEEE
Trans. Fuzzy sys., vol. 3, no. 2, pp. 241–245,
1995.

[11] P. J. Huber, Robust Statistics. New York: Wi-
ley, 1981.

[12] S. Grossberg, “Competitive learning: From
interactive activations to adaptive reso-
nance,” Cognitive Science, vol. 11, pp. 23–63,
1987.

[13] D. Rumelhart and D. Zipser, “Feature discov-
ery by competitive learning,” Cognitive Sci-
ence, vol. 9, pp. 75–112, 1985.

[14] D. Desieno, “Adding a conscience to competi-
tive learning,” in Proc. IEEE Int. Conf. Neu-
ral Net., vol. I, 1988, pp. 117–124.

[15] N. R. Pal, J. C. Bezdek, and E. C.
Tsao, “Generalized clustering networks and
Kononen’s self-organizing scheme,” IEEE
Trans. Neural Net., vol. 4, no. 4, pp. 549–557,
1993.

[16] T. N. Yang and S. D. Wang, “ A general-
ized competitive clustering algorithm,” in Int.
Symp. on Artificial Neural Net., 1994, pp.
365–373.

[17] A. I. Gonzalez, M. Grana, and A. D’Anjou,
“An analysis of the GLVQ algorithm,” IEEE
Trans. Neural Net., vol. 6, pp. 1012–1016,
1995.

[18] N. R. Pal, J. C. Bezdek, and E. C. Tsao,
“Repair to GLVQ: a new family of Competi-
tive Learning Schemes,” IEEE Trans. Neural
Net., vol. 7, pp. 1062–1070, 1996.

Figure 3: Final positions of LVQ prototypes. Ac-
tual centroids: ’*’. LVQ prototypes: ’o’.

Figure 4: Final positions of HRC prototypes. Ac-
tual centroids: ’*’. HRC prototypes: ’o’.

Figure 5: FSCL prototypes when the number of
data in each cluster is equal.



Figure 6: FSCL prototypes when the number of
data in each cluster is not equal.

Figure 7: HRC prototypes when the number of
data in each cluster is not equal.

Figure 8: Final positions of HRC prototypes when
outliers exist. Actual centroids: ’*’. HRC proto-
types: ’o’.

Figure 9: Final positions of FRC prototypes when
outliers exist.

Figure 10: Final positions of FRC prototypes
when two overlapped clusters exist.

Figure 11: Final positions of PCM prototypes
when two overlapped clusters exist.


