
 1

Efficient Content-Based Publish/Subscribe Systems over
Peer-to-Peer Networks

Shou-Chih Lo

Department of Computer Science and Information Engineering, National Dong Hwa University, Taiwan
Email: sclo@mail.ndhu.edu.tw

ABSTRACT
Content-based publish/subscribe provides a convenient platform for users to specify their inter-

ested events as subscribers and ensure publications to be efficiently delivered to those users who

are interested in the contents of them. Significantly, the current research trend is towards involving

peer-to-peer network technology into this kind of system for scalability and fault tolerance. The

dominant factor of system performance is to hash subscriptions and events into peer nodes for

having time and space efficiency. In this paper, we propose two approaches with and without user

clustering, respectively. Moreover, we introduce data replication and partition techniques to fur-

ther distribute system workload. Our proposed system is more practical and flexible than existing

ones. The performance is evaluated through a discrete event based simulator.

Keywords: Publish/Subscribe, Content-Based, Peer-to-Peer Network, User Clustering, Data Rep-
lication, Data Partition

1. INTRODUCTION

Publish/Subscribe (Pub/Sub) is an efficient communication paradigm for information dissemi-

nation in a large-scale distributed environment. A typical pub/sub system consists of publishers,

subscribers, and brokers. Publishers, which act as information providers, publish events to brokers.

Subscribers, which act as information consumers, express their interests on events by issuing sub-

scriptions to brokers. As service nodes in the network, the functions of brokers are to store, deliver,

and match of subscriptions and events.

Two types of pub/sub systems are given [12]: topic-based and content-based. In topic-based

systems, publishers label each event with a topic (subject, group, or channel) and subscribers sub-

scribe to all the events of certain topics. The major drawback of this type of system is that sub-

scribers could not express their interests using fine-grained predicates. Content-based systems, on

the other hand, allow of high expressive predicates over the contents of interested events.

Each content-based pub/sub system supports a predefined schema with a set of attributes over

 2

which publishers set values to publish events and subscribers set predicates to filter events. For

example, a subscriber can issue a subscription {Stock = IBM, Price < 95, Volume > 1000}, and a

publisher can issue an event {Stock = IBM, Price = 90, Volume = 1200}. An event is said to

match a subscription if all the attribute values set in the event satisfy the filter predicates specified

in the subscription.

Generally, a subscription predicate is the association of a set of Ai θ Vi (where Ai represents an

attribute name, Vi represents an attribute value, and θ is any relational operator) using conjunctive

and/or disjunctive propositions. However, we can limit that a subscription predicate contains only

conjunctive propositions. Any disjunctive proposition can be removed by dividing a subscription

into several sub-subscriptions accordingly. An event predicate is the conjunctive association of a

set of Ai = Vi.

In traditional pub/sub systems [1][5][6][7][8], the brokers are organized into a tree-shaped

overlay network. These systems are simple but suffer from fault-tolerance problems. A new re-

search trend is to introduce peer-to-peer (P2P) overlay network technology into the design of con-

tent-based pub/sub systems for having the benefits of scalability, load balancing, and fault toler-

ance [2][9][21][22][23]. Each subscriber host can act as a broker and all brokers are organized into

a P2P overlay network. Subscription and event management is then viewed as a process of hashing

a set of subscriptions and events into a set of brokers. Those brokers that are hashed to by at least

one subscription or event are called rendezvous brokers (RBs). This hashing has to satisfy the

so-called intersection rule [2]: For any matched subscription s to an event e, the set of RBs hashed

by e intersects with the set of RBs hashed by s.

The motivations of our work are from two aspects. First, existing hash schemes can not achieve

a low total cost on subscriptions/events delivery, match, and maintenance. Second, existing con-

tent-based pub/sub systems only consider a global system schema without the consideration to

topic-based interests. Subscribers have to choose related attributes from the schema by themselves

in specifying interests of certain topics. However, it would be convenient for subscribers on

specifying their interests if there is a reference topic hierarchy. For example, some subscribers

may have general interests in sports and related news. Though we can add a topic attribute in the

system schema whose values can distinguish subscriptions of different topics, this topic attribute

becomes a hot attribute which appears in all subscriptions. Hot attributes may lead to the load un-

balancing problem on subscription and event distributions over an overlay network for most pro-

posed hash schemes.

 3

As a result, we need a new content-based system that also supports subscribers with topic-based

interests and need an efficient hash scheme with low system cost as well. In this paper, two design

approaches are discussed by considering a single or multiple clusters structure. To further improve

performance, two advanced data placement strategies are introduced and compared: data replica-

tion and data partition. The remainder of this paper is organized as follows. Section 2 introduces

background knowledge and related work. Section 3 illustrates our two proposed system ap-

proaches. Simulation study is conducted in Section 4. Finally, we draw a conclusion in Section 5.

2. PRELIMINARIES

P2P overlay networks have attracted much attention due to some excellent characteristics in a

large-scale distributed environment. Some system protocols such as Chord [19], CAN [16], and

Pastry [15] have been proposed to build large file sharing applications. These protocols are based

on the DHT (distributed hash table) mechanism which allows shared files to be uniformly distrib-

uted into peers in a P2P network.

The Chord protocol is taken as our major reference in design. All peers (or nodes) in Chord are

uniformly hashed into an identifier circular space (Chord space) by their IP addresses, and then

they are connected into a basic ring structure (Chord ring). Each peer is associated with an identi-

fier it is hashed into. Using the notation peer(k), we denote a peer with identifier k. A shared file is

stored into one peer according to the hash value of a selected key (e.g., file name). A shared file

with hash value k (denoted by data(k)) is stored into the successor peer of identifier k (denoted by

succ(k)) which is the first peer encountered clockwise with its identifier larger than k. To speedup

data search, each peer maintains a routing table (or finger table) to other neighboring peers. The

three terms peer, node, and broker are used interchangeably in the rest of the paper.

The example operations of a pub/sub system over this Chord structure are shown in Fig. 1.

Subscriptions s1 and s2 are delivered from their originated brokers to their successor brokers ac-

cording to the hash values of attribute names “Price” and “Stock”, respectively. The delivery path

is depicted with a solid line in the figure. Event e is delivered to three brokers according to the

hash values of attribute names “Stock”, “Price”, and “Volume”. The delivery path is depicted with

a dotted line in the figure. The delivery cost of a subscription or event is measured in terms of

logical hops in the delivery path. The match cost of an event is measured in terms of the number of

subscriptions that are examined with this event. The mean match latency of an event is the average

time duration from the moment the event is published to the moment one subscription is found to

 4

be matched with this event.

s1

s : subscription
e : event

s1

e

e

: subscription route
: event route

e

match!

: Stock = IBM , Price = 55 , Volume = 633

: Price = 55 , Volume < 1000
e

s2

s2

: Stock = DELL , Price < 80

no match!

s1

s : subscription
e : event

s1

e

e

: subscription route
: event route

e

match!

: Stock = IBM , Price = 55 , Volume = 633

: Price = 55 , Volume < 1000
e

s2

s2

: Stock = DELL , Price < 80

no match!

Fig. 1. Pub/Sub system operations over Chord.

The examples of topic-based pub/sub systems include Scribe [4], Corona [17], and FeedTree

[20]. Scribe is built over the Pastry overlay network. The members (publishers and subscribers) of

each topic group are connected into an individual multicast tree over the overlay network. The

node that is hashed into by the topic name (or top identifier) acts as the root of the multicast tree.

To reduce maintenance cost, a dynamic clustering technique is proposed in [12] to group topics

with similar sets of subscribers into a virtual topic. Hermes [14] enables content-based filtering

within a topic-based system by distributing filter expressions through the multicast tree.

The examples of content-based pub/sub systems include Ferry [23], eFerry [22], Meghdoot [9],

and the proposed system by Baldoni et al. [2]. According to hash schemes employed, these con-

tent-based systems can be classified into two broad categories: attribute-name-based and attrib-

ute-value-based ones. An attribute-name-based scheme stores and delivers subscriptions and

events upon the hash values of selected keys from attribute names (For example, we select Price as

a key for s1 in Fig. 1). While an attribute-value-based one performs these jobs upon the hash val-

ues of selected keys from attribute values (For example, we select 55 as a key for s1 in Fig. 1).

Ferry and eFerry belong to the attribute-name-based category. The work done by Baldoni et al.

and Meghdoot belong to the attribute-value-based category. Except for Meghdoot which is built

over CAN, the other systems are built over Chord.

Ferry stores a subscription into a broker by referring to the identifier number of the subscriber

that issues the subscription. An event is sent to all RBs to guarantee the intersection rule. The RBs

are those brokers that are hashed to by all attribute names in the schema. eFerry considers the

combination of an arbitrary number of attribute names involved in the subscription and stores a

subscription into a broker using the hash value of this combination. An event is then delivered to

those brokers that are hashed to by each element in the power set of the set of attribute names in-

 5

volved in the event.

Baldoni et al. propose a hash scheme that relies on the attribute values involved in a subscrip-

tion or event. For a subscription, we randomly select one attribute and enumerate all attribute val-

ues in steps of precision units within the value range specified. Then this subscription is stored into

those RBs that are hashed to by these attribute values. An event is hashed to those RBs by all at-

tribute values specified in the event. Meghdoot stores a subscription to a single RB by translating

range predicates into one point in a 2×Y dimensional space (Y is the number of attributes in the

schema). An event is delivered to a half number of RBs on average and only a half number of

brokers function as RBs.

Assume that a pub/sub system has attribute schema X. The set of attribute names in X is de-

noted by Xname. Each attribute is associated with value domain D. The union of the value domains

of all attributes in X is denoted by Xvalue. The cardinality and the power set of set X are denoted by

|X| and power(X), respectively. The average attribute numbers specified in an event is ne. The

range predicate associated with an attribute in a subscription has an average range size of R. As-

sume that a pub/sub system has N brokers and the employed hash function is h. We can highlight a

pub/sub system with descriptions: A subscription and an event are hashed to average m and n dis-

tinct RBs, respectively; there are totally k RBs in the system. The cost comparisons of existing

content-based systems are listed in Table 1.

Table 1. Comparison of existing systems.

System Average number of
RBs that a subscrip-
tion is hashed to (m)

Average number of
RBs that an event
is hashed to (n)

Total number of
RBs (k)

Ferry 1 |h(Xname)| |h(Xname)|
eFerry 1 2 en |h(power(Xname)|
Baldoni et al. R ne |h(Xvalue)|
Meghdoot 1 N/4 N/2

The performance of these systems has been compared by us in another paper [11]. Basically,

Ferry and eFerry suffer from high event delivery cost (proportional to value n), the proposed

scheme by Baldoni et al. suffers from high subscription storing cost (proportional to value m), and

Meghdoot has high maintenance cost due to using high dimensional space. In this paper, we will

design a new hash scheme which has good performance on the sum of these cost metrics. The

challenge is how to generate more RBs, distribute uniformly subscriptions and events into less

 6

RBs, and reduce the number of match examinations.

3. PROPOSED SCHEMES

Two main approaches are proposed to manage subscriptions and events having topics specified.

We first assume that all topics are organized into a hierarchy where only leaf topics are used. The

removal of this restriction is discussed in Section 3.3. A subscriber belongs to topic group T if

there is one subscription of topic T is issued by this subscriber. A subscriber can be a member of

more than one topic group.

First is to consider system design with a single cluster. That is, all subscriber nodes are con-

nected into a single Chord ring. Then, a hash scheme is proposed to balance subscription and event

distributions. In this approach, all subscriber nodes share overall system workload. Another system

design with multiple clusters is considered as well. Subscriber nodes belonging to the same topic

group are connected into a virtual cluster structure. These virtual cluster structures are physically

constructed over the same Chord ring. In this approach, a subscriber node would not store irrele-

vant data with high probability.

3.1. Single-Cluster Approach

In our previous work [11], a new hash scheme called Interval Index Mapping (IIM) is proposed.

Here, we extend IIM by introducing topic groups and advanced data placement strategies.

IIM is an attribute-value-based scheme. Randomly, we select one attribute specified in a sub-

scription (Section 4 examines different attribute selection methods). If the value domain of the se-

lected attribute is [0, 500], for example, we divide this domain into 100 (a configurable number)

equal-sized intervals like [0, 5), [5, 10), [10, 15), and so on. The starting values of these intervals

are used as selected keys. If the value range specified by the selected attribute is [2, 8], for exam-

ple, the subscription will be hashed to the RBs using keys 0 and 5 (since [2, 8] falls into intervals

[0, 5) and [5, 10)). For an event, all attribute values specified in the event are considered to get

their located intervals. Then, the event is hashed to the RBs using the starting values of these in-

tervals.

To further achieve uniform distribution, we combine together on the hash the interval value, the

selected attribute name, and the topic identifier a subscription/event belonging to. Let Topic(T)

denote the identifier of topic T. All predicates specified in subscriptions or events are viewed as

rang-type ones (i.e., using relation operations). Equal-type predicates have value ranges of size one.

 7

For an attribute Ai, we have the following notations:

 Vmax(Ai): maximal value in the value domain of Ai.

 Vmin(Ai): minimal value in the value domain of Ai.

 Interval(Ai): size of an interval for the value domain of Ai.

 Index(v, Ai): interval number of value v in the value domain of Ai which is computed by

min ()
()

i

i

v V A
Interval A

−⎢ ⎥⎣ ⎦ .

 Vhigh(Ai, s): highest value within the value range of Ai specified in subscription/event s.

 Vlow(Ai, s): lowest value within the value range of Ai specified in subscription/event s.

 Name(Ai): attribute name of Ai.

We perform subscription storing and event delivery by procedures SubscriptionStore and

EventDelivery, respectively. As can be seen, a subscription is stored into more than one RB.
Procedure: SubscriptionStore(s, T)
//CHORD_SIZE: size of the Chord space
Begin

1. Randomly select an attribute Ai in subscription s.

2. gap = max min() ()
()_ / i i

i

V A V A
Interval ACHORD SIZE −⎡ ⎤⎢ ⎥ .

3. I = Index(Vlow(Ai, s), Ai).
4. While (I ≤ Index(Vhigh(Ai, s), Ai),
5. S_ID = (I×gap+Vmin(Ai)+h(Name(Ai)+Topic(T))) mod CHORD_SIZE.
6. Store s into succ(S_ID).
7. I = I+1.

End.

Procedure: EventDelivery(e, T)
Begin

1. For each attribute Ai in event e,

2. gap = max min() ()
()_ / i i

i

V A V A
Interval ACHORD SIZE −⎡ ⎤⎢ ⎥ .

3. S_ID = (Index(Vlow(Ai, e), Ai)×gap+Vmin(Ai)+h(Name(Ai)+Topic(T))) mod CHORD_SIZE.
4. Deliver e to succ(S_ID).

End.

The basic IIM scheme could not guarantee load balancing among RBs, particularly when sub-

scriber interests present skewness. The techniques of data replication and data partition are intro-

duced and compared to solve this problem. The using of data replication is recommended in [18],

where a subscription is replicated to other arbitrary C−1 brokers besides the originally hashed one.

An event when hashed into one broker is examined locally or redirected to any one of these C−1

brokers. This significantly reduces the workload of event match on an RB but also incurs high sub-

scription storing cost.

While using data partition, we divide the subscriptions stored in an RB into C segments. Only

 8

one segment is remained and the other C−1 segments are distributed into other C−1 brokers with

each broker storing one segment. In other words, a subscription is stored into one of these C bro-

kers with equal probability. An event when hashed into one broker needs to be further forwarded

to other C−1 brokers. This brings the advantage of parallel matching process among different bro-

kers without incurring extra overhead on subscription storing. For using data replication, a net-

work structure with high-connectivity requirement is adopted in [18]. However, we reuse the

Chord structure with little overhead to involve these advanced data placement strategies. For each

broker, we select other brokers of C-1 from connected neighbors by looking up the finger table. A

broker which becomes overloaded if the number of stored subscriptions exceeds a threshold value

will activate the data replication or partition process as shown below.
Procedure: Data Replication/Partition

Begin
1. Each broker keeps the states (alive, the number of stored subscriptions, etc.) of its neighboring

brokers.
2. If a broker itself becomes overloaded, this broker distributes later coming subscriptions into at

most C−1 neighboring brokers that are not overloaded according to either the replication or parti-
tion policy.

End.

3.2. Multi-Cluster Approach

In the multi-cluster approach, we group subscribers with similar interests into clusters. The

members of each group manage their own data. The low cross correlation between clusters can

prevent a subscriber node to store irrelevant subscriptions with high probability. Moreover, the

cluster structure can facilitate the applications such as inner-group communications and recom-

mendations. Diminished Chord [10] is one such structure that allows group members form their

own Chord rings with least overhead. Conceptually, there is only one physical Chord ring which

includes several virtual subrings and each of these sub-rings connects the members of each group.

A virtual subring is actually organized into a virtual binary tree. Consider the example of Fig.

2a where peers P1, P2, P5, and P6 join the same group. The binary tree is constructed by recur-

sively dividing the Chord space into two equal-sized regions. In the first run, we have the whole

space (denoted by region (0, 0] which covers peer(0)~peer(7)). In the second run, we get two

equal-sized regions (0, 4] (which covers peer(1)~peer(4)) and (4, 0] (which covers

peer(5)~peer(0)). Each region (x, y] has a representative region server which is succ(y). By keep-

ing the parent-child relationship of these region servers, we have root node succ(0) which has two

child nodes succ(4) and succ(0). This process continues until a tree with a depth of logN (N is the

 9

size of the Chord space) is constructed as shown in Fig. 2b.

(a) (b)

Fig. 2. Virtual binary tree.

Each peer(k) if having a physical mapping node registers its present to the leaf region server

succ(k) and all its ancestor region servers in the tree. These registrations has annotated in Fig. 2b.

For storing data(x), we find from the leaf region server succ(x) to the root region server until at

least one registered peer is found. We denote the set of registered peers in the final located region

server as RPeers. Then, data(x) is stored into succ(x, RPeers) which returns the successor peer of x

by assuming that only peers in RPeers remain within the Chord ring. For example, the final lo-

cated region server is succ(4) at level 1(the root is at level 0) for storing data(4). Among the two

registered peers (P1 and P2), we store data(4) to succ(4, {P1, P2}) which returns P1. The finding of

data(x) follows the same path of storing data(x).

Diminished Chord presents three phenomena:

1. The tree depth is fixed to the maximal length of logN.

2. A peer may act as a server for different regions simultaneously in the same tree.

3. Shared files may not be evenly distributed into registered peers.

Phenomenon 1 becomes inflexible to dynamic changing environments. Phenomenon 2 is because

that each left child node is the node itself as shown in Fig. 2b. This property has a tradeoff that the

physical path length from a leaf node to the root node might be shorter than the tree depth but

some region servers might become overloaded. Phenomenon 3 is because that shared files hashed

into a region server where there is no any registered peer are stored into the same peer. For exam-

ple, all shared files hashed into peer(3) and peer(4) are stored into P1.

Here we provide improvements on these phenomena. Phenomenon 1 can be easily relaxed by

 10

stopping tree generation to a given depth. To moderate the influences of phenomena 2 and 3, we

introduce rotation and remap operations, respectively. In tree construction from top to down and

level by level, we continue rotating each divided region counterclockwise with distance of r (r

≤N/logN) in the Chord space. A region server of succ(x) at level k is rotated as one of

succ((x−kr+N) mod N). Fig. 3a shows the same example of Fig. 2a but with rotation distance of 1.

Fig. 3b shows the constructed tree. In the comparison, the tree of Fig. 3b is more balanced than

that of Fig. 2b, since peers are more uniformly registered to region servers.

 In the previous example of Fig. 2b, we locate succ(4) at level 1 in the tree for storing data(4),

and finally do the storing to succ(4, {P1, P2}). We can find that the registered peers P1 and P2 to

succ(4) are all from the right child node (i.e., succ(2)) and this child node has the responsible re-

gion (0,2]. To uniform distribute data storing to these registered peers, we perform the remap op-

eration that re-hashes the key value of the stored data into region (0,2]. Consequently, data(4) is

remapped to data(2) and is stored to succ(2, {P1, P2}) which returns P2. Compared with the case in

Fig. 2b, all shared files hashed into peer(3) and peer(4) are stored into P1 and P2, respectively.

(a) (b)

Fig. 3. Virtual binary tree with rotation.

In our multi-cluster system, each topic T in topic hierarchy has its own virtual binary tree

(called group T tree). For any data(x) or peer(x) of topic T, we can compute the identifier of the

region server at level k in the group T tree whose responsible region covers value x by function

get_RegionServer. As can be seen, the computation does not traverse physical tree links, and

hence we need not maintain the tree structure.
get_RegionServer(Topic T, Level k, Value x)
//RORATE_DIST: rotation distance
//CHORD_SIZE: the size of the Chord space
{ topic_hash = (h(Topic(T))−k×RORATE_DIST+CHORD_SIZE) mod CHORD_SIZE;
 region_size = CHORD_SIZE/2k;

 11

 relative_hash = x−topic_hash;
 if (relative_hash < 0) relative_hash = relative_hash + CHORD_SIZE;
 server_hash = ((relative_hash/region_size + 1)×region_size + topic_hash) mod CHORD_SIZE;
return server_hash;
}

The following describes the operations of node join and leave, subscription storing, and event

delivery.
Procedure: Join(x, T) //The join procedure of node x into group T tree.
Begin

1. Perform the basic join operation into Chord if node x is not in the Chord ring.
2. Locate the root node of group T tree that is succ(get_RegionServer(T, 0, x)) and retrieve the basic

settings about the group tree such as the rotation distance and tree depth.
3. For level k = 0 to depth(T)
4. Register node x to the region server succ(get_RegionServer(T, k, x)) if node x is not yet regis-

tered.
5. Transfer the relevant data of group T that are now under the charge of node x from the imme-

diate successor node.
End.

Procedure: Leave(x, T) //The leave procedure of node x from group T tree.
Begin

1. For level k = 0 to depth(T)
2. De-register node x from the region server succ(get_RegionServer(T, k, x)).
3. Transfer all relevant data of group T to the immediate successor node.
4. Perform the basic leave operation if node x wants to leave the Chord ring as well.

End.

Both join and leave procedures involve the registration or de-registration process to the region

server of each level of a group tree. The cost to locate a region server is O(logN) and the depth of a

group tree is O(logN), so the additional cost of node join and leave is O(log2N) for normal opera-

tions in Chord. Each node, in addition to periodically refresh the finger table, should refresh a reg-

istration table with at most O(logN) entries which record registered region servers.

The similar IIM scheme is deployed in the multi-cluster approach as follows:
Procedure: SubscriptionStore(s, T)
Begin

1. Randomly select an attribute Ai in subscription s.

2. gap = max min() ()
()_ / i i

i

V A V A
Interval ACHORD SIZE −⎡ ⎤⎢ ⎥ .

3. I = Index(Vlow(Ai, s), Ai).
4. While (I ≤ Index(Vhigh(Ai, s), Ai),
5. S_ID = (I×gap+Vmin(Ai)+h(Name(Ai))) mod CHORD_SIZE.
6. For level k = depth(T) to 0,
7. Region_Server = succ(get_RegionServer(T, k, S_ID)).
8. RPeers = the set of registered nodes in Region_Server.
9. If RPeers is not empty,
10. If k ≠ depth(T), S_ID = ReMap(T, k, S_ID).
11. Store s into succ(S_ID, RPeers).
12. Exit the for loop.
13. I = I+1.

End.

 12

Procedure: EventDelivery(e, T)
Begin

1. For each attribute Ai in event e,

2. gap = max min() ()
()_ / i i

i

V A V A
Interval ACHORD SIZE −⎡ ⎤⎢ ⎥ .

3. S_ID = (Index(Vlow(Ai, e), Ai)×gap+Vmin(Ai)+h(Name(Ai))) mod CHORD_SIZE.
4. For level k = depth(T) to 0,
5. Region_Server = succ(get_RegionServer(T, k, S_ID)).
6. RPeers = the set of registered nodes in Region_Server.
7. If RPeers is not empty,
8. If k ≠ depth(T), S_ID = ReMap(T, k, S_ID).
9. Deliver e into succ(S_ID, RPeers).
10. Exit the inner for loop.

End.

The delivery of a subscription or event follows the same process flow1 along the path from a

leaf region server to the root node of a group tree until there is any registered node found. This

takes at most O(logN×logN) delivery cost in logical hops. Note that the traversal of a sequence of

region servers during this process always follows the clockwise direction in the Chord space,

which facilitates a series of successor operations. This is because we perform rotation operations

along the opposite (i.e., counterclockwise) direction. If we finally locate at a non-leaf region server,

the ReMap procedure is performed, and then we select one registered node to do subscription

storing or event matching. A subscriber should periodically reissue its subscriptions into the sys-

tem just after the rejoin procedure to handle any topology change.
ReMap(Topic T, Level k, Value x)
{ topic_hash = (h(Topic(T))+(k+1)×RORATE_DIST) mod CHORD_SIZE;
 region_size = CHORD_SIZE/2k+1;
 relative_hash = x−topic_hash;
 if (relative_hash < 0) relative_hash = relative_hash+CHORD_SIZE;
 from_region = relative_hash/region_size;
 if (from_region is an even number) re_hash = x+region_size;
 else re_hash = x−region_size;
 if (re_hash < 0) re_hash = re_hash+CHORD_SIZE;

return re_hash;
}

The same data replication and partition techniques in the single-cluster approach can be applied

here. However, we distribute subscriptions among the registered nodes to the same region server

for keeping the property of low cross correlation.

3.3. General Considerations

Our system design can be further discussed from three aspects: match semantics, topic hierar-

1 A publisher when issuing an event may first contact with the root of a group tree to retrieve information about
basic tree settings.

 13

chy, and event description.

Match semantics

Two match semantics are defined as exact match and partial match, and we assume that all

predicates specified in a subscription or event are conjunctively associated. Let Ps(Ai) and Pe(Ai)

denote the predicate specified on attribute Ai in a subscription or event, respectively.

Definition: An event e is said to exactly match subscription s, if for all attributes Ai specified in s,

Pe(Ai) satisfies with Ps(Ai).

Definition: An event e is said to partially match subscription s, if for all attributes Ai specified in s,

either Pe(Ai) satisfies with Ps(Ai) or Pe(Ai) is not specified.

For example, if we have e: {A1=10} and s: { A1<20, A2>5}, e partially matches with s but does

not exactly match with s. Only Meghdoot applies partial match as we know and returns more re-

sults to subscribers than the other systems. Our system design follows the semantics of exact

match. However, we can easily extend our system to allow partial match by handling all attributes

specified in a subscription instead of only one selected attribute.

Topic hierarchy

At this aspect, we allow subscribers or publishers to annotate their data with non-leaf (or gener-

alized) topics. A generalized subscription or event is substituted by underlying specialized ones in

topic hierarchy. For example, a generalized subscription of topic T is substituted by subscriptions

of those leaf topics in the subgraph rooted at topic T in the hierarchy. The side effect of this

method is that a subscriber with generalized subscriptions would register itself to several group

trees. To reduce this effect, a distributed merging process is provided.

Notice that the root of each group tree records all its member nodes. We let the root node peri-

odically probe some other randomly selected root nodes and exchange the list of member nodes

with each other. Then, we merge those topics Ti’s with similar node lists into a super topic Ts un-

der the criterion that the number of equal members is greater than a threshold and the number of

unequal members is less than a threshold. This super topic may either already exist in the hierar-

chy or does not exist. In the latter case, we generate a virtual topic whose identifier is combined by

the identifiers of merged topics. The root of each group Ti tree puts a reference to the root of group

Ts tree.

In join procedure, we redirect the registration to the group tree that is referred to. A subscriber

or publisher remembers what group tree it is referred to and delivers subscriptions or events of

topic Ti to this group tree. In an extreme case, all leaf topics merge into one super topic and the

 14

system becomes a single-cluster one. When the merge criterion is violated, the root of a super

topic will inform all roots of merged topics to remove their references.

Event description

Most existing content-based pub/sub systems allow only equal operations to be used in event

description. Some location-based pub/sub systems [3] address the issue that an event can be speci-

fied with an area constraint. Any subscriber when moving into this area is notified with this event.

For flexibility, any rational operation should be used in event description as in subscription de-

scription. Certainly, our proposed IIM scheme can handle this situation by treating event delivery

in the same way as subscription delivery.

4. SIMULATION STUDY

We evaluate system performance through simulations written in CSIM [24] and measure two

cost metrics: mean match latency and management cost in terms of time consumed. The manage-

ment cost includes subscription storing, event delivery, match cost, and subscriber registration.

Since the basic scheme has been compared with others in our previous work [11], we continue

studying here the enhanced schemes themselves.

4.1. Environmental Settings

We consider a system with 512 subscriber nodes by default in a Chord space of size 4096. We

totally generate 3000 subscriptions and then 9000 events into the system. Ten topic groups are

used with each group associating with six attributes which are randomly selected from a system

schema with 20 attributes. Each attribute in the schema has the same integer-type value domain

from 0 to 99 which is further divided into six equal-sized intervals. The mean time to transfer a

subscription or event over a logical hop is 2.0 sec.

A subscription is generated as follows. The belonging topic is selected according to the Zipfian

distribution with parameter θ (0≤θ≤1, 0.6 by default). The number of attributes involved is set ac-

cording to a uniform distribution (The mean is three and the variance is one). Each attribute has a

value range with the size controlled by a uniform distribution (The mean is 20 and the variance is

five). The attribute for subscription storing is either randomly selected (called random attribute

selection) or is selected with the probability inversely proportional to the size of its associated

value range (called proportional attribute selection). The latter selection scheme is a default ones

in our experiments.

 15

An event is generated as follows. We randomly select one subscription generated before to be

the matched subscription of this event. The event then has attribute values that are randomly given

but are satisfied with the constraint of the matched subscription. The event inter-arrival time fol-

lows an exponential distribution.

Two workload environments are distinguished including busy and free ones. Te corresponding

parameter settings are listed in Table 2.

Table 2. Two workload environments.

 Busy environment Free environment

Mean event inter-arrival time 1.0 sec 2.0 sec

Time to store/examine a subscrip-

tion in a broker

0.01 sec 0.001 sec

Time to look up routing informa-

tion in a broker

0.01 sec 0.001 sec

4.2. Experimental Results

4.2.1 Performance of the single-cluster approach

To begin with the single-cluster approach, we compare two attribute selection schemes: random

and proportional ones under a free environment. Fig. 4a shows that the management cost of using

the proportional scheme is slightly less than that of using the random one. Fig. 4b shows the small

difference on match latency between these two schemes. For the further study, the experiment is

performed again by changing the variance of the range size distribution. As shown in Figs. 4c and

4d, the proportional scheme has a lower cost when the variance is getting large. This reveals that

the random scheme might select an attribute with a large value range so as to produce many repli-

cated subscriptions. No doubt, we get the same observation in a busy environment. The perform-

ance value with match latency may be vibrated particularly in small view scope as the one shown

in Fig. 4d. The reason is that the hashing behavior in our experiments is not perfect.

 16

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

64 128 256 512
Number of subscribers

M
an

ag
em

en
t c

os
t (

se
c)

RANDOM
PROPORTINAL

0

2

4

6

8

10

12

64 128 256 512
Number of subscribers

M
ea

n
m

at
ch

 la
te

nc
y

(s
ec

)

RANDOM
PROPORTINAL

(a) (b)

2450

2500

2550

2600

2650

2700

2750

2 4 6 8 10
Range variance

M
an

ag
em

en
t c

os
t (

se
c)

RANDOM
PROPORTINAL

10.72

10.74

10.76

10.78

10.8

10.82

10.84

10.86

10.88

10.9

10.92

2 4 6 8 10
Range variance

M
ea

n
m

at
ch

 la
te

nc
y

(s
ec

)

RANDOM
PROPORTINAL

(c) (d)

Fig. 4. Comparisons of attribute selection schemes.

What is more, the influence of different data placement strategies is observed on the perform-

ance. The finding demonstrates that using these strategies can improve performance only under

busy environments. In the experiment, we further reduce the number of subscriber nodes to 128 to

burden the workload on a broker. As aforementioned, a broker with the number of stored subscrip-

tions exceeding a threshold value will activate one data placement strategy. The threshold is opti-

mal when the total management cost is minimal. Fig. 5a shows the optimal threshold under differ-

ent values of C. The threshold value becomes large as C increases, since too many replicated bro-

kers bring negative effect. Using data partition has the lowest management cost when C = 5 as

shown in Fig. 5b and slightly performs better than using data replication on match latency as

shown in Fig. 5c. We found that using these data placement strategies can largely reduce match

latency but may increase management cost with an arbitrary C value. Figs. 5c and 5d show the

small difference (less than 2.0 sec) on match latency for a certain data placement strategy if using

different C and threshold values. In other words, the optimal settings become less important if the

design goal is for minimizing match latency.

 17

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8
Number of replicated brokers (C)

O
pt

im
al

 th
re

sh
ol

d

replication

partition

53000

53500

54000

54500

55000

55500

56000

56500

1 2 3 4 5 6 7 8
Number of replicated brokers (C)

M
an

ag
em

en
t c

os
t (

se
c)

replication
partition

(a) (b)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8
Number of replicated brokers (C)

M
at

ch
 la

te
nc

y
(s

ec
)

replication
partition

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

220 240 260 280 300 320 340 360 380 400
Threshold value

M
at

ch
 la

te
nc

y
(s

ec
)

replication
partition

(c) (d)

Fig. 5. Comparisons of data placement strategies.

4.2.2 Performance of the multi-cluster approach

First, we observe the influence of tree depth on performance. While the rotation distance is

fixed to 250, as shown in Figs. 6a and 6b, the performance gets improvement with a deep tree par-

ticularly in the busy environment. Fig. 6c shows the optimal tree depth with the minimal manage-

ment cost under different data skewness degrees. The average tree depth for 512 subscriber nodes

is larger than that for 128 subscriber nodes. Actually, there is a tradeoff in having a deep tree. The

negative effect is that more registration cost incurs and subscriptions or events take more hops to

final destinations. The positive effect is that subscriptions or events get more chance to be rotated

into a more uniform distribution state such that the number of RBs is increased and event match

cost is decreased.

 18

0

10000

20000

30000

40000

50000

60000

2 3 4 5 6 7 8 9 10
Tree depth

M
an

ag
em

en
t c

os
t (

se
c)

512 users (free)
128 users (busy)

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8 9 10
Tree depth

M
at

ch
 la

te
nc

y
(s

ec
)

512 users (free)
128 users (busy)

(a) (b)

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Value of θ

O
pt

im
al

 tr
ee

 d
ep

th

512 users (free)

128 users (busy)

(c)

Fig. 6. The influence of tree depth.

Next, the influence of rotation distance is observed under two workload environments. The tree

depth is fixed to six. The main goal of using rotation is for evenly distributing registered peers to

region servers. Figs. 7a and 7b show that performance improvement becomes more significant in

the busy environment. However, without a proper rotation distance, the distribution of registered

peers might become skewed which degrades the performance. We propose an approach of peri-

odically changing the rotation distance which is performed at the root node of each group tree.

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250 300
Rotation distance

M
an

ag
em

en
t c

os
t (

se
c)

512 users (free)
128 users (busy)

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300
Rotation distance

M
at

ch
 la

te
nc

y
(s

ec
)

512 users (free)
128 users (busy)

 19

(a) (b)

Fig. 7. The influence of rotation distance.

4.2.3 Comparison between single-cluster and multi-cluster approaches

The performance between single-cluster and multi-cluster are compared under the free envi-

ronment. As shown in Figs. 8a and 8b, the multi-cluster approach achieves space efficiency due to

having low management cost particularly under skewed data distribution (θ≥0.4), and the sin-

gle-cluster approach achieves time efficiency due to having low match latency. The skewed data

distribution means that most subscribers are interested in events of hot topics and most publishers

generate events of hot topics as well. Basically, the subscription and event delivery cost in the

multi-cluster approach is higher than that in the single-cluster approach due to having longer route

paths. This explains why the multi-cluster approach has long match latency. However, we found

that more RBs are generated in the multi-cluster approach under the skewed data distribution due

to rotation and remap operations. This makes the multi-cluster approach to have low match cost

and reduces the total management cost. Figs. 9a and 9b show that the multi-cluster approach is

excellent in space efficiency under a large volume of generated events and keeps the same gap

with the single-cluster one on match latency.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Value of θ

M
an

ag
em

en
t c

os
t (

se
c)

s ingle-cluster
multi-cluster

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Value of θ

M
at

ch
 la

te
nc

y
(s

ec
)

single-cluster
multi-cluster

(a) (b)

Fig. 8. Comparisons under different topic skewness degrees.

 20

0

2000

4000

6000

8000

10000

12000

14000

16000

10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of events

M
an

ag
em

en
t c

os
t (

se
c)

s ingle-cluster
multi-cluster

0

2

4

6

8

10

12

14

16

10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of events

M
at

ch
 la

te
nc

y
(s

ec
)

s ingle-cluster
multi-cluster

(a) (b)

Fig. 9. Comparisons under different event numbers.

5. CONCLUSIONS

The pub/sub system is a very appealing interaction model, and its capability can be fully en-

hanced over a P2P overlay network. The performance of this kind of system is dominated by the

developed hash scheme. In the paper, we use the IIM hash scheme over two proposed architectures

to provide both topic-based and content-based services. Also, we evaluate the possible improve-

ment of using data replication or data partition on performance. These advanced data placement

strategies bring great improvement on match latency under busy environments where there are

many pending jobs for a subscriber node and these jobs take long time to process.

To sum up, the single-cluster architecture can achieve time efficiency in match latency, which

is more suitable for time-critical environments. Additionally, the multi-cluster architecture can

achieve space efficiency in data processing, which is more suitable for resource-constraint envi-

ronments. In the future, we will extend this work to location-dependent service and mobile ad hoc

network environments. Both subscribers and publishers can roam through the whole network. The

new challenges include the location tracking, filtering of location-dependent criteria, and handling

of node mobility.

REFERENCES

[1] G. Banavar, T. Chandra, B. Mukherjee, and J. Nagarajarao, “An Efficient Multicast Protocol

for Content-Based Publish-Scribe Systems”, Proc. 19th IEEE Intl Conf. on Distributed

Computing Systems, pp. 262–272, 1991.

[2] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg, “Content-Based Publish-Subscribe

 21

over Structured Overlay Networks,” Proc. 25th IEEE ICSCS, 2005.

[3] G. Cugola and J. E. M. D. Cote, “On Introducing Location Awareness in Publish-Subscribe

Middleware,” Proc. IEEE Intl. Conf. on Distributed Computing Systems Workshops, 2005.

[4] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “SCRIBE: A Large-Scale and De-

centralized Application-Level Multicast Infrastructure,” IEEE JSAC, vol. 20, no. 8, pp.

1489-1499, 2002.

[5] G. Cugalo, E. D. Nitto, and A. Fuggetta, “The JEDI Event-Based Infrastructure and Its Ap-

plication to the Development of the OPSS WFMS”, IEEE Trans. on Software Engineering,

vol. 27, no. 9, pp. 827-850, Sept. 2001.

[6] A. Carzagina, M. J. Rutherford, and A. L. Wolf, “A Routing Scheme for Content-Based

Networking”, Proc. IEEE INFOCOM'04, vol. 2, pp. 918-928, Mar. 2004.

[7] F. Y. Cao and J. P. Singh, “MEDYN: Match-Early and Dynamic Multicast for Con-

tent-based Publish/Subscribe Service Networks”, Proc. Fourth International Workshop on

Distributed Event-Based Systems, pp. 370–376, Jun. 2005.

[8] A. Carzagina and A. L. Wolf, “Forwarding in a Content-Based Network”, Proc. ACM

SIGCOMM'03, pp. 163-174, Aug. 2003.

[9] A. Gupta, O.D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot: Content-Based Pub-

lish/Subscribe over P2P Networks,” Proc. 5th ACM/IFIP/USENIX Intl. Conf. on Middle-

ware, pp. 254-273, Oct. 2004.

[10] D. R. Karger and M. Ruhl, “Diminished Chord: A Protocol for Heterogeneous Subgroup

Formation in Peer-to-Peer Networks,” Lecture Notes in Computer Science, vol. 3279, pp.

288-297, 2005.

[11] S.C. Lo and Y. T. Chiu, "Design of Content-Based Publish/Subscribe Systems over Struc-

tured Overlay Networks," IEICE Trans. on Information and Systems, vol. E91-D, no.5, May

2008.

[12] Y. Liu and B. Plale, “Survey of Publish Subscribe Event Systems,” Technical Report

TR-574, Indiana University, Computer Science Dept., May 2003.

[13] T. Milo, T. Zur, E. Verbin, “Boosting Topic-Based Publish-Subscribe Systems with Dy-

namic Clustering,“ ACM SIGMOD, pp. 749-760, 2007.

[14] P. R. Pietzuch and J. M. Bacon, “Hermes: A Distributed Event-Based Middleware Archi-

 22

tecture,” Proc. Intl. Conf. on Distributed Computing Systems Workshops, 2002.

[15] A. Rowstron and P. Druschel, “Pastry: Scalable Distributed Object Location and Routing

for Large-Scale peer-to-Peer Systems,” Proc. IFIP/ACM Intl. Conf. on Distributed Systems

Platforms (Middleware), Nov. 2001.

[16] S. Ratnasaour, P. Francis, M. Handley, and R. Karp, “A Scalable Content-Addressable

Network,” Proc. ACM SIGCOMM’01, vol. 31, no. 4, pp.161-172, Aug. 2001.

[17] V. Ramasubramanian, R. Peterson, and E. G. Sirer, “Corona: A High Performance Pub-

lish-Subscribe System for the World Wide Web,” Proc. of Networked System Design and

Implementation, 2006.

[18] C. Raiciu, D. S. Rosenblum, and M. Handley, “Revisiting Content-Based Pub-

lish/Subscribe,” IEEE Intl. Conf. on Distributed Computing Systems Workshops (ICDCSW),

pp. 19-24, 2006.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable

Peer-to-peer Lookup Protocol for Internet Applications,” Proc. SIGCOMM’01, 2001.

[20] D. Sandler, A. Mislove, A. Post, and P. Druschel, “FeedTree: Sharing Web Micronews with

Peer-to-Peer Event Notification,” Proc. Intl. Workshop on Peer-to-Peer Systems, 2005.

[21] P. Triantafillou and I. Aekaterinidis, “Content-based Publish-Subscribe over Structured P2P

Networks,” Intl. Conf. on Distributed Event-Based Systems, 2004.

[22] X. Yang, Y. Zhu, and Y. Hu, “Scalable Content-Based Publish/Subscribe Services over

Structured Peer-to-Peer Networks,” 15th Euromicro Intl Conf. on Parallel, Distributed and

Network-Based Processing, pp. 171-178, 2007.

[23] Y. Zhu and Y. Hu, “Ferry: An Architecture for Content-Based Publish/Subscribe Services

on P2P Networks,” Proc. of the ICPP’05, 2005.

[24] The Mesquite Software Inc., “The User’s Guide of CSIM Simulation Engine,”

http://www.mesquite.com/.

