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General Purpose 
Computing Systems I :

Hadoop and MapReduce
Shiow-yang Wu (吳秀陽)
CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly 
taken with permission and courtesy 

from Professor Shih-Wei Liao of NTU.

Outline
What is Hadoop? Why so popular? Still now?
What is MapReduce? Why MapReduce? 

What is it used for? 
MapReduce concepts, models and examples
 Hadoop cluster for MapReduce
 Execution details and internals
 Problems with Hadoop and MapReduce
 Current status
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Outline (cont.)
 Problem solving and algorithm design with 

MapReduce
 Some MapReduce algorithms
 Data mining with MapReduce

 Hadoop and MapReduce practice 
(Assignment)
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What is Hadoop?
 Apache Hadoop is an 100% open source framework 

for “reliable, scalable, distributed computing” on large
volume of data across clusters of commodity 
hardware.

 First released on 2006 based on Google’s 
MapReduce(more about this later).

 Over years of development into Hadoop ecosystem, 
the framework has become one of the most 
prominent and used open-source tool in big data era.

 Latest release: 3.3.6 (2023 Jun 23) 
(https://hadoop.apache.org/)
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Hadoop Ecosystem
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Hadoop Ecosystem
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(https://www.cloudduggu.com/hadoop/ecosystem/)
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Examples of Tools on Hadoop
 Lots of useful tools are supported on Hadoop
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 Rumors of “Hadoop is dying/dead!” never stops.
 From the dates of latest update, Hadoop is alive 

and kicking !! (We will keep watching.)
Hadoop & MapReduce 7

2023-06-18

2023-06-13

2023-08-14

2023-09-13

Latest Update

2022-06-15

Why Hadoop?
 Flexible and versatile
 Scalable and cost effective
 More efficient data economy

 Rich and robust Ecosystem
 Hadoop is getting more “Real-Time”!
 New technologies still active on Hadoop

 Remain one of the top open-source big data tools.
 However, the future of Hadoop is cloudy.
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Hadoop Alternatives
 The latest stable release of Hadoop is 3.3.6 (2023-

06-23) of the 3.3 line.
 There are problems with Hadoop. (later)
 Newer feature-packed systems w/o those 

problems become popular Hadoop alternatives.

 Apache Spark is a good example. (later)
 Hadoop is no longer dominate but still popular.
 Hadoop is also good for learning purpose.
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Hadoop Architecture
 HDFS, YARN, and MapReduce are at the heart of 

the Hadoop ecosystem.
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What is MapReduce?
 Data-parallel programming model for clusters of 

commodity machines
◦ Designed for scalability and fault-tolerance

 Pioneered by Google
◦ Processes 20 PB of data per day (at that time)

 Popularized by open-source Hadoop project 
◦ Used by Yahoo!, Facebook, Amazon, … 

 Google stop using MapReduce in favor of newer 
tools (Dataflow, Apache Beam, …)

 MR keeps involving and still popular 
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MapReduce Usage Examples
 At Google: 

◦ Index building for Google Search 
◦ Article clustering for Google News 
◦ Statistical machine translation

 At Yahoo!: 
◦ Index building for Yahoo! Search 
◦ Spam detection for Yahoo! Mail 

 At Facebook: 
◦ Data mining 
◦ Ad optimization 
◦ Spam detection 
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MapReduce Usage Examples

 In research: 
◦ Analyzing Wikipedia conflicts (PARC) 
◦ Natural language processing (CMU) 
◦ Bioinformatics (Maryland) 
◦ Particle physics (Nebraska) 
◦ Ocean climate simulation (Washington)
◦ Sequential pattern mining (NDHU) 
◦ <Your applications here>
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Power of MapReduce
 MR can be considered as a parallel computing 

model which can be used in many different areas.
 It has been shown that any problem in NC 

(problems efficiently solvable on a parallel 
computer) can be efficiently solved with MR.
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Hadoop/MR History
 The foundation stone: The Google File System by 

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung in 2003. (19th ACM Symposium on 
Operating Systems Principles)

 The paper that started everything – MapReduce: 
Simplified Data Processing on Large Clusters by 
Jeffrey Dean and Sanjay Ghemawat in 2004. (6th 
Symposium on Operating System Design and 
Implementation)

 Reading 2 papers above is strongly recommended!
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Hadoop/MR History
 Shortly after the MapReduce paper, 

open source pioneers Doug Cutting 
and Mike Cafarella started working on 
a MapReduce implementation to 
solve the scalability problem of Nutch
(an open source search engine)

 Over the course of a few months, 
Cutting and Cafarella built up the 
underlying file systems and processing 
framework that would become 
Hadoop (in Java)
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Hadoop/MR History
 In 2006, Cutting went to work for Yahoo.
 They spun out the storage and processing parts of 

Nutch to form Hadoop (named after Cutting’s son’s 
stuffed elephant).

 Over time and heavy 
investment by Yahoo!, 
Hadoop eventually 
became a top-level
Apache Foundation 
project.
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Hadoop/MR Today
 Over the years, numerous independent people and 

organizations contribute to Hadoop. 
 Every new release adds functionality and boosts 

performance.
 Several other open source projects have been built 

with Hadoop at their core, and this list is continually 
growing. 

 Some of the more popular ones: Pig(programming 
tool), Hive(warehousing), HBase(NoSQL DB), 
Mahout(machine learning), and 
ZooKeeper(distributed systems and services).
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Why Hadoop/MapReduce?
 Problem: Lots of data!
 Example: Word frequencies in Web pages
 This is how the early Internet search engines 

(Archie, AltaVista) was done.
 Search results are ordered based on keyword 

frequencies. 
 The new engine from Larry and Sergey’s project 

at Stanford revolutionized the search industry. 
(Google)

 (https://blog.reputationx.com/anatomy-of-
search-results)
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Word Frequencies in Pages

● Given 130 trillion web pages x 1KB/page = 130PB

● If one computer can read 750 MB/sec from disk
○ 5+ years to read the web

○ 13K hard drives(10TB HDD) to store the web

● Even more: To do something with the data
○ Compute the word frequencies for each word in 

each website
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Basic Solution: Spread the 
work over many machines
● Same problem with 10,000 machines:  4+ hours

● New problems: Extra programming works
○ communication and coordination
○ recovering from machine failure
○ status reporting
○ debugging
○ optimization
○ locality

● Those works repeat for every problem you want to solve
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Hadoop/MR Design Goals
1. Scalability to large data volumes:

◦ Scan 100 TB on 1 node @ 50 MB/s = 24 days 
◦ Scan on 1000-node cluster = 35 minutes 
◦ => 1000’s of machines, 10,000’s of disks

2. Cost-efficiency:
◦ Commodity machines (cheap, but unreliable)
◦ Commodity network
◦ Automatic fault-tolerance (fewer administrators)
◦ Easy to use (less programming)
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Computing Clusters
● Many racks of computers, thousands of machines 

per cluster
● Limited bisection bandwidth between racks
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Hadoop Cluster
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Typical Hadoop Cluster
 30-40 nodes/rack, 

1000-4000 nodes in 
cluster

 1 Gbps within rack, 
10 Gbps across racks

 H/W specs: depends 
on the deployment 
mode. (next slide)

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/YahooHadoopIntro-apachecon-us-2008.pdf
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Implications of Computing 
Environment
● Single-thread performance doesn’t matter

○ Large problems and total throughput/$ are more important than 
peak performance

● Stuff Breaks
○ More nodes imply higher probability of breaking down

● “Ultra-reliable” hardware doesn’t really help
○ At large scales, super-fancy reliable hardware still fails, albeit less 

often

■ software still needs to be fault-tolerant

■ commodity machines without fancy hardware give better perf/$
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Challenges & Solutions
1. Cheap nodes fail, especially if you have many

◦ Mean time between failures for 1 node = 3 years
◦ Mean time between failures for 1000 nodes = 1 day
◦ Solution: Build fault-tolerance into system

2. Commodity network = low bandwidth
◦ Solution: Push computation to the data

3. Programming distributed systems is hard
◦ Solution: Data-parallel programming model: users write 

“map” & “reduce” functions, system distributes work 
and handles faults
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MapReduce
● A simple programming model that applies to many large-

scale computing problems
● Hide messy details of distributed programs behind 

MapReduce runtime library:
○ Automatic parallelization
○ Load balancing
○ Network and disk transfer optimization
○ Handling of machine failures
○ Robustness
○ Improvements to core library
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Traditional vs MapReduce
 MapReduce is basically a Divide&Conquer approach 

with a different idea of data/computation movement.
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MapReduce Basics
● Semantics borrowed from function programming 

languages
● FP language are usually stateless, which is very good 

for parallelism
○ No need to worry about synchronization

● Even not using MapReduce, many programming 
languages like Ruby and Python provides such 
semantics.
○ Simplicity
○ Chance for implicit optimization
○ Easily parallelizable
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Functional Abstractions 
Hide Parallelism
 The ideas of functions, mapping and reducing are 

from functional programming languages (eg. Lisp)

 Map()
◦ In FP: [ 1,2,3,4 ] - (*2) -> [ 2,4,6,8 ]
◦ Process a key/value pair to generate intermediate key/value 

pairs

 Reduce()
◦ In FP: [ 1,2,3,4 ] - (sum) -> 10
◦ Merge all intermediate values associated with the same key

 Both Map and Reduce are easy to parallelize
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MapReduce in Functions
 Data type: key-value records
 Map function:

(Kin, Vin)  list(Kinter, Vinter)
 Reduce function:

(Kinter, list(Vinter))  list(Kout, Vout)
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Programming Model
1. Read a lot of data
2. Map: extract something you care about from each 

record
3. Shuffle and Sort
4. Reduce: aggregate, summarize, filter, or transform
5. Write the results

Outline stays the same, 
map and reduce change to fit the problem
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Programming Model: 
More Specifically
● Programmer specifies two primary methods:

○ map(k, v) -> <k', v'>*

○ reduce(k', <v'>*) -> <k’’, v’’>*

● All v' with same k' are reduced together in order
● Can also specify:

○ partition(k’ , total partitions) -> partition for k’
■ often a simple hash of the key

■ allows reduce operations for different k’ to be parallelized
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The Word Count Example

def mapper(line):

foreach word in line.split():

output(word, 1)

def reducer(key, values):

output(key, sum(values))
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Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1
brown, 1
fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output
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Web Pages Example
Example: Word Frequencies in Web Pages

● Input is files with one document per record

● Specify a map function that takes a 
key/value pair
○ key:  document URL

○ value: document contents

● Output of map function is (potentially many) 
key/value pairs.

● In our case, output (word, “1”) once per 
word in the document

“document1”, “to be or not to be”

“to”, “1”
“be”, “1”
“or”, “1”
…
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Web Pages Example (cont.)
● MapReduce library gathers together all pairs with the 

same key (shuffle/sort)
● The reduce function combines the values for a key. In our 

case, compute the sum

● Output of reduce paired with key and saved

key: “be”, 
values: “1”, “1”

key: “to”, 
values: “1”, “1”

key: “not”, 
values: “1”

key: “or”, 
values: “1”

“2” “1” “2”“1”

"be", "2"
"not", "1"
"or", "1"
"to", "2"
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Pseudo-Code
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

emitIntermediate(w, "1");

reduce(String key, Iterator intermediate_values):

// key: a word, same for input and output

// intermediate_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

emit(asString(result));
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How MapReduce Works
 User to do list:

◦ indicate:
◦ Input/output files
◦ M: number of map tasks
◦ R: number of reduce tasks
◦ W: number of machines

◦ Write map and reduce functions
◦ Submit the job

 This requires no knowledge of parallel/distributed 
systems!!!

What about everything else?
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Data Distribution

 Input files are split into M pieces on distributed 
file system
◦ Typically ~ 64 MB blocks

 Intermediate files created from map tasks are 
written to local disk

 Output files are written to distributed file system
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Assigning Tasks
Many copies of user program are started
Tries to utilize data localization by running 

map tasks on machines with data
One instance becomes the Master
Master finds idle machines and assigns them 

tasks 
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Execution (map) 
Map workers read in contents of corresponding 

input partition

 Perform user-defined map computation to create 
intermediate <key, value> pairs

 Periodically buffered output pairs written to local 
disk
◦ Partitioned into R regions by a partitioning function
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Partition Function

Example partition function: hash(key) mod R

Why do we need this?

Example Scenario:
◦ Want to do word counting on 10 documents
◦ 5 map tasks, 2 reduce tasks
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Execution (reduce) 
 Reduce workers iterate over ordered intermediate 

data
◦ Each unique key encountered – values are passed to 

user's reduce function
◦ eg. <key, [value1, value2,..., valueN]>

 Output of user's reduce function is written to 
output file on distributed file system

When all tasks have completed, master wakes up 
user program
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Observations
 No reduce can begin until map is complete

 Tasks scheduled based on location of data

 If map worker fails any time before reduce 
finishes, task must be completely rerun

Master must communicate locations of 
intermediate files

MapReduce library does most of the hard work for 
us!
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MapReduce Execution 
Details
 Single master controls job execution on multiple 

slaves
 Mappers preferentially placed on same node or 

same rack as their input block
◦ Minimizes network usage

 Mappers save outputs to local disk before serving 
them to reducers
◦ Allows recovery if a reducer crashes
◦ Allows having more reducers than nodes
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Shuffle & Sort
● The process between map and reduce
● Intermidiate output <k’ , v’> are partitioned 

according to a partition function
○ Usually a simple hash function for load balance
○ Specify your own if special purpose needed

● Exchange intermidiate output if needed

● Guarantees key order within a reducer
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Shuffle & Sort
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Shuffle & Sort: more 
details
● Within a mapper:

a. Keep emitting (k’ , v’) pairs to buffer until the spill 
rate of the buffer exceeds. After exceeding, the part 
of buffer is locked.

b. An independent thread sorts the data within the locked 
buffer and spill it out to disk as a temporary document

c. During the sorting, the mapper is only allowed to write to the 
remaining part of the buffer.

d. After the map phase is done, combine the temporary 
documents into 1 document – the output of the mapper
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Back to word count
● Consider “aaa aaa aaa aaa aaa bbb ccc…”
● Lots of (aaa, 1) are emitted by the mapper
● Extra overhead

○ Disk spill out
○ Network
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The Combiner
● A pass executed between map and reduce
● A “mini-reduce” process that takes data from 

one machine only
○ But probably different from your reduce function

● To compress / trim the output from the map 
● Optional: depends on your application

○ O: word count, min/max…
○ X: median
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Combiner Example
 A combiner is a local aggregation function for 

repeated keys produced by same map
 Works for associative functions like sum, count, 

max
 Decreases size of intermediate data

 Example: map-side aggregation for Word Count:

def combiner(key, values):

output(key, sum(values))
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Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick

brown fox

the fox ate

the mouse

how now

brown cow

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1
brown, 1
fox, 1

quick, 1

the, 2
fox, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1
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MapReduce Job Execution 
Flow
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MR Execution Summary 1
 One map task is created for each split which then 

executes map function for each record in the split.
 Multiple splits are processed in parallel. 
 However, when splits are too small, the overhead of 

managing the splits and map task creation begins to 
dominate the total job execution time.

 For most jobs, a split size equals to the size of an HDFS 
block (64 MB, by default) is better.

 Execution of map tasks results into writing output to a 
local disk on the respective node and not to HDFS.

 Choosing local disk over HDFS is to avoid replication in 
case of HDFS store operation.
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MR Execution Summary 2
 Map output is intermediate which is processed by 

reduce tasks to produce the final output.
 Once the job is complete, the map output can be 

thrown away. Storing it in HDFS with replication 
becomes overkill.

 On node failure, Hadoop reruns the map task on 
another node and re-creates the map output.

 An output of every map task is fed to the machine 
where reduce task is running.

 On this machine, the output is merged and then 
passed to the user-defined reduce function.

 Reduce output is stored in HDFS.
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Advanced Issues: 
Scheduling
● One master, many workers

– Input data split into M map tasks (typically 64 MB in size)

– Reduce phase partitioned into R reduce tasks

– Tasks are assigned to workers dynamically

– Often: M=200,000; R=5,000; workers=2,000

● Master assigns each map task to a free worker
– Considers locality of data to worker when assigning task

– Worker reads task input (often from local disk!)

– Worker produces R local files containing intermediate k/v pairs
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Advanced Issues: 
Scheduling (cont.)
● Master assigns each reduce task to a free worker
 Worker reads intermediate k/v pairs from map workers

 Worker sorts & applies user’s Reduce op to produce the output

● Fine granularity tasks: many more map tasks than 
machines
 Minimizes time for fault recovery

 Possible to have pipelined shuffling with map execution

 Better dynamic load balancing

 Why not as many map task as possbile?
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Note 33

Advanced Issues: Fault 
Tolerance 
On worker failure:
● Detect failure via periodic heartbeats
● Re-execute completed and in-progress map tasks
● Re-execute in progress reduce tasks
● Task completion committed through master

On master failure:
● State is checkpointed to GFS: new master recovers & 

continues
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Refinement: Backup Tasks
● Problem: Slow workers significantly lengthen 

completion time
○ Resouce contentions with other jobs
○ Bad disks and soft errors
○ Processor cache disabled

● Stragglers(流浪者) problem: a small number of
mappers or reducers takes significantly longer 
than the others to complete

● Solution: Near end of phase, spawn backup 
copies of tasks
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Note 34

Refinement: Locality 
Optimazation
● Replicate input file blocks
● Split tasks into the size of a GFS block
● Map tasks scheduled to the same machine or 

same rack with the blocks of input data

=> Each job can be done on the same machine
● Effect: Thousands of machines read input at local 

disk speed
○ Without this, rack switches limit read rate
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Refinement: Skipping Bad 
Records
● Problem: Functions sometimes fail for 

particular inputs
● Solution: Skip them!

○ On seg fault, send UDP packet to inform 
master about which input caused the fault.

○ If master sees K failures for same record, skip 
the record afterwards
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Implications for Multi-core 
Processors
● Multi-core processors require parallelism

○ But many programmers are uncomfortable writing parallel 
programs

● MapReduce provides an easy-to-understand 
programming model for a very diverse set of computing 
problems
○ users don’t need to be parallel programming experts

● Optimizations useful even in single machine, multi-core 
environment
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Hadoop High-level Architecture

 Hadoop is based on two main components: 
MapReduce and HDFS.
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Note 36

Hadoop in more details

(More details in later lectures)
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Hadoop/MR Architecture
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Note 37

MR 
Exec 
Flow
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Problems with MapReduce

● It’s hard & low-level for developers to write
○ Most developers are familiar with SQL
○ Solution: Apache Hive

● Expensive cost for fault recovery
○ Re-execute whole MR programs
○ Solution: Apache Spark’s lineage

● Requires intensive disk I/O 
○ Intermidiate data is always written to local disk
○ Solution: Apache Spark’s in-memory computing
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Note 38

Problems with MapReduce
● MapReduce relies heavily on disk operations
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Problems with MapReduce

● When doing iterative computation
○ Bad performance due to replication and disk I/O
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Note 39

In-Memory Computation 
is Faster

● Apache Spark in-memory computing
○ 10-100X faster than disk
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Problems with MapReduce
● Spawning each Mapper/Reducer takes time

○ Solution: Worker Pool (ex. Google Tenzing, an 
SQL query engine on Hadoop), it contains 
running processes as Mapper/Reducer

● Not very good for iterative graph computing
○ Solution: Google Pregel for large scale graph 

processing
● Not very good for interactive ad hoc queries 

○ Solution: Google Dremel and BigQuery
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Note 40

Problem Solving with 
MapReduce
 How to design MapReduce algorithms for the 

following tasks
◦ Search: Output lines matching certain patterns
◦ Sort: Sorting numbers, words, …
◦ Inverted index: build index from words to 

documents
◦ Data mining algorithms (sequential pattern 

mining)
◦ BFS on graph*
◦ PageRank*
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MapReduce
Algorithm Design
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Note 41

Recap: MapReduce
Dataflow

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

In
pu

t 
da

ta

O
ut

pu
t 

da
ta

"The Shuffle"

Intermediate 
(key,value) pairs
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Recap: MapReduce
 Programmers must specify:

map (k, v) → list(<k’, v’>)
reduce (k’, list(v’)) → <k’’, v’’>
◦ All values with the same key are reduced together

 Optionally, also:
partition (k’, number of parƟƟons) → parƟƟon for k’
◦ Often a simple hash of the key, e.g., hash(k’) mod n
◦ Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
◦ Mini-reducers that run in memory after the map phase
◦ Used as an optimization to reduce network traffic

 The execution framework handles everything else…
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“Everything Else”
 The execution framework handles everything else…

◦ Scheduling: assigns workers to map and reduce tasks
◦ “Data distribution”: moves processes to data
◦ Synchronization: gathers, sorts, and shuffles intermediate data
◦ Errors and faults: detects worker failures and restarts

 Limited control over data and execution flow
◦ All algorithms must expressed in m, r, c, p

 You don’t know:
◦ Where mappers and reducers run
◦ When a mapper or reducer begins or finishes
◦ Which input a particular mapper is processing
◦ Which intermediate key a particular reducer is processing
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Note 43

Hadoop/MR on your Desk
 You can have a virtual Hadoop/MapReduce cluster 

easily with VM software such as VirtualBox.
 Download/install VirtualBox and configure a Linux 

VM(e.g. Ubuntu)
 Setting up a shared folder between host OS and 

VM is quite convenient for file transfer.

 On the VM, download/install Java, Hadoop and 
Python.

 There will be trouble ahead but the process is a 
good training!
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Modes of Installation
 You may setup a Hadoop cluster in one of the 

three modes:
◦ Local (Standalone) Mode
◦ Pseudo-Distributed Mode
◦ Fully-Distributed Mode

 If you are not familiar with Linux, start with the 
standalone mode.

 If you were a Linux guru, you may setup three or 
more VMs and take on the fully-distributed mode 
directly.
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Note 44

Recap: Word Count

map(key    , value         )
{

}

reduce(rkey       , rvalues          )
{

}

String[] words = value.split(" ");
foreach w in words

emit(w, 1);

Integer result = 0;
foreach v in rvalues

result = result + v;
emit(rkey, result);

:URL :Document

:String :Integer[]

reduce gets all the 
intermediate values
with the same rkey

These types can be (and often are)
different from the ones in map()

Produces intermediate
key-value pairs that

are sent to the reducer

Any key-value pairs emitted
by the reducer are added to 

the final output

These types depend on 
the input data

Both map() and reduce() are
stateless: Can't have a global

variable that is preserved 
across invocations!
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MapReduce in Python
 Hadoop is written in Java.  It is only nature that 

many MR programs are written in Java.
 Hadoop MR programs can be written in languages 

such as Python, C++, Ruby, etc.
 Traditionally, a Python code is translated using 

Jython into a Java jar file for execution.

 However, this is not very convenient and surely not 
very Pythonic!

 We will show you another way of writing Python 
MR code with Hadoop Streaming.
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Note 45

Hadoop Streaming API
 With streaming API, you can write 

MR program in all languages that 
can read/write standard I/O.

 Both the mapper and reducer use 
stdin/stdout for reading/writing.

 Mappers read from stdin for input 
data and print results to stdout.

 Reducers read mapper output 
from stdin and print results to 
stdout.
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mapper.py
#!/usr/bin/env python3

# import sys to read/write data from/to STDIN/STDOUT

import sys

for line in sys.stdin:   # input from STDIN

line = line.strip()  # rm leading/trailing whitespace

words = line.split() # split the line into words

for word in words:   # each with a count of 1

# write the results to STDOUT;

# will be the input of the reducer.py

# tab-delimited; word appears once(1)

print("%s\t%s" % (word, 1))
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Data File and Execution
host:~/Documents$ cat wc_data.txt

NDHU CSIE is the best CS department

Welcome to CSIE for CS degrees

host:~/Documents$ cat wc_data.txt | python3 mapper.py
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NDHU 1
CSIE 1
is 1
the 1
best 1
CS 1
department 1
Welcome 1
to 1
CSIE 1
for 1
CS 1
degrees 1

reducer.py(1)
#!/usr/bin/env python3
import sys
# dictionary to map words to counts
wordcount = {}

# input comes from STDIN
for line in sys.stdin:

# rm leading and trailing whitespace
line = line.strip()
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Note 47

reducer.py(2)
# slit the input from mapper.py into 2 elements

word, count = line.split('\t', 1)

# convert count (currently a string) to int

try:

count = int(count)

except ValueError:  # simply ignore if err

continue

try: # accumulate the count

wordcount[word] = wordcount[word] + count

except:

wordcount[word] = count
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reducer.py(3)
# write the tuples to stdout

for word in wordcount.keys():

print("%s\t%s" % (word, wordcount[word]))
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Note 48

How to Submit ?

 Programs are local files.
 Input/output files are on the HDFS.

 Paths may be different based on your system.
 Make it work and send me video to demonstrate.
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hadoop jar /usr/local/hadoop/share/hadoop/tools/lib/hadoop-
streaming-3.3.6.jar -D mapred.reduce.tasks=2 -input 
/user/showyang/wc_data.data  -output /user/showyang/output 
-mapper "python3 mapper.py" -reducer "python3 reducer.py" 
-file mapper.py -file reducer.py

run.sh

MapReduce Commands
 You can also invoke all mapreduce commands by 

the bin/mapred script.
mapred [SHELL_OPTIONS] COMMAND

[GENERIC_OPTIONS] [COMMAND_OPTIONS]
 The streaming command looks like:
mapred streaming [genericOptions] 

[streamingOptions] 
 Try submitting your Python Word Count job with 

the mapred script. (exercise)
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Note 49

MapReduce Jobs
 Tend to be very short, code-wise

◦ IdentityReducer is very common

 “Utility” jobs can be composed
 Represent a data flow, more so than a 

procedure
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MR Algorithm Design 
Principles
 Think data, not flow!
 Decompose the problem into modules connected 

by data flow, not algorithmic flow.
 Design MR job(s) for each module.

 Link jobs with (key, value) pairs.

 Key and value can potentially be anything !!
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Note 50

Sorting

Inputs: 
 A file of values to sort, one value per line.
Mapper key is file ID, line number
Mapper value is the contents of the line

 This can be easily generalized into sorting 
multiple files. (Exercise)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 99

Sort Algorithm
 Takes advantage of reducer properties: (key, value) 

pairs are processed in order by key; reducers are 
themselves ordered 

 Mapper: Identity function for value
(k, v)  (v, _)

 Reducer: Identity function (k’, _) -> (k’, “”)
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Note 51

Sort: The Trick
 (key, value) pairs from mappers are sent to a 

particular reducer based on hash(key)
 Must pick the hash function for your data such 

that k1 < k2 => hash(k1) < hash(k2)
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Searching
 Given a set of files containing lines of text and a 

search pattern to find.
 Determine the files that matches the pattern. 
 Can be easily generalized into determining (file, 

[l1, l2, …]), i.e. all lines that match the pattern. 
(Exercise)

 Search pattern sent as special parameter
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Note 52

Search Algorithm
Mapper:

◦ Given (fileID, some text) and “pattern”, if “text” 
matches “pattern” output (filename, _)

 Reducer:
◦ Identity function
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Search: An Optimization
Once a file is found to be interesting, we only 

need to mark it that way once
 Use Combiner function to fold redundant 

(filename, _) pairs into a single one
◦ Reduces network I/O
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Note 53

Inverted Index
 Given a set of document(text) files.
 For each word, determine the docs in which the 

word appears. (Boolean)
 For each word, determine the docs & positions

where the word appears. (Exercise)
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Inverted Index Algorithm

 Mapper key is file ID
 Mapper value is the contents of the file.

 Mapper: For each word in (fileID, words), map to 
(word, fileID)

 Reducer: For each word, output (word, [f1, f2, …])
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Note 54

Indexing: Data Flow
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TF-IDF
 Term Frequency – Inverse Document 

Frequency
◦ Relevant to text processing
◦ Common web analysis algorithm
◦ To determine the importance of a term within a 

corpus (set of docs). 
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Note 55

The Algorithm, Formally

• | D | : total number of documents in the corpus 
• : number of documents where the term ti appears (that is   ). 
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Information We Need
 Number of times term X appears in a given 

document (ni)
 Total number of terms in each document (Σknk)

 Number of documents X appears in (|{d : ti  d}|)
 Total number of documents (|D|)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 110



CSIE59830/CSIEM0410/AIIA50050 
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 56

Job 1: Word Frequency in 
Doc
 Mapper

◦ Input: (docname, contents)
◦ Output: ((word, docname), 1)

 Reducer
◦ Sums counts for each word in document
◦ Outputs ((word, docname), n)

 Combiner is the same as Reducer
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Job 2: Total Word Counts 
For Docs
 Mapper

◦ Input: ((word, docname), n)
◦ Output: (docname, (word, n)) 

 Reducer
◦ Sums frequency of individual n’s in same doc
◦ Feeds original data through
◦ Outputs ((word, docname), (n, N))
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Note 57

Job 3: Word Frequency In 
Corpus
 Mapper

◦ Input: ((word, docname), (n, N))
◦ Output: (word, (docname, n, N, 1))

 Reducer
◦ Sums counts for word in corpus
◦ Outputs ((word, docname), (n, N, m))
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Job 4: Calculate TF-IDF
 Mapper

◦ Input: ((word, docname), (n, N, m))
◦ Assume D is known (or, easy MR to find it, exercise!)
◦ Output ((word, docname), TF*IDF)

 Reducer
◦ Just the identity function
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Note 58

Working At Scale
 Buffering (doc, n, N) counts while summing 1’s into 

m may not fit in memory
◦ How many documents does the word “the” occur in?

 Possible solutions
◦ Ignore very-high-frequency words (AKA stop words)
◦ Write out intermediate data to a file
◦ Use another MR pass
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Final Thoughts on TF-IDF

 Several small jobs add up to full algorithm
 Lots of code reuse possible

◦ Stock classes exist for aggregation, identity

 Jobs 3 and 4 can really be done at once in same 
reducer, saving a write/read cycle

 Very easy to handle medium-large scale, but must 
take care to ensure flat memory usage for largest 
scale
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Note 59

Sequential Activity Mining 
in Mobile Environments
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Sequential Activity Mining
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Note 60

Activity Mining V1
 Direct conversion from the original 

algorithm.
 Job1: Large-1 activity set generation.

◦ Mapper: given (TID, Behavior_Items), generate 
all possible (item, 1).

◦ Reducer: for each item, sum the count and emit 
all ((item), n) for items with n >= support.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 119

Activity Mining V1
 Job2: Large-2 ~ n activity set generation.
 Mapper: Given a (activityset, count) pair (A, n), 

emit (prefix of A except the last item, last item).
 Reducer: Given (prefix, [m1, m2, …]), emit all 

possible ((prefix, mi, mj), _) as candidates.

 Job3: Given each candidate pattern, count 
frequency in Transaction Data Base (D) and keep 
only those with enough support. (Exercise)
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Note 61

Activity Mining V1
 The final result is the union of the output of all 

reducers that generate (ActivitySet, count)

 Optimization: (Exercise)
◦ Use combiner to compute local sums.
◦ Use more than one reducer for candidate generation.
◦ Use efficient MR for Transaction DB scanning.
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Activity Mining V2
 One pass MapReduce algorithm
 Mapper: Given (TID, Behavior_Items), generate all 

possible (pattern, 1).
 Reducer: Sum the count for the same pattern and 

emit (pattern, n) if n >= support.

 That’s it !!
 Optimization: (Exercise)

◦ Parallelize the mapper?
◦ Stop counting whenever n>= support?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 122



CSIE59830/CSIEM0410/AIIA50050 
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 62

Hadoop 1 (MRV1) Revisit
 Hadoop version 1.0 is referred as 

MARV1(MapReduce v1)
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Problems with MRV1
 Only for batch processing, not real-time processing
 MRV1 & HDFS support up to 4000 nodes/cluster
 JobTracker’s load too heavy, single point of failure
 NameNode’s load too heavy, single point of failure
 Scalability issues due to problems above
 No Multi-tenancy support
 Only run MapReduce jobs, can not support other 

frameworks
 Utilization of resources is inefficient

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 124



CSIE59830/CSIEM0410/AIIA50050 
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 63

Hadoop v2.0
 Introducing YARN(Yet Another Resource 

Negotiator), a resource management system for 
Hadoop (also known as MapReduce 2 or MRV2)

 Act as a connecting link between high level 
applications and low level Hadoop environment

 Transform Hadoop from only MapReduce
framework to big data processing core

 Scale much better than Hadoop 1.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 125

Hadoop 1 vs Hadoop 2
 Hadoop 2 offers better performance, scalability, 

fault-tolerance and multiple processing 
frameworks.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 126



CSIE59830/CSIEM0410/AIIA50050 
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 64

YARN Components
 Resource Manager: Runs on a master daemon and 

manages resources across the cluster.
 Node Manager: Run on the slave daemons and are 

responsible for the execution of a task on every 
single Data Node.

 Application Master: Manages the user job lifecycle 
and resource needs of individual applications. It 
works along with the Node Manager and monitors 
the execution of tasks.

 Container: Collection of resources such as RAM, 
CPU cores, Network, HDD etc on a single node.
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Hadoop YARN Architecture
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Note 65

YARN Benefits
 Split Job Tracker into separate Resource Manager 

and Application Manager (more later)
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 Benefits:
◦ Highly scalability
◦ Highly availability
◦ Supports multiple 

programming models
◦ Supports multi-tenancy
◦ Supports multiple namespaces
◦ Improved cluster utilization
◦ Improve horizontal scalability

How
does 
YARN 
(MRV2) 
works?
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Note 66

Failure Recovery in YARN
 Task failure, same as in MapReduce 1
 Application Master failure:

◦ Resource Manager notices failed AppMaster
◦ Resource Manager starts a new instance of AppMaster

in new container
◦ Client experiences a timeout and get a new address of 

AppMaster from ResourceManager

 Resource Manager failure:
◦ Resource Managers have checkpointing mechanism 

which saves its state to persistent storage.
◦ After crash, administrator brings new Resource 

Manager up and it recovers saved state.
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What’s New in Hadoop 3?
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Note 67

3.0 Key Advancements
 Erasure Coding: Introduce the concept of erasure 

coding, a more storage-efficient alternative to 
traditional replication. 

 Improved Resource Utilization: Introduce 
containerization with Docker and Kubernetes, allowing 
for better isolation, resource allocation, and efficient 
utilization of cluster resources.

 Enhanced Data Processing Engines: Introduce 
improvements to existing data processing engines 
like MapReduce and Hive. It also provide better 
integration and support for newer engines like Apache 
Spark and Apache Flink, enabling faster and more 
flexible data processing workflows.
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3.0 Key Advancements
 Namenode Federation and High Availability: Address 

the scalability and availability challenges of the 
Namenode by introducing Namenode Federation and 
the standby Namenode. This improved fault tolerance, 
reduced downtime, and enhanced the 
overall reliability of the Hadoop cluster.

 GPU Support: Embrace the power of GPUs by 
introducing support for GPU acceleration. This 
enabled organizations to leverage GPU resources for 
parallel processing and achieve significant 
performance gains in data-intensive tasks like machine 
learning and deep learning.
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Note 68

Erasure Coding
 Hadoop 2.x uses replication (default 3). Storage 

overhead is 200%.
 Erasure coding stores 1 parity block for 2 data 

blocks. Same level of fault tolerance with 50%
overhead.
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Some Other 3.0 Features
 Opportunistic Containers have low priority than 

Guaranteed containers and wait at the 
NodeManager when no resources is available.

 Distributed Scheduling incorporates opportunistic 
containers for more flexible scheduling.

 Support for more than two NameNodes made the 
system more highly available.

 Intra-DataNode Balancer balances the disk load in 
a DataNode.(HDFS balancer addresses only 
internode data skew)
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Note 69

Hadoop 3.x vs 2.x
 Should use Hadoop 3 whenever possible!!
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File System Compatability HDFS, FTP, S3, Windows Azure Storage Blobs Support all file systems

Some HDFS Commands
 Create a directory in HDFS
hdfs dfs -mkdir /home/hadoop/dir1
 List the content of a directory
hdfs dfs -ls /home/hadoop
 Upload and download a file in HDFS
hdfs dfs -put file.txt /home/hadoop/dir1/
hdfs dfs -get /home/hadoop/dir1/file.txt   /home/hadoop
 Look at the content of a file
hdfs dfs -cat /home/hadoop/dir1/book.txt
 Many more commands, similar to Linux
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Note 70

Assignment 1
 Test run the word count example. (No need to turn 

in anything.)
 Implement the Sorting algorithm.
 Implement the Searching algorithm.

 Implement the TF-IDF computation algorithm.
 Implement the Activity Mining algorithms. 

(optional)
 Due date: three weeks!
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