
CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 1

General Purpose
Computing Systems I :

Hadoop and MapReduce
Shiow-yang Wu (吳秀陽)
CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly
taken with permission and courtesy

from Professor Shih-Wei Liao of NTU.

Outline
What is Hadoop? Why so popular? Still now?
What is MapReduce? Why MapReduce?

What is it used for?
MapReduce concepts, models and examples
 Hadoop cluster for MapReduce
 Execution details and internals
 Problems with Hadoop and MapReduce
 Current status

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 2

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 2

Outline (cont.)
 Problem solving and algorithm design with

MapReduce
 Some MapReduce algorithms
 Data mining with MapReduce

 Hadoop and MapReduce practice
(Assignment)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 3

What is Hadoop?
 Apache Hadoop is an 100% open source framework

for “reliable, scalable, distributed computing” on large
volume of data across clusters of commodity
hardware.

 First released on 2006 based on Google’s
MapReduce(more about this later).

 Over years of development into Hadoop ecosystem,
the framework has become one of the most
prominent and used open-source tool in big data era.

 Latest release: 3.3.6 (2023 Jun 23)
(https://hadoop.apache.org/)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 4

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 3

Hadoop Ecosystem

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 5

Hadoop Ecosystem

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 6

(https://www.cloudduggu.com/hadoop/ecosystem/)

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 4

Examples of Tools on Hadoop
 Lots of useful tools are supported on Hadoop

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

 Rumors of “Hadoop is dying/dead!” never stops.
 From the dates of latest update, Hadoop is alive

and kicking !! (We will keep watching.)
Hadoop & MapReduce 7

2023-06-18

2023-06-13

2023-08-14

2023-09-13

Latest Update

2022-06-15

Why Hadoop?
 Flexible and versatile
 Scalable and cost effective
 More efficient data economy

 Rich and robust Ecosystem
 Hadoop is getting more “Real-Time”!
 New technologies still active on Hadoop

 Remain one of the top open-source big data tools.
 However, the future of Hadoop is cloudy.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 8

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 5

Hadoop Alternatives
 The latest stable release of Hadoop is 3.3.6 (2023-

06-23) of the 3.3 line.
 There are problems with Hadoop. (later)
 Newer feature-packed systems w/o those

problems become popular Hadoop alternatives.

 Apache Spark is a good example. (later)
 Hadoop is no longer dominate but still popular.
 Hadoop is also good for learning purpose.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 9

Hadoop Architecture
 HDFS, YARN, and MapReduce are at the heart of

the Hadoop ecosystem.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 10

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 6

What is MapReduce?
 Data-parallel programming model for clusters of

commodity machines
◦ Designed for scalability and fault-tolerance

 Pioneered by Google
◦ Processes 20 PB of data per day (at that time)

 Popularized by open-source Hadoop project
◦ Used by Yahoo!, Facebook, Amazon, …

 Google stop using MapReduce in favor of newer
tools (Dataflow, Apache Beam, …)

 MR keeps involving and still popular

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 11

MapReduce Usage Examples
 At Google:

◦ Index building for Google Search
◦ Article clustering for Google News
◦ Statistical machine translation

 At Yahoo!:
◦ Index building for Yahoo! Search
◦ Spam detection for Yahoo! Mail

 At Facebook:
◦ Data mining
◦ Ad optimization
◦ Spam detection

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 12

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 7

MapReduce Usage Examples

 In research:
◦ Analyzing Wikipedia conflicts (PARC)
◦ Natural language processing (CMU)
◦ Bioinformatics (Maryland)
◦ Particle physics (Nebraska)
◦ Ocean climate simulation (Washington)
◦ Sequential pattern mining (NDHU)
◦ <Your applications here>

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 13

Power of MapReduce
 MR can be considered as a parallel computing

model which can be used in many different areas.
 It has been shown that any problem in NC

(problems efficiently solvable on a parallel
computer) can be efficiently solved with MR.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 14

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 8

Hadoop/MR History
 The foundation stone: The Google File System by

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung in 2003. (19th ACM Symposium on
Operating Systems Principles)

 The paper that started everything – MapReduce:
Simplified Data Processing on Large Clusters by
Jeffrey Dean and Sanjay Ghemawat in 2004. (6th
Symposium on Operating System Design and
Implementation)

 Reading 2 papers above is strongly recommended!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 15

Hadoop/MR History
 Shortly after the MapReduce paper,

open source pioneers Doug Cutting
and Mike Cafarella started working on
a MapReduce implementation to
solve the scalability problem of Nutch
(an open source search engine)

 Over the course of a few months,
Cutting and Cafarella built up the
underlying file systems and processing
framework that would become
Hadoop (in Java)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 16

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 9

Hadoop/MR History
 In 2006, Cutting went to work for Yahoo.
 They spun out the storage and processing parts of

Nutch to form Hadoop (named after Cutting’s son’s
stuffed elephant).

 Over time and heavy
investment by Yahoo!,
Hadoop eventually
became a top-level
Apache Foundation
project.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 17

Hadoop/MR Today
 Over the years, numerous independent people and

organizations contribute to Hadoop.
 Every new release adds functionality and boosts

performance.
 Several other open source projects have been built

with Hadoop at their core, and this list is continually
growing.

 Some of the more popular ones: Pig(programming
tool), Hive(warehousing), HBase(NoSQL DB),
Mahout(machine learning), and
ZooKeeper(distributed systems and services).

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 18

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 10

Why Hadoop/MapReduce?
 Problem: Lots of data!
 Example: Word frequencies in Web pages
 This is how the early Internet search engines

(Archie, AltaVista) was done.
 Search results are ordered based on keyword

frequencies.
 The new engine from Larry and Sergey’s project

at Stanford revolutionized the search industry.
(Google)

 (https://blog.reputationx.com/anatomy-of-
search-results)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 19

Word Frequencies in Pages

● Given 130 trillion web pages x 1KB/page = 130PB

● If one computer can read 750 MB/sec from disk
○ 5+ years to read the web

○ 13K hard drives(10TB HDD) to store the web

● Even more: To do something with the data
○ Compute the word frequencies for each word in

each website

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 20

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 11

Basic Solution: Spread the
work over many machines
● Same problem with 10,000 machines: 4+ hours

● New problems: Extra programming works
○ communication and coordination
○ recovering from machine failure
○ status reporting
○ debugging
○ optimization
○ locality

● Those works repeat for every problem you want to solve

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 21

Hadoop/MR Design Goals
1. Scalability to large data volumes:

◦ Scan 100 TB on 1 node @ 50 MB/s = 24 days
◦ Scan on 1000-node cluster = 35 minutes
◦ => 1000’s of machines, 10,000’s of disks

2. Cost-efficiency:
◦ Commodity machines (cheap, but unreliable)
◦ Commodity network
◦ Automatic fault-tolerance (fewer administrators)
◦ Easy to use (less programming)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 22

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 12

Computing Clusters
● Many racks of computers, thousands of machines

per cluster
● Limited bisection bandwidth between racks

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 23

Hadoop Cluster

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 24

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 13

Typical Hadoop Cluster
 30-40 nodes/rack,

1000-4000 nodes in
cluster

 1 Gbps within rack,
10 Gbps across racks

 H/W specs: depends
on the deployment
mode. (next slide)

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/YahooHadoopIntro-apachecon-us-2008.pdf
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 25

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 26

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 14

Implications of Computing
Environment
● Single-thread performance doesn’t matter

○ Large problems and total throughput/$ are more important than
peak performance

● Stuff Breaks
○ More nodes imply higher probability of breaking down

● “Ultra-reliable” hardware doesn’t really help
○ At large scales, super-fancy reliable hardware still fails, albeit less

often

■ software still needs to be fault-tolerant

■ commodity machines without fancy hardware give better perf/$

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 27

Challenges & Solutions
1. Cheap nodes fail, especially if you have many

◦ Mean time between failures for 1 node = 3 years
◦ Mean time between failures for 1000 nodes = 1 day
◦ Solution: Build fault-tolerance into system

2. Commodity network = low bandwidth
◦ Solution: Push computation to the data

3. Programming distributed systems is hard
◦ Solution: Data-parallel programming model: users write

“map” & “reduce” functions, system distributes work
and handles faults

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 28

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 15

MapReduce
● A simple programming model that applies to many large-

scale computing problems
● Hide messy details of distributed programs behind

MapReduce runtime library:
○ Automatic parallelization
○ Load balancing
○ Network and disk transfer optimization
○ Handling of machine failures
○ Robustness
○ Improvements to core library

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 29

Traditional vs MapReduce
 MapReduce is basically a Divide&Conquer approach

with a different idea of data/computation movement.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 30

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 16

MapReduce Basics
● Semantics borrowed from function programming

languages
● FP language are usually stateless, which is very good

for parallelism
○ No need to worry about synchronization

● Even not using MapReduce, many programming
languages like Ruby and Python provides such
semantics.
○ Simplicity
○ Chance for implicit optimization
○ Easily parallelizable

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 31

Functional Abstractions
Hide Parallelism
 The ideas of functions, mapping and reducing are

from functional programming languages (eg. Lisp)

 Map()
◦ In FP: [1,2,3,4] - (*2) -> [2,4,6,8]
◦ Process a key/value pair to generate intermediate key/value

pairs

 Reduce()
◦ In FP: [1,2,3,4] - (sum) -> 10
◦ Merge all intermediate values associated with the same key

 Both Map and Reduce are easy to parallelize

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 32

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 17

MapReduce in Functions
 Data type: key-value records
 Map function:

(Kin, Vin) list(Kinter, Vinter)
 Reduce function:

(Kinter, list(Vinter)) list(Kout, Vout)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 33

Programming Model
1. Read a lot of data
2. Map: extract something you care about from each

record
3. Shuffle and Sort
4. Reduce: aggregate, summarize, filter, or transform
5. Write the results

Outline stays the same,
map and reduce change to fit the problem

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 34

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 18

Programming Model:
More Specifically
● Programmer specifies two primary methods:

○ map(k, v) -> <k', v'>*

○ reduce(k', <v'>*) -> <k’’, v’’>*

● All v' with same k' are reduced together in order
● Can also specify:

○ partition(k’ , total partitions) -> partition for k’
■ often a simple hash of the key

■ allows reduce operations for different k’ to be parallelized

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 35

The Word Count Example

def mapper(line):

foreach word in line.split():

output(word, 1)

def reducer(key, values):

output(key, sum(values))

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 36

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 19

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1
brown, 1
fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 37

Web Pages Example
Example: Word Frequencies in Web Pages

● Input is files with one document per record

● Specify a map function that takes a
key/value pair
○ key: document URL

○ value: document contents

● Output of map function is (potentially many)
key/value pairs.

● In our case, output (word, “1”) once per
word in the document

“document1”, “to be or not to be”

“to”, “1”
“be”, “1”
“or”, “1”
…

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 38

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 20

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 39

Web Pages Example (cont.)
● MapReduce library gathers together all pairs with the

same key (shuffle/sort)
● The reduce function combines the values for a key. In our

case, compute the sum

● Output of reduce paired with key and saved

key: “be”,
values: “1”, “1”

key: “to”,
values: “1”, “1”

key: “not”,
values: “1”

key: “or”,
values: “1”

“2” “1” “2”“1”

"be", "2"
"not", "1"
"or", "1"
"to", "2"

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 40

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 21

Pseudo-Code
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

emitIntermediate(w, "1");

reduce(String key, Iterator intermediate_values):

// key: a word, same for input and output

// intermediate_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

emit(asString(result));

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 41

How MapReduce Works
 User to do list:

◦ indicate:
◦ Input/output files
◦ M: number of map tasks
◦ R: number of reduce tasks
◦ W: number of machines

◦ Write map and reduce functions
◦ Submit the job

 This requires no knowledge of parallel/distributed
systems!!!

What about everything else?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 42

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 22

Data Distribution

 Input files are split into M pieces on distributed
file system
◦ Typically ~ 64 MB blocks

 Intermediate files created from map tasks are
written to local disk

 Output files are written to distributed file system

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 43

Assigning Tasks
Many copies of user program are started
Tries to utilize data localization by running

map tasks on machines with data
One instance becomes the Master
Master finds idle machines and assigns them

tasks

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 44

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 23

Execution (map)
Map workers read in contents of corresponding

input partition

 Perform user-defined map computation to create
intermediate <key, value> pairs

 Periodically buffered output pairs written to local
disk
◦ Partitioned into R regions by a partitioning function

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 45

Partition Function

Example partition function: hash(key) mod R

Why do we need this?

Example Scenario:
◦ Want to do word counting on 10 documents
◦ 5 map tasks, 2 reduce tasks

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 46

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 24

Execution (reduce)
 Reduce workers iterate over ordered intermediate

data
◦ Each unique key encountered – values are passed to

user's reduce function
◦ eg. <key, [value1, value2,..., valueN]>

 Output of user's reduce function is written to
output file on distributed file system

When all tasks have completed, master wakes up
user program

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 47

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 48

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 25

Observations
 No reduce can begin until map is complete

 Tasks scheduled based on location of data

 If map worker fails any time before reduce
finishes, task must be completely rerun

Master must communicate locations of
intermediate files

MapReduce library does most of the hard work for
us!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 49

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 50

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 26

MapReduce Execution
Details
 Single master controls job execution on multiple

slaves
 Mappers preferentially placed on same node or

same rack as their input block
◦ Minimizes network usage

 Mappers save outputs to local disk before serving
them to reducers
◦ Allows recovery if a reducer crashes
◦ Allows having more reducers than nodes

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 51

Shuffle & Sort
● The process between map and reduce
● Intermidiate output <k’ , v’> are partitioned

according to a partition function
○ Usually a simple hash function for load balance
○ Specify your own if special purpose needed

● Exchange intermidiate output if needed

● Guarantees key order within a reducer

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 52

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 27

Shuffle & Sort

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 53

Shuffle & Sort: more
details
● Within a mapper:

a. Keep emitting (k’ , v’) pairs to buffer until the spill
rate of the buffer exceeds. After exceeding, the part
of buffer is locked.

b. An independent thread sorts the data within the locked
buffer and spill it out to disk as a temporary document

c. During the sorting, the mapper is only allowed to write to the
remaining part of the buffer.

d. After the map phase is done, combine the temporary
documents into 1 document – the output of the mapper

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 54

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 28

Back to word count
● Consider “aaa aaa aaa aaa aaa bbb ccc…”
● Lots of (aaa, 1) are emitted by the mapper
● Extra overhead

○ Disk spill out
○ Network

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 55

The Combiner
● A pass executed between map and reduce
● A “mini-reduce” process that takes data from

one machine only
○ But probably different from your reduce function

● To compress / trim the output from the map
● Optional: depends on your application

○ O: word count, min/max…
○ X: median

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 56

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 29

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 57

Combiner Example
 A combiner is a local aggregation function for

repeated keys produced by same map
 Works for associative functions like sum, count,

max
 Decreases size of intermediate data

 Example: map-side aggregation for Word Count:

def combiner(key, values):

output(key, sum(values))

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 58

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 30

Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick

brown fox

the fox ate

the mouse

how now

brown cow

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1
brown, 1
fox, 1

quick, 1

the, 2
fox, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 59

MapReduce Job Execution
Flow

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 60

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 31

MR Execution Summary 1
 One map task is created for each split which then

executes map function for each record in the split.
 Multiple splits are processed in parallel.
 However, when splits are too small, the overhead of

managing the splits and map task creation begins to
dominate the total job execution time.

 For most jobs, a split size equals to the size of an HDFS
block (64 MB, by default) is better.

 Execution of map tasks results into writing output to a
local disk on the respective node and not to HDFS.

 Choosing local disk over HDFS is to avoid replication in
case of HDFS store operation.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 61

MR Execution Summary 2
 Map output is intermediate which is processed by

reduce tasks to produce the final output.
 Once the job is complete, the map output can be

thrown away. Storing it in HDFS with replication
becomes overkill.

 On node failure, Hadoop reruns the map task on
another node and re-creates the map output.

 An output of every map task is fed to the machine
where reduce task is running.

 On this machine, the output is merged and then
passed to the user-defined reduce function.

 Reduce output is stored in HDFS.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 62

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 32

Advanced Issues:
Scheduling
● One master, many workers

– Input data split into M map tasks (typically 64 MB in size)

– Reduce phase partitioned into R reduce tasks

– Tasks are assigned to workers dynamically

– Often: M=200,000; R=5,000; workers=2,000

● Master assigns each map task to a free worker
– Considers locality of data to worker when assigning task

– Worker reads task input (often from local disk!)

– Worker produces R local files containing intermediate k/v pairs

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 63

Advanced Issues:
Scheduling (cont.)
● Master assigns each reduce task to a free worker
 Worker reads intermediate k/v pairs from map workers

 Worker sorts & applies user’s Reduce op to produce the output

● Fine granularity tasks: many more map tasks than
machines
 Minimizes time for fault recovery

 Possible to have pipelined shuffling with map execution

 Better dynamic load balancing

 Why not as many map task as possbile?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 64

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 33

Advanced Issues: Fault
Tolerance
On worker failure:
● Detect failure via periodic heartbeats
● Re-execute completed and in-progress map tasks
● Re-execute in progress reduce tasks
● Task completion committed through master

On master failure:
● State is checkpointed to GFS: new master recovers &

continues

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 65

Refinement: Backup Tasks
● Problem: Slow workers significantly lengthen

completion time
○ Resouce contentions with other jobs
○ Bad disks and soft errors
○ Processor cache disabled

● Stragglers(流浪者) problem: a small number of
mappers or reducers takes significantly longer
than the others to complete

● Solution: Near end of phase, spawn backup
copies of tasks

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 66

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 34

Refinement: Locality
Optimazation
● Replicate input file blocks
● Split tasks into the size of a GFS block
● Map tasks scheduled to the same machine or

same rack with the blocks of input data

=> Each job can be done on the same machine
● Effect: Thousands of machines read input at local

disk speed
○ Without this, rack switches limit read rate

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 67

Refinement: Skipping Bad
Records
● Problem: Functions sometimes fail for

particular inputs
● Solution: Skip them!

○ On seg fault, send UDP packet to inform
master about which input caused the fault.

○ If master sees K failures for same record, skip
the record afterwards

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 68

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 35

Implications for Multi-core
Processors
● Multi-core processors require parallelism

○ But many programmers are uncomfortable writing parallel
programs

● MapReduce provides an easy-to-understand
programming model for a very diverse set of computing
problems
○ users don’t need to be parallel programming experts

● Optimizations useful even in single machine, multi-core
environment

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 69

Hadoop High-level Architecture

 Hadoop is based on two main components:
MapReduce and HDFS.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 70

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 36

Hadoop in more details

(More details in later lectures)
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 71

Hadoop/MR Architecture

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 72

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 37

MR
Exec
Flow

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 73

Problems with MapReduce

● It’s hard & low-level for developers to write
○ Most developers are familiar with SQL
○ Solution: Apache Hive

● Expensive cost for fault recovery
○ Re-execute whole MR programs
○ Solution: Apache Spark’s lineage

● Requires intensive disk I/O
○ Intermidiate data is always written to local disk
○ Solution: Apache Spark’s in-memory computing

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 74

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 38

Problems with MapReduce
● MapReduce relies heavily on disk operations

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 75

Problems with MapReduce

● When doing iterative computation
○ Bad performance due to replication and disk I/O

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 76

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 39

In-Memory Computation
is Faster

● Apache Spark in-memory computing
○ 10-100X faster than disk

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 77

Problems with MapReduce
● Spawning each Mapper/Reducer takes time

○ Solution: Worker Pool (ex. Google Tenzing, an
SQL query engine on Hadoop), it contains
running processes as Mapper/Reducer

● Not very good for iterative graph computing
○ Solution: Google Pregel for large scale graph

processing
● Not very good for interactive ad hoc queries

○ Solution: Google Dremel and BigQuery

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 78

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 40

Problem Solving with
MapReduce
 How to design MapReduce algorithms for the

following tasks
◦ Search: Output lines matching certain patterns
◦ Sort: Sorting numbers, words, …
◦ Inverted index: build index from words to

documents
◦ Data mining algorithms (sequential pattern

mining)
◦ BFS on graph*
◦ PageRank*

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 79

MapReduce
Algorithm Design

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 80

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 41

Recap: MapReduce
Dataflow

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

In
pu

t
da

ta

O
ut

pu
t

da
ta

"The Shuffle"

Intermediate
(key,value) pairs

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 81

Recap: MapReduce
 Programmers must specify:

map (k, v) → list(<k’, v’>)
reduce (k’, list(v’)) → <k’’, v’’>
◦ All values with the same key are reduced together

 Optionally, also:
partition (k’, number of parƟƟons) → parƟƟon for k’
◦ Often a simple hash of the key, e.g., hash(k’) mod n
◦ Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
◦ Mini-reducers that run in memory after the map phase
◦ Used as an optimization to reduce network traffic

 The execution framework handles everything else…

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 82

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 42

“Everything Else”
 The execution framework handles everything else…

◦ Scheduling: assigns workers to map and reduce tasks
◦ “Data distribution”: moves processes to data
◦ Synchronization: gathers, sorts, and shuffles intermediate data
◦ Errors and faults: detects worker failures and restarts

 Limited control over data and execution flow
◦ All algorithms must expressed in m, r, c, p

 You don’t know:
◦ Where mappers and reducers run
◦ When a mapper or reducer begins or finishes
◦ Which input a particular mapper is processing
◦ Which intermediate key a particular reducer is processing

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 83

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems Introduction 84

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 43

Hadoop/MR on your Desk
 You can have a virtual Hadoop/MapReduce cluster

easily with VM software such as VirtualBox.
 Download/install VirtualBox and configure a Linux

VM(e.g. Ubuntu)
 Setting up a shared folder between host OS and

VM is quite convenient for file transfer.

 On the VM, download/install Java, Hadoop and
Python.

 There will be trouble ahead but the process is a
good training!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 85

Modes of Installation
 You may setup a Hadoop cluster in one of the

three modes:
◦ Local (Standalone) Mode
◦ Pseudo-Distributed Mode
◦ Fully-Distributed Mode

 If you are not familiar with Linux, start with the
standalone mode.

 If you were a Linux guru, you may setup three or
more VMs and take on the fully-distributed mode
directly.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 86

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 44

Recap: Word Count

map(key , value)
{

}

reduce(rkey , rvalues)
{

}

String[] words = value.split(" ");
foreach w in words

emit(w, 1);

Integer result = 0;
foreach v in rvalues

result = result + v;
emit(rkey, result);

:URL :Document

:String :Integer[]

reduce gets all the
intermediate values
with the same rkey

These types can be (and often are)
different from the ones in map()

Produces intermediate
key-value pairs that

are sent to the reducer

Any key-value pairs emitted
by the reducer are added to

the final output

These types depend on
the input data

Both map() and reduce() are
stateless: Can't have a global

variable that is preserved
across invocations!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 87

MapReduce in Python
 Hadoop is written in Java. It is only nature that

many MR programs are written in Java.
 Hadoop MR programs can be written in languages

such as Python, C++, Ruby, etc.
 Traditionally, a Python code is translated using

Jython into a Java jar file for execution.

 However, this is not very convenient and surely not
very Pythonic!

 We will show you another way of writing Python
MR code with Hadoop Streaming.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 88

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 45

Hadoop Streaming API
 With streaming API, you can write

MR program in all languages that
can read/write standard I/O.

 Both the mapper and reducer use
stdin/stdout for reading/writing.

 Mappers read from stdin for input
data and print results to stdout.

 Reducers read mapper output
from stdin and print results to
stdout.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 89

mapper.py
#!/usr/bin/env python3

import sys to read/write data from/to STDIN/STDOUT

import sys

for line in sys.stdin: # input from STDIN

line = line.strip() # rm leading/trailing whitespace

words = line.split() # split the line into words

for word in words: # each with a count of 1

write the results to STDOUT;

will be the input of the reducer.py

tab-delimited; word appears once(1)

print("%s\t%s" % (word, 1))

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 90

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 46

Data File and Execution
host:~/Documents$ cat wc_data.txt

NDHU CSIE is the best CS department

Welcome to CSIE for CS degrees

host:~/Documents$ cat wc_data.txt | python3 mapper.py

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 91

NDHU 1
CSIE 1
is 1
the 1
best 1
CS 1
department 1
Welcome 1
to 1
CSIE 1
for 1
CS 1
degrees 1

reducer.py(1)
#!/usr/bin/env python3
import sys
dictionary to map words to counts
wordcount = {}

input comes from STDIN
for line in sys.stdin:

rm leading and trailing whitespace
line = line.strip()

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 92

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 47

reducer.py(2)
slit the input from mapper.py into 2 elements

word, count = line.split('\t', 1)

convert count (currently a string) to int

try:

count = int(count)

except ValueError: # simply ignore if err

continue

try: # accumulate the count

wordcount[word] = wordcount[word] + count

except:

wordcount[word] = count

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 93

reducer.py(3)
write the tuples to stdout

for word in wordcount.keys():

print("%s\t%s" % (word, wordcount[word]))

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 94

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 48

How to Submit ?

 Programs are local files.
 Input/output files are on the HDFS.

 Paths may be different based on your system.
 Make it work and send me video to demonstrate.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 95

hadoop jar /usr/local/hadoop/share/hadoop/tools/lib/hadoop-
streaming-3.3.6.jar -D mapred.reduce.tasks=2 -input
/user/showyang/wc_data.data -output /user/showyang/output
-mapper "python3 mapper.py" -reducer "python3 reducer.py"
-file mapper.py -file reducer.py

run.sh

MapReduce Commands
 You can also invoke all mapreduce commands by

the bin/mapred script.
mapred [SHELL_OPTIONS] COMMAND

[GENERIC_OPTIONS] [COMMAND_OPTIONS]
 The streaming command looks like:
mapred streaming [genericOptions]

[streamingOptions]
 Try submitting your Python Word Count job with

the mapred script. (exercise)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 96

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 49

MapReduce Jobs
 Tend to be very short, code-wise

◦ IdentityReducer is very common

 “Utility” jobs can be composed
 Represent a data flow, more so than a

procedure

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 97

MR Algorithm Design
Principles
 Think data, not flow!
 Decompose the problem into modules connected

by data flow, not algorithmic flow.
 Design MR job(s) for each module.

 Link jobs with (key, value) pairs.

 Key and value can potentially be anything !!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 98

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 50

Sorting

Inputs:
 A file of values to sort, one value per line.
Mapper key is file ID, line number
Mapper value is the contents of the line

 This can be easily generalized into sorting
multiple files. (Exercise)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 99

Sort Algorithm
 Takes advantage of reducer properties: (key, value)

pairs are processed in order by key; reducers are
themselves ordered

 Mapper: Identity function for value
(k, v) (v, _)

 Reducer: Identity function (k’, _) -> (k’, “”)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 100

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 51

Sort: The Trick
 (key, value) pairs from mappers are sent to a

particular reducer based on hash(key)
 Must pick the hash function for your data such

that k1 < k2 => hash(k1) < hash(k2)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 101

Searching
 Given a set of files containing lines of text and a

search pattern to find.
 Determine the files that matches the pattern.
 Can be easily generalized into determining (file,

[l1, l2, …]), i.e. all lines that match the pattern.
(Exercise)

 Search pattern sent as special parameter

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 102

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 52

Search Algorithm
Mapper:

◦ Given (fileID, some text) and “pattern”, if “text”
matches “pattern” output (filename, _)

 Reducer:
◦ Identity function

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 103

Search: An Optimization
Once a file is found to be interesting, we only

need to mark it that way once
 Use Combiner function to fold redundant

(filename, _) pairs into a single one
◦ Reduces network I/O

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 104

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 53

Inverted Index
 Given a set of document(text) files.
 For each word, determine the docs in which the

word appears. (Boolean)
 For each word, determine the docs & positions

where the word appears. (Exercise)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 105

Inverted Index Algorithm

 Mapper key is file ID
 Mapper value is the contents of the file.

 Mapper: For each word in (fileID, words), map to
(word, fileID)

 Reducer: For each word, output (word, [f1, f2, …])

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 106

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 54

Indexing: Data Flow

CSIE59830/CSIEM0410/AIIA50050 Big
Data Systems MapReduce & Hadoop 107

TF-IDF
 Term Frequency – Inverse Document

Frequency
◦ Relevant to text processing
◦ Common web analysis algorithm
◦ To determine the importance of a term within a

corpus (set of docs).

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 108

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 55

The Algorithm, Formally

• | D | : total number of documents in the corpus
• : number of documents where the term ti appears (that is).

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems MapReduce & Hadoop 109

Information We Need
 Number of times term X appears in a given

document (ni)
 Total number of terms in each document (Σknk)

 Number of documents X appears in (|{d : ti d}|)
 Total number of documents (|D|)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 110

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 56

Job 1: Word Frequency in
Doc
 Mapper

◦ Input: (docname, contents)
◦ Output: ((word, docname), 1)

 Reducer
◦ Sums counts for each word in document
◦ Outputs ((word, docname), n)

 Combiner is the same as Reducer

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 111

Job 2: Total Word Counts
For Docs
 Mapper

◦ Input: ((word, docname), n)
◦ Output: (docname, (word, n))

 Reducer
◦ Sums frequency of individual n’s in same doc
◦ Feeds original data through
◦ Outputs ((word, docname), (n, N))

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 112

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 57

Job 3: Word Frequency In
Corpus
 Mapper

◦ Input: ((word, docname), (n, N))
◦ Output: (word, (docname, n, N, 1))

 Reducer
◦ Sums counts for word in corpus
◦ Outputs ((word, docname), (n, N, m))

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 113

Job 4: Calculate TF-IDF
 Mapper

◦ Input: ((word, docname), (n, N, m))
◦ Assume D is known (or, easy MR to find it, exercise!)
◦ Output ((word, docname), TF*IDF)

 Reducer
◦ Just the identity function

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 114

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 58

Working At Scale
 Buffering (doc, n, N) counts while summing 1’s into

m may not fit in memory
◦ How many documents does the word “the” occur in?

 Possible solutions
◦ Ignore very-high-frequency words (AKA stop words)
◦ Write out intermediate data to a file
◦ Use another MR pass

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 115

Final Thoughts on TF-IDF

 Several small jobs add up to full algorithm
 Lots of code reuse possible

◦ Stock classes exist for aggregation, identity

 Jobs 3 and 4 can really be done at once in same
reducer, saving a write/read cycle

 Very easy to handle medium-large scale, but must
take care to ensure flat memory usage for largest
scale

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 116

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 59

Sequential Activity Mining
in Mobile Environments

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems MapReduce & Hadoop 117

Sequential Activity Mining

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 118

support=2

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 60

Activity Mining V1
 Direct conversion from the original

algorithm.
 Job1: Large-1 activity set generation.

◦ Mapper: given (TID, Behavior_Items), generate
all possible (item, 1).

◦ Reducer: for each item, sum the count and emit
all ((item), n) for items with n >= support.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 119

Activity Mining V1
 Job2: Large-2 ~ n activity set generation.
 Mapper: Given a (activityset, count) pair (A, n),

emit (prefix of A except the last item, last item).
 Reducer: Given (prefix, [m1, m2, …]), emit all

possible ((prefix, mi, mj), _) as candidates.

 Job3: Given each candidate pattern, count
frequency in Transaction Data Base (D) and keep
only those with enough support. (Exercise)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 120

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 61

Activity Mining V1
 The final result is the union of the output of all

reducers that generate (ActivitySet, count)

 Optimization: (Exercise)
◦ Use combiner to compute local sums.
◦ Use more than one reducer for candidate generation.
◦ Use efficient MR for Transaction DB scanning.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 121

Activity Mining V2
 One pass MapReduce algorithm
 Mapper: Given (TID, Behavior_Items), generate all

possible (pattern, 1).
 Reducer: Sum the count for the same pattern and

emit (pattern, n) if n >= support.

 That’s it !!
 Optimization: (Exercise)

◦ Parallelize the mapper?
◦ Stop counting whenever n>= support?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 122

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 62

Hadoop 1 (MRV1) Revisit
 Hadoop version 1.0 is referred as

MARV1(MapReduce v1)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 123

Problems with MRV1
 Only for batch processing, not real-time processing
 MRV1 & HDFS support up to 4000 nodes/cluster
 JobTracker’s load too heavy, single point of failure
 NameNode’s load too heavy, single point of failure
 Scalability issues due to problems above
 No Multi-tenancy support
 Only run MapReduce jobs, can not support other

frameworks
 Utilization of resources is inefficient

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 124

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 63

Hadoop v2.0
 Introducing YARN(Yet Another Resource

Negotiator), a resource management system for
Hadoop (also known as MapReduce 2 or MRV2)

 Act as a connecting link between high level
applications and low level Hadoop environment

 Transform Hadoop from only MapReduce
framework to big data processing core

 Scale much better than Hadoop 1.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 125

Hadoop 1 vs Hadoop 2
 Hadoop 2 offers better performance, scalability,

fault-tolerance and multiple processing
frameworks.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 126

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 64

YARN Components
 Resource Manager: Runs on a master daemon and

manages resources across the cluster.
 Node Manager: Run on the slave daemons and are

responsible for the execution of a task on every
single Data Node.

 Application Master: Manages the user job lifecycle
and resource needs of individual applications. It
works along with the Node Manager and monitors
the execution of tasks.

 Container: Collection of resources such as RAM,
CPU cores, Network, HDD etc on a single node.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 127

Hadoop YARN Architecture

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 128

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 65

YARN Benefits
 Split Job Tracker into separate Resource Manager

and Application Manager (more later)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 129

 Benefits:
◦ Highly scalability
◦ Highly availability
◦ Supports multiple

programming models
◦ Supports multi-tenancy
◦ Supports multiple namespaces
◦ Improved cluster utilization
◦ Improve horizontal scalability

How
does
YARN
(MRV2)
works?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 130

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 66

Failure Recovery in YARN
 Task failure, same as in MapReduce 1
 Application Master failure:

◦ Resource Manager notices failed AppMaster
◦ Resource Manager starts a new instance of AppMaster

in new container
◦ Client experiences a timeout and get a new address of

AppMaster from ResourceManager

 Resource Manager failure:
◦ Resource Managers have checkpointing mechanism

which saves its state to persistent storage.
◦ After crash, administrator brings new Resource

Manager up and it recovers saved state.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 131

What’s New in Hadoop 3?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 132

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 67

3.0 Key Advancements
 Erasure Coding: Introduce the concept of erasure

coding, a more storage-efficient alternative to
traditional replication.

 Improved Resource Utilization: Introduce
containerization with Docker and Kubernetes, allowing
for better isolation, resource allocation, and efficient
utilization of cluster resources.

 Enhanced Data Processing Engines: Introduce
improvements to existing data processing engines
like MapReduce and Hive. It also provide better
integration and support for newer engines like Apache
Spark and Apache Flink, enabling faster and more
flexible data processing workflows.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 133

3.0 Key Advancements
 Namenode Federation and High Availability: Address

the scalability and availability challenges of the
Namenode by introducing Namenode Federation and
the standby Namenode. This improved fault tolerance,
reduced downtime, and enhanced the
overall reliability of the Hadoop cluster.

 GPU Support: Embrace the power of GPUs by
introducing support for GPU acceleration. This
enabled organizations to leverage GPU resources for
parallel processing and achieve significant
performance gains in data-intensive tasks like machine
learning and deep learning.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 134

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 68

Erasure Coding
 Hadoop 2.x uses replication (default 3). Storage

overhead is 200%.
 Erasure coding stores 1 parity block for 2 data

blocks. Same level of fault tolerance with 50%
overhead.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 135

Some Other 3.0 Features
 Opportunistic Containers have low priority than

Guaranteed containers and wait at the
NodeManager when no resources is available.

 Distributed Scheduling incorporates opportunistic
containers for more flexible scheduling.

 Support for more than two NameNodes made the
system more highly available.

 Intra-DataNode Balancer balances the disk load in
a DataNode.(HDFS balancer addresses only
internode data skew)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 136

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 69

Hadoop 3.x vs 2.x
 Should use Hadoop 3 whenever possible!!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 137

File System Compatability HDFS, FTP, S3, Windows Azure Storage Blobs Support all file systems

Some HDFS Commands
 Create a directory in HDFS
hdfs dfs -mkdir /home/hadoop/dir1
 List the content of a directory
hdfs dfs -ls /home/hadoop
 Upload and download a file in HDFS
hdfs dfs -put file.txt /home/hadoop/dir1/
hdfs dfs -get /home/hadoop/dir1/file.txt /home/hadoop
 Look at the content of a file
hdfs dfs -cat /home/hadoop/dir1/book.txt
 Many more commands, similar to Linux

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 138

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 02 Hadoop & MapReduce

Note 70

Assignment 1
 Test run the word count example. (No need to turn

in anything.)
 Implement the Sorting algorithm.
 Implement the Searching algorithm.

 Implement the TF-IDF computation algorithm.
 Implement the Activity Mining algorithms.

(optional)
 Due date: three weeks!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 139

