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Note 1

General Purpose 
Computing Systems II:

In-memory Computation 
& Spark

Shiow-yang Wu (吳秀陽)
CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly 
taken with permission and courtesy 

from Professor Shih-Wei Liao of NTU.

Outline
 Introduction

○ Motivation
○ Solution: In-memory computation

 Challenges
○ Designing a shared data abstraction with 

■ Scalability
■ Data locality
■ Fault tolerance

 Resilient Distributed Datasets(RDD)
○ Design policy
○ Programming model
○ Implementation of RDD
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Note 2

Outline
 DataFrames

○ What and why
○ DataFrames vs RDDs
○ Operations/transformations

 Datasets
○ What and why
○ Datasets vs DataFrames
○ Compile-time type safety and object-oriented 

programming

 RDD vs DataFrame vs Dataset
 What’s new in Spark 3.5?
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Problems with Hadoop 
MapReduce
 When doing iterative computation

○ Bad performance due to replication & disk I/O
○ Even worse: Communication overheads in the 

distributed file system
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Note 3

Problems with Hadoop 
MapReduce

• MapReduce greatly simplified big data analysis
• But as soon as it got popular, users wanted more:

• More complex, iterative multi-pass analytics 
(e.g. ML, graph)

• More interactive ad-hoc queries

•Requires intensive disk I/O 
• Intermediate data is always written to local disk

make poor performance
•solution: Apache Spark’s in-memory computing
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Solution: Keep the Data in 
Memory
 Apache Spark’s in-memory computing

o 10-100X faster than disk

 Sharing at memory speed
 Latest release: Spark 3.5.0 released (Sep 13, 2023)
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Note 4

Sort Competition
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Hadoop MR
Record (2013)

Spark
Record (2014)

Data Size 102.5 TB 100 TB

Elapsed Time 72 mins 23 mins

# Nodes 2100 206

# Cores 50400 physical 6592 virtualized

Cluster disk 
throughput

3150 GB/s
(est.) 618 GB/s

Network dedicated data 
center, 10Gbps

virtualized (EC2) 10Gbps 
network

Sort rate 1.42 TB/min 4.27 TB/min

Sort rate/node 0.67 GB/min 20.7 GB/min

Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records)
http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-
sorting.html

Spark, 3x 
faster with 
1/10 the 
nodes
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World Record on Sorting
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Note 5

More Records
 AliCloud

(阿里雲) 
(2015)
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More Records
 Tencent Cloud 

(騰訊雲) 
(2016)

 Other record 
holders over 
the years: 
http://sortben
chmark.org/
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Note 6

Commercial Cloud Platforms
 Big 3 (Amazon AWS, Microsoft Azure, Google GCP)
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2021 Cloud Report
 By Cockroach Labs.
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GCP: highest 
raw throughput

AWS: 
unbeatable 

network 
latencies

Azure: best 
IOPS
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Note 7

2022 Cloud Report
 Detailed comparison with 56 cloud instances and 

3000+ benchmark runs.
 Testing Big 3 performance with benchmarks on 

OLTP, CPU, Network, and Storage I/O.
 No overall winner

 6 key insights
 (https://www.cockroachlabs.com/guides/2022-

cloud-report/)
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The Working Set Idea
 Peter Denning, “The Working Set Model for Program 

Behavior”, Communications of the ACM, May 1968.
◦ http://dl.acm.org/citation.cfm?id=363141

 Idea: conventional programs generally exhibit a high 
degree of locality, returning to the same data over and 
over again.

 Operating system, virtual memory system, compiler, 
and micro architecture are designed around this 
assumption!

 Exploiting this observation makes programs run 100X 
faster than simply using plain old main memory in the 
obvious way.
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Note 8

Spark
 Exploit the working set idea
 Fast and expressive cluster computing system 

interoperable with Apache Hadoop
 Improves efficiency through:

 In-memory computing primitives

 General computation graphs (DAG)

 Improves usability through:
 Rich APIs in Scala, Java, Python, R

 Interactive shell

 The core processing engine of BDAS
(Berkeley Data Analytics Stack)
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Up to 100× faster
(2-10× on disk)

Often 2-10× less 
code
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Spark History
 2008 – Yahoo! Hadoop team collaboration w Berkeley 

AMP/RAD Lab to begin the project
 2009 – Spark example built for Nexus(a common 

substrate for cluster computing) -> Mesos(a 
distributed systems kernel)

 2011 – “Spark is 2 years ahead of anything at Google”
– Conviva(a company for online video optimization 
and analytics) seeing good results w Spark

 2012 – Yahoo! working with Spark/Shark(now Spark 
SQL)

 2013 – donated to Apache
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Note 9

Spark History
 2014 – became a Top-Level Apache Project
 2014(Nov) – Databricks(company) set a new world 

record in sorting using Spark
 2015 – 1000+ contributors, one of most active Apache 

projects/open source big data projects
 2016 – Spark 2.0 released. Spark SQL one of the best 

Big Data SQL engines, new Structured Streaming APIs
 2020 – Spark 3.0 released. Spark SQL/Core, adaptive 

query execution, dynamic partition pruning, 
languages/systems upgrades, improved performance…

 2021 and beyond – Blooming Spark Ecosystem
 Latest release: Spark 3.5.0 (Sep 13 2023)
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Berkeley Data Analytics 
Stack(BDAS)
 An open source software stack that integrates 

software components being built by the Berkeley 
AMPLab to make sense of Big Data

 The AMPLab was launched at Jan 2011, not active 
after last publication at 2017.
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 Goal: Next Generation of 
Analytics Data Stack
• Berkeley Data Analytics Stack 

(BDAS)
• Release as Open Source
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Note 10

The Berkeley AMPLab
 Funding & 

Sponsors
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Berkeley Data Analytics 
Stack

• Goals:

• Easy to combine batch, streaming, and interactive 
computations

• Easy to develop sophisticated algorithms
• Compatible with existing open source ecosystem 

(Hadoop/HDFS) 

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 20



CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 11

Berkeley Data Analytics 
Stack(BDAS)
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(Stochastic
Learning)

(Distributed Storage)(Queries on Compressed Data)

(Predictive 
Services)

(Generalized Online 
Aggregation)

(Queries w bounded errors 
& time)
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BDAS Main Components
 Three main components:

○ Mesos: a distributed systems kernel and
resource manager that provides efficient 
resource isolation and sharing across 
distributed applications, or frameworks

○ Alluxio(Tachyon): memory-centric 
distributed storage system enabling 
reliable data sharing at memory-speed 
across cluster frameworks

○ Spark:  a cluster computing engine that 
aims to make specified computing(data 
analytics, ad-hoc) fast

 All three continue to grow after 
AMPLab closed
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Note 12

Why Spark?
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Spark – Building Blocks
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Note 13

Spark Ecosystem
 Spark integrates with various big data frameworks
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Unified Analytics with Spark
 Spark can combine different tools/APIs into a 

unified analytics system.
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Note 14

Spark Community
 The largest big data open source community, 2000+ 

contributors, used by 80% of the Fortune 500.
 36,000+ stars to Spark project on GitHub.
 80,000+ Spark related questions on Stack Overflow

 Various other Spark-focused online forums and 
groups.

 Active and growing community contributes to 
Spark’s development, knowledge sharing, and 
troubleshooting assistance.
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Key Advantages of Spark
 Speed - up to 100x faster than Hadoop MapReduce

in memory, or 10x faster on disk
 Ease of Use - Write applications quickly in Java, 

Scala, Python, R, SQL.
 A Unified Engine - Combine SQL, streaming, and 

machine learning, graph & complex analytics.

 Runs Everywhere - Spark runs on Hadoop, Mesos, 
Kubernetes, standalone, or in the cloud.  It can 
access diverse data sources including HDFS, 
Cassandra, HBase, MongoDB and S3.
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Note 15

Additional Goals of Spark
•Low latency (interactive) queries on historical data: 

enable faster decisions 
• E.g., identify why a site is slow and fix it

•Iterative Analytics: graph processing , machine 
learning, streaming, …

• E.g., PageRank, MaxFlow, K-Means
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Great but not Perfect
 High memory consumption which results in higher 

hardware and operational costs.
 Hard learning curve
 Complex performance parameters

◦ Parameter settings significantly affect performance
◦ Performance tuning/optimization not easy

 Generality can be a double-edged sword
◦ Tools optimized for specific domain(s) (such as Presto, a 

distributed SQL engine for interactive analytic queries) are 
getting more and more popular.

 Limited support for real-time processing
◦ Tools like Apache Flink or Apache Storm might be better for 

genuine real-time processing
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Note 16

The Working Set Idea in 
Spark
 The user should identify which datasets they want to access.
 Load datasets into memory, and use them multiple times.
 Keep newly created data in memory until explicitly told to 

store it.
 Master-Worker architecture:  Master (driver) contains the 

main algorithmic logic, and the workers simply keep data in 
memory and apply functions to the distributed data.

 The master knows where data is located, so it can exploit 
locality.

 The driver is written in a functional programming language 
(Scala) which can be easily parallized.
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Approach
• Aggressive use of Memory

• Memory transfer rate >> Disk 
transfer rate

• Memory density (capacity) still 
grows with Moore’s Law 

• RAM/SSD hybrid memories
• Many datasets already fit into 

memory 
• The inputs of over 90% of jobs in 

Facebook, Yahoo!, and Bing clusters fit 
into memory

• E.g., 1TB = 1 billion records @ 1 KB 
each 
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Note 17

Spark vs Hadoop
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Approach
• Trade between result accuracy and response times 
• Why?

• In-memory processing does not guarantee interactive 
query processing

• E.g., ~10’s sec just to scan 512 GB RAM!
• Gap between memory capacity and transfer rate 

increasing 

• Trade between response time, quality, and cost 
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Note 18

Challenges for In-Memory 
Computation
● Provide distributed memory abstractions for 

clusters to support apps with working sets
● Retain the attractive properties of 

MapReduce:
○ Simple programming model
○ Fault tolerance (for crashes & stragglers)
○ Data locality
○ Scalability
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Challenge: Fault Tolerance
● Existing in-memory storage systems have interfaces based 

on fine-grained updates
○ Read/Write to cells
○ E.g. Database, key-value store, distributed memory

● Requires replicating data or logs for fault tolerance
○ Very inefficient & expensive under Big Data
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Challenge: 
How to design a distributed memory abstraction 
that is both fault-tolerant and efficient?
Solution: Augment data flow model with RDD
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Note 19

Spark Architecture
 The in-memory distributed computing is achieved 

through two key abstractions: RDD and DAG
 Resilient Distributed Datasets (RDDs) : immutable 

and distributed collections of obejcts that can be 
processed in parallel. (more details later)

 Directed Acyclic Graph (DAG) : an abstraction to 
model the transformations applied to RDDs.

 Programmers model data with RDDs and the 
application logic as a DAG. Then submit it to the 
Spark cluster for execution.
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Spark: Runtime Architecture
● Driver: Spark application program
● SparkContext: heart of Spark app to establish a 

connection to the Spark Execution environment
● Executors: Compute and store distributed data
● Cluster Manager: Maintain a cluster of machines 

consisting of master and workers to run Spark 
applications.
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Note 20

Modes of Execution
 Cluster Mode

◦ Most common way of running Spark applications
◦ A pre-compiled driver program (in Scalar, Python, JAR, 

R, …) is submitted to the cluster manager.
◦ A driver process and executor processes are launched 

and maintained by the cluster manager on worker 
nodes.

 Client Mode
◦ Almost the same as cluster mode except that the driver 

process remains on the client machine.
◦ The cluster manage maintains the executor processes.
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Modes of Execution
 Local Mode

◦ The entire Spark application is run on a single machine
◦ Still observers parallelism through threads
◦ A common way for local development, testing and 

debugging
◦ Not recommended for running production applications

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 40



CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 21

Client vs Cluster Mode
 In client mode, driver and Spark Session/Context 

are on local machine. Application Master(AM) acts 
as an Executor Launcher.
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Client Mode Architecture
 Runtime architecture of client mode
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Note 22

Client vs Cluster Mode
 In cluster mode, the packaged application is 

submitted to YARN which starts an AM.  The driver 
starts in the AM container.
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Cluster Mode Architecture
 Runtime architecture of cluster mode
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Note 23

Resilient Distributed 
Datasets (RDD)
● Distributed data abstraction

○ for in-memory computation on large cluster

● Read-only, partitioned records
○ Only way to “write” is to create a new RDD
○ Partitions are scattered over the cluster

● Only coarse-grained operations are allowed
○ map, join, filter ...
○ operate on the whole dataset 
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The reasons of the
designs will be
discussed later.
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Resilient Distributed 
Datasets (RDD)
● Lazy Evaluation

○ Two types of operations on RDD: Transformations & 
Actions

○ Transformations: create a new dataset from an 
existing one
 do not compute right away but add this record to Lineage

 only computed when an action requires a result

○ Actions: return a value after a computation on the 
dataset
 It would execute all operation of the Lineage
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Note 24

RDD Features
 Key 

features 
of RDDs
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DataFrames & SparkSQL
 A DataFrame is a distributed collection of rows under named columns. 

Better than RDDs for structured data.

 Similar to a SQL table in relational database, Python Pandas Dataframe or 
R’s DataTables
◦ Immutable once constructed
◦ Lazy evaluation and track lineage
◦ Enable distributed computations

 How to construct Dataframes
◦ Read from files(e.g., CSV, JSON, Parquet, …)
◦ Transforming an existing DFs(Spark or Pandas)
◦ Parallelizing a python collection list
◦ Apply transformations and actions

 Dataframes support a wide range of operations and 
transformations (e.g., filtering, aggregating, joingin, grouping)
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Note 25

DataFrame Examples
# import pyspark class Row from module sql

from pyspark.sql import *

# Create departments

dept1 = Row(id='123456', name='Computer Science') 

dept2 = Row(id='789012', name='Pyhsics') 

# Create Employees

Employee = Row("firstName", "lastName", "email", "salary")

emp1 = Employee('michael', 'armbrust', 'no-reply@Berkeley.edu', 100000)  

emp2 = Employee('xiangrui', 'meng', 'no-reply@stanford.edu', 120000)  

emp3 = Employee('matei', None, 'no-reply@waterloo.edu', 140000)

emp4 = Employee(None, 'wendell', 'no-reply@berkeley.edu', 160000)
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DataFrame Examples
# Create the DepartmentWithEmployees instances from Departments and Employees

deptWithEmp1 = Row(department=dept1, employees=[emp1, emp2])

deptWithEmp2 = Row(department=dept2, employees=[emp3, emp4])

deptWithEmp3 = Row(department=dept3, employees=[emp1, emp4])

deptWithEmp4 = Row(department=dept4, employees=[emp2, emp3])

print(dept1)

print(emp2)

print(deptWithEmp1.employees[0].email)

# More on DataFrame later
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Note 26

RDDs vs. DataFrames
 RDDs provide a low level interface into Spark
 DataFrames have a schema
 DataFrames are cached and optimized by Spark

 DataFrames are built on top of the RDDs and the 
core Spark API
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Dataset cs. DataFrames
 A Dataset is a distributed collection of data that 

provides the benefits of strong typing, compile-
time type safety, and object-oriented 
programming.

 Essentially a strongly-typed version of DataFrame
 Each row is an object of a specific type
 Can be created from different sources (e.g., RDDs, 

DataFrames, structured data files, Hive tables, 
external databases, …)

 Compile-time type safety and OOP can help catch 
errors at compile time and improve code quality.
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Note 27

Spark Operations

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 53

Transformations
 Immutable data
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Note 28

Narrow vs Wide Transformations
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Actions
What is an action

◦ Aggregates distributed data into values
◦ Modeling a summary stage of the workflow
◦ Triggers the execution of the DAG
◦ Returns the results to the driver
◦ Writes the data to HDFS or to a file
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Note 29

Operations on RDD

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Transformations
(create a new RDD)

map
filter
sample
groupByKey
reduceByKey
sortByKey
intersection

flatMap
union

join
cogroup

cross
mapValues

reduceByKey

Actions
(return results to 
driver program)

collect                                                         first 
Reduce                                                       take
Count                                           takeOrdered
takeSample countByKey
take                                                            save
lookupKey foreach
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Directed Acyclic Graphs (DAG)
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A

B

S

C

E

D

F

DAGs track dependencies (also known as Lineage)
 nodes are RDDs or DataFrames
 arrows are Transformations 
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Note 30

Generality of RDDs
 Spark’s combination of data flow with 

RDDs/DataFrames/Datasets unifies many proposed 
cluster programming models
◦ General data flow models: MapReduce, Dryad, SQL
◦ Specialized models for stateful apps: Pregel (BSP), 

HaLoop (iterative MR), Continuous Bulk Processing

 Instead of specialized APIs for one type of app, give 
user first-class control of distributed datasets
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RDDs vs. DSM
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Note 31

Spark Workflow
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FlatMap Map groupbyKey

Spark 
Context

Driver 
Program

Collect
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Lineage
● Records of operations to the data(RDDs)

○ Similar to logs

● Maintained by the master node
○ Centralized metadata
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RDD
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Note 32

Lineage: Progress of 
Computation

● Each RDD consists of partitions
○ Detailed lineage structure is a DAG
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Lineage: Lazy Evaluation
● Partitions of RDDs are not necessarily in RAM

○ Only cached partitions are in preserved
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Only dark rectangles 
are cached partitions
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Note 33

Fault Tolerance using 
Lineage
● RDD can only be created 

(written) from
○ Static Storage
○ Other RDDs

● Only coarse-grained 
opeations
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Lost partitions can be re-computed efficiently

Less information to maintain
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Core Concepts
 Job: A piece of code which reads some input data from HDFS or local, 

performs some computation and writes some output data.

 Stages: Jobs are divided into stages. Stages are divided based on 
computational boundaries. All computations (operators) cannot be 
updated in a single stage. It happens over many stages.

 Tasks: Each stage has some tasks, one task per partition. One task is 
executed on one partition of data on one executor (machine).

 DAG: DAG stands for Directed Acyclic Graph, which represents the 
flow and relationships of operators.

 Executor: The process responsible for executing a task.

 Master: The machine on which the Driver program runs

 Slave: The machine on which the Executor program runs
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Note 34

Architectural Components
 Spark cluster: a collection of machines connected 

to each other running Spark.
 Spark Master: the node that schedules and 

monitors the jobs assigned to the Workers.
 Spark Worker: receive commands from the Master, 

launch executors, execute the assigned tasks. 

 Spark Executor: an executor inside a worker which 
executes the assigned tasks.

 Spark Driver: the coordinator between master and 
workers, distribute tasks to executors.
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SparkContext (SC)
 The master of any Spark application
 Enable Spark Driver to access the cluster through 

resource manager(RM)
 RM can be any of YARN, MESOS, Spark’s cluster 

manager, etc.

 Provide functions for getting/setting configuration, 
creating objects, scheduling/canceling jobs, etc.

 In Spark shell, it is automatically created for you.
 In your app, you need to set it explicitly.
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Note 35

Functions of SparkContext
 SparkContext is the entry gate of Spark 

functionality.  Any Spark driver app must create 
one before anything else.
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Spark Runtime Architecture
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Note 36

Spark Application in Cluster
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How Spark Applications 
run on YARN
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Note 37

Job Execution with RDDs
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RDD partitions

Filter, map...

Collect...
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Runtime Components
 Spark Driver: 

◦ separate process to execute user applications
◦ creates SparkContext to schedule jobs execution and 

negotiate with cluster manager

 Executors:
◦ run tasks scheduled by driver
◦ store computation results in memory/disk or off-heap
◦ interact with storage systems

 Cluster Manager:
◦ Spark Standalone
◦ Mesos
◦ YARN
◦ Kubernetes
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Note 38

Runtime Components
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Component Details
 SparkContext

◦ represents the connection to a Spark cluster, and can be used to create 
RDDs, accumulators and broadcast variables on that cluster

 DAGScheduler
◦ computes a DAG of stages for each job and submits them to 

TaskScheduler, determines preferred locations for tasks (based on 
cache status or shuffle files locations) and finds minimum schedule to 
run the jobs

 TaskScheduler
◦ sending tasks to the cluster, running them, retrying if there are failures, 

and mitigating stragglers
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Note 39

Component Details
 SchedulerBackend

◦ backend interface for scheduling systems that 
allows plugging in different implementations 
(Mesos, YARN, Standalone, local)

 BlockManager
◦ provides interfaces for putting and retrieving 

blocks both locally and remotely into various 
stores (memory, disk, and off-heap)
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Job Scheduling
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rdd1.join(rdd2)
.groupBy(…)
.filter(…)

RDD Objects

build operator DAG

DAGScheduler

split graph into 
stages of tasks
submit each 
stage as ready

DAG

TaskScheduler

TaskSet

launch tasks via 
cluster manager
retry failed or 
straggling tasks

Cluster
manager

Worker

execute tasks

store and serve 
blocks

Block 
manager

Threads
Task

source: https://cwiki.apache.org/confluence/display/SPARK/Spark+Internals
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Note 40

Other Issue: Dealing with 
Stragglers
● Speculative Execution

○ Observe the process of the tasks of a job
○ Launch duplicates of those tasks that are slower
○ It then becomes a race between the original 

and the speculative copies
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Other Issue: Dependency

● Execution can be pipelined

● Faster to recompute
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Narrow Dependency:

● 1/N-to-1
Wide Dependency:
● N-to-N
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Note 41

Other Issue: Memory 
Management
● Problem:

○ Some RDDs (partitions) are too large to store in 
some worker’s memory

○ These RDDs are costly to re-compute

● Solution: Use hard disks
○ Swap RDDs out under LRU eviction policy
○ Users can set persistence priority to RDDs
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Other Issue: Optimization
● Persistence

○ Users can indicate which RDDs they will reuse
=> save them in memory rather than 
recomputed

● Partitioning
○ Utilize data locality to optimize transformations
○ Similar to the partition function in MapReduce

when mapping
○ e.g. partition URLs by domain name
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Note 42

Spark in the Real World (I)
 Uber – the online taxi company gathers terabytes of event data 

from its mobile users every day. 
◦ By using Kafka, Spark Streaming, and HDFS, to build a continuous 

ETL(Extract-Transform-Load) pipeline
◦ Convert raw unstructured event data into structured data as it is 

collected
◦ Uses it further for more complex analytics and optimization of 

operations

 Pinterest (social network for sharing pinboards) – Uses a Spark 
ETL pipeline 
◦ Leverages Spark Streaming to gain immediate insight into how users all 

over the world are engaging with Pins—in real time. 
◦ Can make more relevant recommendations as people navigate the site
◦ Recommends related Pins 
◦ Determine which products to buy, or destinations to visit
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Spark in the Real World (II)
Here are Few other Real World Use Cases:

 Conviva (video AI platform)– 4 million video feeds per month
◦ This streaming video company is second only to YouTube. 
◦ Uses Spark to reduce customer churn by optimizing video 

streams and managing live video traffic
◦ Maintains a consistently smooth, high quality viewing experience.

 Capital One (online account service) – is using Spark and data 
science algorithms to understand customers in a better way.
◦ Developing next generation of financial products and services
◦ Find attributes and patterns of increased probability for fraud

 Netflix – leveraging Spark for insights of user viewing habits and 
then recommends movies to them.
◦ User data is also used for content creation 
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Note 43

Application 
Development with 
Spark
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Systems 85

Spark Application Development

 Spark is polyglot (works with multiple 
programming languages) with APIs to Scala, Java, 
Python, R, and SQL.

 Most Spark applications (> 70%) were developed 
with Scala which is the primary language.

 With the availability of PySpark and continuous 
improvement over the years, Python is getting 
popular among all types of programmers.

 In general, Scala is faster than Python but harder to 
learn and master.
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Note 44

Functional Programming and 
Stateless with Scala
● Using Scala, a functional programming 

language which runs on JVM.
● Recall from the MapReduce session: 

stateless properties of functional 
programming language is good for 
parallelization.

● Scala is a natural choice to work with RDDs.
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What is PySpark ?
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Note 45

PySpark(Spark with Python)

 PySpark is the Python API for Apache Spark.

 Provides PySpark shell for interactive analytics.

 PySpark supports all of Spark’s features
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Advantages of PySpark
 Python is far better than Scala in available libraries.
 For Scala, there are no good visualization tool 

which is not a problem with Python.
 The learning curve is less in Python.

 Python is easy to use.
 PySpark works well with RDDs.
 Inbuild-optimization when using DataFrames.

 Supports ANSI SQL.
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Note 46

Python or Scala ?
 Apache Spark is written in Scala as it is more scalable 

on JVM.
 If you know Scala, then use Scala!
 If both are new to you, Python is easier to learn.
 Python is easy to use: Code readability, maintainability 

and familiarity is far beter with Python
 Python comes with great libraries !!
 Scala is faster than Python but if your Python code just 

calls Spark libraries, the performance differences is 
minimal.

 Reminder: New feature added in Spark API will be 
available in Scala first!
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Python vs Scala
 Detailed comparison of Python vs Scala
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Note 47

Programming Model
 RDDs/DataFrames/Datasets

◦ Constructed from HDFS files, “parallelized” collections
◦ Can be transformed with map and filter
◦ Can be cached across parallel operations

 Parallel operations
◦ Foreach, reduce, collect, …

 Shared variables
◦ Accumulators (add-only)
◦ Broadcast variables (read-only)
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Resilient Distributed 
Datasets (RDDs)
 RDDs are the core data structure in Spark
 Distributed, resilient, immutable, can store 

unstructured and structured data, lazy evaluated

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 94

RDD



CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 48

Resilient Distributed 
Datasets (RDDs)
● In Spark, there are four ways to construct RDDs:

○ From files in a shared filesystem, such as HDFS.
○ An existing collection (e.g., an array) of objects
○ Transforming existing RDDs
○ Changing the persistence of existing RDDs, RDDs by 

default are lazy and ephemeral(短暫的)
■ cache: hint that the data need to be cache after the 

first time
■ save: save the dataset to distributed file system 

(HDFS)
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Parallel Operations
● Several parallel operations can be performed 

on RDD
○ reduce: combines dataset elements using an 

associative function to produce a result at the 
driver program.

○ collect: sends all elements of the dataset to the 
driver program.

○ foreach:  Passes each element through a user 
provided function.
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Note 49

Example: Log Error 
Counting
 To count the lines containing errors in a large log 

file stored in HDFS (Python)
file = sc.textFile("hdfs://master:9000/.../tst.dat")

errs = file.filter(lambda x: "ERROR" in x))

ones = errs.map(lambda x : ("errorline", 1))

count = ones.reduceByKey(lambda x,y: x + y)

count.saveAsTextFile("hdfs://master:9000/.../output")

 RDDs are lazy that are not materialized 
immediately.  They can be made by
cachedErrs = errs.cache()
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Example: Log Mining
 Load error messages from a log into memory, then 

interactively search for various patterns (Scala)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1Block 1

Block 2Block 2

Block 3Block 3

WorkerWorker

WorkerWorker

WorkerWorker

DriverDriver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1Cache 1

Cache 2Cache 2

Cache 3Cache 3

Base RDDBase RDDTransformed RDDTransformed RDD

Cached RDDCached RDD
Parallel operationParallel operation

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)
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Note 50

RDDs Revisited
 An RDD is an immutable, partitioned, logical

collection of records
◦ Need not be materialized, but rather contains 

information to rebuild a dataset from stable storage

 Partitioning can be based on a key in each record 
(using hash or range partitioning)

 Built using bulk transformations on other RDDs

 Can be cached for future reuse
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RDD Fault Tolerance
 RDDs maintain lineage information that can be 

used to reconstruct the exact lost partitions

 Ex:
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cachedMsgs = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))
.cache()

HdfsRDD
path: hdfs://…

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

MappedRDD
func: split(…)

CachedRDDCachedRDD
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Note 51

Benefits of RDD Model
 Consistency is easy due to immutability
 Inexpensive fault tolerance (log lineage

rather than replicating/checkpointing data)
 Locality-aware scheduling of tasks on 

partitions
 High performance with in-memory 

computation
 Despite being restricted, model seems 

applicable to a broad variety of applications
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Fault Recovery Test
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Note 52

Behavior with Increasing 
Cache
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Spark in Java and Scala
Java API:

JavaRDD<String> lines = spark.textFile(…);

errors = lines.filter(
new Function<String, Boolean>() {
public Boolean call(String s) {
return s.contains(“ERROR”);

}
});

errors.count()
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Scala API:

val lines = spark.textFile(…)

errors = lines.filter(
s => s.contains(“ERROR”))

// can also write 
// filter(_.contains(“ERROR”))

errors.count
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Note 53

Which Language to Use?
 Standalone programs can be written in any APIs
 On console (interactive shell), use different 

commands (spark-shell, pyspark, sparkr) for 
different languages (Scala, Python, R).

 Python developers: can stay with Python for both

 Java developers: consider using Scala for console 
(to learn the API)

 Performance: Scala/Java will be faster (statically 
typed), but Python can do well for numerical work 
with NumPy
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Scala Cheat Sheet
Variables:
var x: Int = 7
var x = 7     // type inferred

val y = “hi” // read-only
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Functions:
def square(x: Int): Int = x*x

def square(x: Int): Int = {
x*x   // last line returned

}

Collections and closures:
val nums = Array(1, 2, 3)

nums.map((x: Int) => x + 2) // => Array(3, 4, 5)

nums.map(x => x + 2)  // => same
nums.map(_ + 2)       // => same

nums.reduce((x, y) => x + y) // => 6
nums.reduce(_ + _)           // => 6

Java interop:
import java.net.URL

new URL(“http://cnn.com”).openStream()

More details:
scala-lang.org
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Note 54

Learning Spark

 Easiest way: Spark interpreter (spark-shell or 
pyspark)
◦ Special Scala and Python consoles for cluster user

 Runs in local mode on 1 thread by default, but can 
control with –-master option:

$ pyspark --master local # local, 1 thread
$ pyspark --master local[4] # local, 4 threads
$ pyspark --master spark://master:9000 # master URL
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First Step: SparkContext
 Main entry point to Spark functionality
 Created for you in Spark shells as variable sc
 In standalone programs, you’d make your own with
from pyspark import SparkContext

sc = SparkContext(“local[2]”, “PySparkErrorCount”)
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Cluster URL, or local / local[N]Cluster URL, or local / local[N] App nameApp name
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Note 55

Creating RDDs
// Turn local objects into an RDDs
dat = sc.parallelize([1, 5, 60, ‘a’, 9, ‘c’, 4])
pair = sc.parallelize([(‘a’, 6), (‘a’, 1), (‘b’, 2), 
(‘c’, 5), (‘c’, 8), (‘c’, 11)]) 

// Load text file from local FS, HDFS, or S3
distFile = sc.textFile("data.txt")
// sc.textFile(“directory/*.txt”)
// sc.textFile(“hdfs://namenode:9000/path/file”)

// Use any existing Hadoop InputFormat
sc.hadoopFile(path, inputFmtClass, keyClass, 
valClass, valueConverter)
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Common Transformations
 map(func): Applies func to each element of the RDD.

 filter(func): Returns a new RDD containing only 
the elements that satisfy the given predicate.

 reduceByKey(func): Performs a reduction(func) on 
the elements with the same key.

 flatMap(func): Similar to map where each input 
item is mapped to zero or more output items, then all 
output items are flattened.

 mapValues(func): Applies func to the values of 
each key-value pair while keeping the key unchanged.
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Note 56

Transformations: Examples
nums = sc.parallelize([1, 2, 3])

// Pass each element through a function
squares = nums.map(lambda x: x*x)   // => {1, 4, 9}

// Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // => {4}

// Map each element to zero or more others
Rng = nums.flatMap(lambda x: range(1,x))  // => {1, 1, 2}
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Common Actions
 collect(): Retrieves all elements of an RDD and 

brings them to the driver program.
 count(): Returns the number of elements in an 

RDD.

 first(): Returns the first element of an RDD.
 take(n): Returns the first n elements of an RDD.
 reduce(func): Aggregates the elements of an 

RDD using a specified function.
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Note 57

Actions: Examples
nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

# Return first K elements
nums.take(2)   # => [1, 2]

# Count number of elements
nums.count()   # => 3

# Merge elements with an associative function
nums.reduce(lambda x, y: x + y)  # => 6

# Write elements to a text file
nums.saveAsTextFile(“hdfs://file.txt”)
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Working with Key-Value 
Pairs
 Spark’s “distributed reduce” transformations act on 

RDDs of key-value pairs

 Python: pair = (a, b)
pair[0] # => a
pair[1] # => b

 Scala: val pair = (a, b)
pair._1 // => a
pair._2 // => b

 Java: Tuple2 pair = new Tuple2(a, b); // scala.Tuple2
pair._1 // => a
pair._2 // => b
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Note 58

Some Key-Value Operations

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y)
# => {(cat, 3), (dog, 1)}

pets.groupByKey()
# => {(cat, Seq(1, 2)), (dog, Seq(1)}

pets.sortByKey()
# => {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also automatically implements 
combiners on the map side
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Spark for MapReduce

 MapReduce data flow can be expressed using RDD 
transformations

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

res = data.flatMap(lambda rec : myMapFunc(rec))
.groupByKey()
.map(lambda(key, vals) : myRdcFunc(key, vals))

Or with combiners:

res = data.flatMap(lambda rec : myMapFunc(rec))
.reduceByKey(lambda x : myCombiner(x))
.map(lambda key, vals : myReduceFunc(key, vals))
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Note 59

Example: WordCount
# Create RDD from HDFS
file = sc.textFile("hdfs://...")
counts = file.flatMap(lambda l: l.split(“ ”)) \

.map(lambda w: (w, 1)) \

.reduceByKey(lambda x, y: x + y)
# The “map” and “reduce” imply parallelism
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“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

In-memory Computation & Spark 117

WordCount Complete
from pyspark import SparkContext

# create Spark context with necessary configuration

sc = SparkContext("local[2]", "pyWordCount")

# read, split, map, and reduce all together

counts = sc.textFile("hdfs://master:9000/home/hadoop/input.txt") \

.flatMap(lambda line: line.split(" ")) \

.map(lambda word: (word,1)) \

.reduceByKey(lambda a,b: a+b)

# save the counts to output

counts.saveAsTextFile("hdfs://master:9000/home/hadoop/output/")
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Note 60

ErrorCount Complete Example
from pyspark import SparkContext

# setting Spark Context
sc = SparkContext("local[2]", "PySparkErrorCount")

# reading source text file from HDFS 
file = sc.textFile("hdfs://master:9000/user/hadoop/tmp.txt")

# filter ERROR message
errs = file.filter(lambda x : "ERROR" in x)

# each line is counted once and sum all
ones = errs.map(lambda x : ("errorline", 1))
count = ones.reduceByKey(lambda x,y: x + y)

# save to HDFS
count.saveAsTextFile("hdfs://master:9000/user/hadoop/output")
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Other Key-Value Operations
visits = sc.parallelize([ (“index.html”, “1.2.3.4”), 

(“about.html”, “3.4.5.6”), 
(“index.html”, “1.3.3.1”) ])

pageNames = sc.parallelize([ (“index.html”, “Home”), 
(“about.html”, “About”) ])

visits.join(pageNames) 
# (“index.html”, (“1.2.3.4”, “Home”)) 
# (“index.html”, (“1.3.3.1”, “Home”)) 
# (“about.html”, (“3.4.5.6”, “About”))

visits.cogroup(pageNames)
# (“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”])) 
# (“about.html”, ([“3.4.5.6”], [“About”]))
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Note 61

Example: Logistic Regression
 Goal: find best line separating two sets of points
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target

random initial line
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Example: Logistic Regression
 An iterative classification algorithm to find a 

hyperplane w that best separates two sets 
of points.

 Popular binary classifier in machine learning
 Gradient Descent

○ ITERATIVELY minimizes the error by computing 
the gradient over all data points

○ Computing among data points: parallelization
○ But the iterative instrinsic is another bottleneck
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Note 62

Logistic Regression Algorithm
w = random(D) // D-dimensional vector

for i from 1 to ITERATIONS do {
//Compute gradient
g = 0 // D-dimensional zero vector
for every data point (sn, pn) do {

// pn is a vector, sn is +1 or -1
g += sn * pn / (1 + exp(sn * w * pn))

}
w -= LEARNING_RATE * g

}
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Very big!!!!!!
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Iterative Version
import numpy as np  # import the numeric lib
from math import exp
# Read and create points from a text file
points = sc.textFile(...)...
# Initialize w to a random D-dimensional vector
w = np.random.rand(D)
# Run multiple iterations to update w
for i in range(ITERATIONS):

grad = np.zeros(D)
for v in points.collect():

d = v.s/(1+ exp(v.s * np.dot(w, v.p)))
grad += np.dot(d, v.p)

w -= LEARNING_RATE * grad
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Note 63

Spark: with accumulator
import ...
# Read points from a text file and cache them
points = sc.textFile(...).map(parsePoint).cache()
# Initialize w to a random D-dimensional vector
w = np.random.rand(D)
# Run multiple iterations to update w
for i in range(ITERATIONS):

grad = sc.accumulator(np.zeros(D))
points.foreach(lambda v:  # Run in parallel

d = v.s/(1+ exp(v.s * np.dot(w, v.p)))
grad += np.dot(d, v.p))

w -= LEARNING_RATE * grad

# Need to define proper accumulator first
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Spark: MP Version
import ...
# Read points from a text file and cache them
points = sc.textFile(...).map(parsePoint).cache()

# Initialize w to a random D-dimensional vector
w = np.random.rand(D)

# Run multiple iterations to update w
for i in range(ITERATIONS):

grad = points.map(lambda v: v.s/(1+ exp(v.s * 
np.dot(w, v.p)))).reduce(lambda x,y: np.add(x,y))

w -= LEARNING_RATE * grad

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 126



CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 64

Some Spark Features
 points.foreach(body) is an invocation of the Spark’s 

parallel foreach operation
 Accumulator allows results of tasks running on 

clusters to be accumulated using operators like +=
 But defult accumulator only suppor numbers.

 Can define our own accumulator.
 Only the driver program can read the 

accumulator’s value
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Logistic Regression 
Performance
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127 s / iteration

first iteration 174 s
further iterations 6 s
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Note 65

Example: PageRank
•Use PageRank as a Spark example
• Good example of a more complex algorithm

• Multiple stages of map & reduce
• Benefits from Spark’s in-memory computation

• Multiple iterations over the same data

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 129

Basic Idea
 Give pages ranks based on links to them

• Links from mamy pages -> high rank
• Links from a high ranking page -> high rank
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Note 66

PageRank Algorithm
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PageRank Algorithm
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Note 67

PageRank Algorithm
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PageRank Algorithm
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Note 68

PageRank Algorithm
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0.39 1.72

1.31

0.58

. . .
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PageRank Algorithm
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0.46 1.37

1.44

0.73

Final state:
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Note 69

Spark Program
import . . .

# function to calculate rank contributions

def rCalc(neighbors, rank):

n = len(neighbors)  # no. of neighbors

for url in neighbors:

yield(url, rank/n)

. . . # Read input graph from text file

links = ...cache()  # RDD of (url, neighbors) pairs 

ranks = ...         # RDD of (url, rank) pairs

# perform rank update for ITERATIONS rounds

for i in range(ITERATIONS):

contribs = links.join(ranks).flatMap( # u_nr is (url, (neighbors, rank))

lambda u_nr: rCalc(u_nr[1][0], u_nr[1][1]))

ranks = contribs.reduceByKey(add).mapValues(lambda r: 0.15 + 0.85 * r) 

ranks.saveAsTextFile(...)
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PageRank Example
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google

msn adobe yahoo
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Note 70

Spark Program
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links-RDD
(google,[Ljava.lang.String;@1771f11])
(yahoo,[Ljava.lang.String;@19897e4])
(msn,[Ljava.lang.String;@11c228f])
(adobe,[Ljava.lang.String;@20f065])

ranks-RDD
(google,0.25)
(yahoo,0.25)
(msn,0.25)
(adobe,0.25)

links.join(ranks)-RDD
(google,([Ljava.lang.String;@df1177],0.25))
(msn,([Ljava.lang.String;@f3b9d3],0.25))
(adobe,([Ljava.lang.String;@12cd143],0.25))
(yahoo,([Ljava.lang.String;@15e8963],0.25))

contribs-RDD
(yahoo,0.0833333333333
3333)
(msn,0.083333333333333
33)
(adobe,0.0833333333333
3333)
(google,0.25)
(google,0.25)
(google,0.25)

join

flat
Map

reduceBy
Key
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PageRank Performance
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Note 71

Spark Execution
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Solution: Controlled 
Partitioning

• Network bandwidth is ~100× as expensive as 
memory bandwidth

• Pre-partition the links RDD -
so that links for URLs with the same hash code are 
on the same node
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Note 72

Controlled Partitioning
. . . # Read input graph from text file

links = ...partitionBy(4).cache()

ranks = ... # RDD of (url, rank) pairs
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New Execution
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Note 73

PageRank Performance
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Why does it help so much: 
links RDD is much bigger in bytes than ranks RDD
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PageRank Test
 Input data : simple.dat

google: yahoo msn adobe

yahoo: google

msn: google

adobe: google

 numberIterations = 30, usePartitioner = false

 numberIterations = 30, usePartitioner = true
 numberIterations = 45, usePartitioner = false
 numberIterations = 45, usePartitioner = true
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Note 74

Example: Alternating Least 
Squares (ALS)
 ALS is for collaborative filtering(CF) such as 

predicting u users’ ratings for m movies based on 
past rating history.

 Both movies and user’s preferences are 
represented as k-dim feature vectors.

 A user’s rating to a movie is the dot product of the 
user’s feature vector with the movie’s.

 Let M be a m × k matrix and U be a k × u matrix of 
feature vectors, the rating R can be represented as 
M × U.
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ALS Algorithm
 ALS algorithm: (detail not listed)

1. Initialize M to a random value.
2. Optimize U given M to minimize error on R.
3. Optimize M given U to minimize error on R.
4. Repeat steps 2 and 3 until convergence.

 All steps need R.  It is helpful to make R a 
broadcast variable so that it does not re-sent 
to each node on each step.
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(https://spark.apache.org/docs/latest/ml-collaborative-filtering.html)
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Note 75

ALS Program in Spark
Rb = sc.broadcast(R)

for n in range(ITERATIONS):

U = sc.parallelize(0 until u) \

.map(lambda j: updateU(j, Rb, M)) \

.collect()

M = sc.parallelize(0 until m) \

.map(lambda j: updateM(j, Rb, U)) \

.collect()
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Spark Implementation 
Overview
 Initially, Spark runs on the cluster manager (eg. 

Mesos) , to share resources with Hadoop & others
 Can read from any Hadoop input source (e.g. 

HDFS)
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~6000 lines of Scala code thanks to building 
on Mesos

SparkSpark HadoopHadoop MPIMPI

MesosMesos

NodeNode NodeNode NodeNode NodeNode

…
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Note 76

Internals of Job Execution
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Language Integration
 Scala closures are Serializable Java objects

◦ Serialize on driver, load & run on workers

 Not quite enough
◦ Nested closures may reference entire outer scope
◦ May pull in non-Serializable variables not used inside
◦ Solution: bytecode analysis + reflection

 Shared variables implemented using custom serialized 
form (e.g. broadcast variable contains pointer to 
BitTorrent tracker)

 PySpark(with the Py4j library) allow easy integration of 
Python with Spark and JVM objects.
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Note 77

Interactive Spark
 Shell interpreter allows Spark to be used 

interactively from the command line
 Required two changes:

◦ Modified wrapper code generation so that each 
“line” typed has references to objects for its 
dependencies

◦ Place generated classes in distributed file system

 Enables in-memory exploration of big data
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Spark Initial Remarks
 By making distributed datasets a first-class 

primitive, Spark provides a simple, efficient 
programming model for stateful data analytics

 RDDs provide:
◦ Lineage info for fault recovery and debugging
◦ Adjustable in-memory caching
◦ Locality-aware parallel operations

 Spark can be the basis of a suite of batch and 
interactive data analysis tools
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Note 78

DataFrames
 DataFrames are a later addition to Spark (early 

2015).
 The DataFrames API:

◦ intended to enable wider audiences beyond “Big Data” 
engineers to leverage the power of distributed 
processing

◦ inspired by data frames in R and Python (Pandas) 
◦ designed from the ground-up to support modern big 

data and data science applications
◦ an extension to the existing RDD API 
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DataFrames: Features
DataFrames have the following features:
 Ability to scale from kilobytes of data on a single 

laptop to petabytes on a large cluster
 Support for a wide array of data formats and 

storage systems
 State-of-the-art optimization and code generation 

through the Spark SQL Catalyst optimizer
 Seamless integration with all big data tooling and 

infrastructure via Spark
 APIs for Python, Java, Scala, and R
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Note 79

DataFrames: Features
 For new users familiar with data frames in other 

programming languages, this API should make 
them feel at home. 

 For existing Spark users, the API will make Spark 
easier to program.

 For both sets of users, DataFrames will improve 
performance through intelligent optimizations and 
code-generation.
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Construct a DataFrame
 Python
# Construct a DataFrame from a "users" table in Hive.

df = sqlContext.table("users")

# Construct a DataFrame from a log file in S3. 

df = sqlContext.load("s3n://someBucket/path/to/data.json", "json")

 Scala
val people = sqlContext.read.parquet("...")

 Java
DataFrame people = sqlContext.read().parquet("...")
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Note 80

Using DataFrames
# Create a new DataFrame that contains only "young" users 

young = users.filter(users["age"] < 21) 

# Alternatively, using a Pandas-like syntax 

young = users[users.age < 21] 

# Increment everybody's age by 1 

young.select(young["name"], young["age"] + 1) 

# Count the number of young users by gender 

young.groupBy("gender").count() 

# Join young users with another DataFrame, logs 

young.join(log, logs["userId"] == users["userId"], "left_outer")
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DataFrames and Spark SQL
 DataFrames are fundamentally tied to Spark SQL.
 The DataFrames API provides a programmatic 

interface—a domain-specific language (DSL)—for 
interacting with your data

 Spark SQL provides a SQL-like interface.

 What you can do in Spark SQL, you can do in 
DataFrames and vice versa.

young.registerTempTable("young")
sqlContext.sql("SELECT count(*) FROM young")
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Note 81

Datasets
 Dataset API provides a type-safe, object-oriented 

programming interface.
 DataFrame is an alias for untyped Dataset.
 Provide compile-time type safety.
 Offer high-level domain-specific language 

operations like sum(), join(), select(), groupBy().
 Making code safer, easier and more natural.
 Provide the benefits of RDDs and Spark SQL’s 

optimized execution engine.
 Available in Scala and Java.
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Create Datasets
 Two ways: dynamically or read from external files
 Example: Create 100 integers as Dataset[Long]
// range of 100 numbers to create a Dataset.

val range100 = spark.range(100)

// try range100.collect() to see it

 Example: Read from an external JSON file
val df = 
spark.read.json("/samples/people.json")

 Also from CSV, Text, Parquet, ORC, etc.
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Note 82

Read with Schema
 Can define the schema before reading
// Define a class to represent a type-specific obj

case class Person(id:Int, name: String, age: Long)

 Read a JSON file into the class format
val ds = 
spark.read.json("/samples/people.json").as[Person]

 Upon reading, will create a generic 
DataFrame=Dataset[Rows] which convert a 
DataFrame into a type-specific object.
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Create Datasets
 Can create a new Dataset from existing Datasets
// in Scala; names is a Dataset[String]

val names = ds.map(_.name)

 The most common way is to read from files first 
and transform them if necessary.

val young = ds.filter(d => d.age < 25)

.map(d => (d.ID, d.name)) 
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Note 83

Print the Content
 Can print the content with standard Spark 

commands
ds.take(10).foreach(println(_))

 The above will print the first 10 rows of the ds
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Using SQL-like Query
 Can process a Dataset with SQL-like query
 Select a named column
val ageCol = ds("age")

 Can use SQL-like query
val old = ds.select($“name", $“age")

.where($"age" > 60)

.sort($"name")

 In general, Datasets are powerful and friendly
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Note 84

New Features in Spark 3
 Spark 3.0.0 was officially released on Jun 18, 2020 

(a major upgrade from Spark 2).
 Languages/systems version upgrades to Python 3, 

Scala 2.12, JDK 11, Hadoop 3, and Kafka 2.4.1.
 Better ANSI SQL compatibility and improved Spark 

SQL engine which is now the main engine parallel 
to Spark Core. (2x over Spark 2.4)
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New Features in Spark 3
 Adaptive Query Execution (AQE): reoptimizes and 

adjusts query plans based on runtime statistics 
collected during the execution of the query.
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Note 85

New Features in Spark 3
 Dynamic Partition Pruning (DPP):  Optimized 

execution by applying filter on the dimension table 
in hash joins to skip scanning unneeded partitions.
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New Features in Spark 3
 Python related improvements:

◦ Significant improvements in pandas APIs (Python type 
hints and additional pandas UDFs)

◦ Better Python error handling
◦ Simplified PySpark exceptions

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 170



CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 86

New Features in Spark 3
 New Structured Streaming UI, including a 

structured streaming tab, which provides info 
about running and completed queries statistics.
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New Features in Spark 3
 Accelerator-aware Scheduling: Users can specify 

GPU accelerators via configuration and call new 
RDD APIs to leverage them.

 New Spark built-in functions (32 functions) 
 Datasource format “binaryFile” to read binary files

 Up to 40x speedups for calling R user-defined 
functions.

 A whole new module Spark Graph with major 
features (eg. query language Cypher) for Graph 
processing.
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Note 87

Start using Spark 3 today
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Spark 3.5 – What’s New
 Spark Connect: General availability of the Scala client, support for 

distributed training and inference, parity of Pandas API on SPARK.
 New PySpark and SQL functionality: SQL IDENTIFIER clause, 

named argument support for SQL function calls, SQL function 
support for HyperLogLog approximate aggregations, and Python 
user-defined table functions.

 Distributed training with DeepSpeed: Simplified configuration 
and improved performance.

 Performance and stability improvements in the RocksDB state 
store provider

 Structured Streaming: improved compatibility
 English SDK for Apache Spark enables users to utilize plain English 

as their programming language, making data transformations 
more accessible and user-friendly.
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Note 88

New Features and 
Improvements
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Assignment 2a
1. Implement the PageRank algorithm with Spark and  provide 

suitable input to test it.
2. Given a file with store sales records in the format: 

StoreID ItemID1  #sold1  ItemID2  #sold2  …
and a file of item prices in the format:

ItemID1  price1  ItemID2  price2  …
Write a Spark program to compute the total sales of each 
store, the total number sold of each item, the average total 
sales and the grand total sales of all stores.

3. Write a Spark program to compute the inverted index and 
frequency counts of keywords on a set of documents.  More 
specifically, given a set of (DocumentID, text) pairs, output a 
list of (word, ((doc1, #1), (doc2, #2) …)) pairs.
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Note 89

Assignment 2b
4. Given a text file of purchase records and a threshold θ, 

write a Spark program to find all sets of frequent items 
that are purchased together.  Each line of the input is a 
transaction of the format

<tid>  item1 item2 . . .
where <tid> is the transaction ID and itemi are the 
purchased items (all represented by integer IDs).  A set 
of items is considered frequent if it appears in at least 
θ transactions.  Keep in mind that purchase order is 
irrelevant.  {A, B} is the same as {B, A}.  If a set appears 
in a transaction, it is only counted once no matter how 
many times it appears in that transaction.

 Due date: 3 weeks from now
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