
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 1

General Purpose
Computing Systems II:

In-memory Computation
& Spark

Shiow-yang Wu (吳秀陽)
CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly
taken with permission and courtesy

from Professor Shih-Wei Liao of NTU.

Outline
 Introduction

○ Motivation
○ Solution: In-memory computation

 Challenges
○ Designing a shared data abstraction with

■ Scalability
■ Data locality
■ Fault tolerance

 Resilient Distributed Datasets(RDD)
○ Design policy
○ Programming model
○ Implementation of RDD

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 2

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 2

Outline
 DataFrames

○ What and why
○ DataFrames vs RDDs
○ Operations/transformations

 Datasets
○ What and why
○ Datasets vs DataFrames
○ Compile-time type safety and object-oriented

programming

 RDD vs DataFrame vs Dataset
 What’s new in Spark 3.5?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 3

Problems with Hadoop
MapReduce
 When doing iterative computation

○ Bad performance due to replication & disk I/O
○ Even worse: Communication overheads in the

distributed file system

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 4

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 3

Problems with Hadoop
MapReduce

• MapReduce greatly simplified big data analysis
• But as soon as it got popular, users wanted more:

• More complex, iterative multi-pass analytics
(e.g. ML, graph)

• More interactive ad-hoc queries

•Requires intensive disk I/O
• Intermediate data is always written to local disk

make poor performance
•solution: Apache Spark’s in-memory computing

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 5

Solution: Keep the Data in
Memory
 Apache Spark’s in-memory computing

o 10-100X faster than disk

 Sharing at memory speed
 Latest release: Spark 3.5.0 released (Sep 13, 2023)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 6

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 4

Sort Competition

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Hadoop MR
Record (2013)

Spark
Record (2014)

Data Size 102.5 TB 100 TB

Elapsed Time 72 mins 23 mins

Nodes 2100 206

Cores 50400 physical 6592 virtualized

Cluster disk
throughput

3150 GB/s
(est.) 618 GB/s

Network dedicated data
center, 10Gbps

virtualized (EC2) 10Gbps
network

Sort rate 1.42 TB/min 4.27 TB/min

Sort rate/node 0.67 GB/min 20.7 GB/min

Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records)
http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-
sorting.html

Spark, 3x
faster with
1/10 the
nodes

In-memory Computation & Spark 7

World Record on Sorting

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 8

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 5

More Records
 AliCloud

(阿里雲)
(2015)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 9

More Records
 Tencent Cloud

(騰訊雲)
(2016)

 Other record
holders over
the years:
http://sortben
chmark.org/

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 10

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 6

Commercial Cloud Platforms
 Big 3 (Amazon AWS, Microsoft Azure, Google GCP)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 11

2021 Cloud Report
 By Cockroach Labs.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 12

GCP: highest
raw throughput

AWS:
unbeatable

network
latencies

Azure: best
IOPS

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 7

2022 Cloud Report
 Detailed comparison with 56 cloud instances and

3000+ benchmark runs.
 Testing Big 3 performance with benchmarks on

OLTP, CPU, Network, and Storage I/O.
 No overall winner

 6 key insights
 (https://www.cockroachlabs.com/guides/2022-

cloud-report/)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 13

The Working Set Idea
 Peter Denning, “The Working Set Model for Program

Behavior”, Communications of the ACM, May 1968.
◦ http://dl.acm.org/citation.cfm?id=363141

 Idea: conventional programs generally exhibit a high
degree of locality, returning to the same data over and
over again.

 Operating system, virtual memory system, compiler,
and micro architecture are designed around this
assumption!

 Exploiting this observation makes programs run 100X
faster than simply using plain old main memory in the
obvious way.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 14

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 8

Spark
 Exploit the working set idea
 Fast and expressive cluster computing system

interoperable with Apache Hadoop
 Improves efficiency through:

 In-memory computing primitives

 General computation graphs (DAG)

 Improves usability through:
 Rich APIs in Scala, Java, Python, R

 Interactive shell

 The core processing engine of BDAS
(Berkeley Data Analytics Stack)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Up to 100× faster
(2-10× on disk)

Often 2-10× less
code

In-memory Computation & Spark 15

Spark History
 2008 – Yahoo! Hadoop team collaboration w Berkeley

AMP/RAD Lab to begin the project
 2009 – Spark example built for Nexus(a common

substrate for cluster computing) -> Mesos(a
distributed systems kernel)

 2011 – “Spark is 2 years ahead of anything at Google”
– Conviva(a company for online video optimization
and analytics) seeing good results w Spark

 2012 – Yahoo! working with Spark/Shark(now Spark
SQL)

 2013 – donated to Apache

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 16

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 9

Spark History
 2014 – became a Top-Level Apache Project
 2014(Nov) – Databricks(company) set a new world

record in sorting using Spark
 2015 – 1000+ contributors, one of most active Apache

projects/open source big data projects
 2016 – Spark 2.0 released. Spark SQL one of the best

Big Data SQL engines, new Structured Streaming APIs
 2020 – Spark 3.0 released. Spark SQL/Core, adaptive

query execution, dynamic partition pruning,
languages/systems upgrades, improved performance…

 2021 and beyond – Blooming Spark Ecosystem
 Latest release: Spark 3.5.0 (Sep 13 2023)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 17

Berkeley Data Analytics
Stack(BDAS)
 An open source software stack that integrates

software components being built by the Berkeley
AMPLab to make sense of Big Data

 The AMPLab was launched at Jan 2011, not active
after last publication at 2017.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

 Goal: Next Generation of
Analytics Data Stack
• Berkeley Data Analytics Stack

(BDAS)
• Release as Open Source

In-memory Computation & Spark 18

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 10

The Berkeley AMPLab
 Funding &

Sponsors

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 19

Berkeley Data Analytics
Stack

• Goals:

• Easy to combine batch, streaming, and interactive
computations

• Easy to develop sophisticated algorithms
• Compatible with existing open source ecosystem

(Hadoop/HDFS)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 20

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 11

Berkeley Data Analytics
Stack(BDAS)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

(Stochastic
Learning)

(Distributed Storage)(Queries on Compressed Data)

(Predictive
Services)

(Generalized Online
Aggregation)

(Queries w bounded errors
& time)

In-memory Computation & Spark 21

BDAS Main Components
 Three main components:

○ Mesos: a distributed systems kernel and
resource manager that provides efficient
resource isolation and sharing across
distributed applications, or frameworks

○ Alluxio(Tachyon): memory-centric
distributed storage system enabling
reliable data sharing at memory-speed
across cluster frameworks

○ Spark: a cluster computing engine that
aims to make specified computing(data
analytics, ad-hoc) fast

 All three continue to grow after
AMPLab closed

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 22

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 12

Why Spark?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 23

Spark – Building Blocks

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 24

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 13

Spark Ecosystem
 Spark integrates with various big data frameworks

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 25

Unified Analytics with Spark
 Spark can combine different tools/APIs into a

unified analytics system.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 26

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 14

Spark Community
 The largest big data open source community, 2000+

contributors, used by 80% of the Fortune 500.
 36,000+ stars to Spark project on GitHub.
 80,000+ Spark related questions on Stack Overflow

 Various other Spark-focused online forums and
groups.

 Active and growing community contributes to
Spark’s development, knowledge sharing, and
troubleshooting assistance.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 27

Key Advantages of Spark
 Speed - up to 100x faster than Hadoop MapReduce

in memory, or 10x faster on disk
 Ease of Use - Write applications quickly in Java,

Scala, Python, R, SQL.
 A Unified Engine - Combine SQL, streaming, and

machine learning, graph & complex analytics.

 Runs Everywhere - Spark runs on Hadoop, Mesos,
Kubernetes, standalone, or in the cloud. It can
access diverse data sources including HDFS,
Cassandra, HBase, MongoDB and S3.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 28

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 15

Additional Goals of Spark
•Low latency (interactive) queries on historical data:

enable faster decisions
• E.g., identify why a site is slow and fix it

•Iterative Analytics: graph processing , machine
learning, streaming, …

• E.g., PageRank, MaxFlow, K-Means

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 29

Great but not Perfect
 High memory consumption which results in higher

hardware and operational costs.
 Hard learning curve
 Complex performance parameters

◦ Parameter settings significantly affect performance
◦ Performance tuning/optimization not easy

 Generality can be a double-edged sword
◦ Tools optimized for specific domain(s) (such as Presto, a

distributed SQL engine for interactive analytic queries) are
getting more and more popular.

 Limited support for real-time processing
◦ Tools like Apache Flink or Apache Storm might be better for

genuine real-time processing

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 30

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 16

The Working Set Idea in
Spark
 The user should identify which datasets they want to access.
 Load datasets into memory, and use them multiple times.
 Keep newly created data in memory until explicitly told to

store it.
 Master-Worker architecture: Master (driver) contains the

main algorithmic logic, and the workers simply keep data in
memory and apply functions to the distributed data.

 The master knows where data is located, so it can exploit
locality.

 The driver is written in a functional programming language
(Scala) which can be easily parallized.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 31

Approach
• Aggressive use of Memory

• Memory transfer rate >> Disk
transfer rate

• Memory density (capacity) still
grows with Moore’s Law

• RAM/SSD hybrid memories
• Many datasets already fit into

memory
• The inputs of over 90% of jobs in

Facebook, Yahoo!, and Bing clusters fit
into memory

• E.g., 1TB = 1 billion records @ 1 KB
each

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 32

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 17

Spark vs Hadoop

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 33

Approach
• Trade between result accuracy and response times
• Why?

• In-memory processing does not guarantee interactive
query processing

• E.g., ~10’s sec just to scan 512 GB RAM!
• Gap between memory capacity and transfer rate

increasing

• Trade between response time, quality, and cost

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 34

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 18

Challenges for In-Memory
Computation
● Provide distributed memory abstractions for

clusters to support apps with working sets
● Retain the attractive properties of

MapReduce:
○ Simple programming model
○ Fault tolerance (for crashes & stragglers)
○ Data locality
○ Scalability

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 35

Challenge: Fault Tolerance
● Existing in-memory storage systems have interfaces based

on fine-grained updates
○ Read/Write to cells
○ E.g. Database, key-value store, distributed memory

● Requires replicating data or logs for fault tolerance
○ Very inefficient & expensive under Big Data

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Challenge:
How to design a distributed memory abstraction
that is both fault-tolerant and efficient?
Solution: Augment data flow model with RDD

In-memory Computation & Spark 36

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 19

Spark Architecture
 The in-memory distributed computing is achieved

through two key abstractions: RDD and DAG
 Resilient Distributed Datasets (RDDs) : immutable

and distributed collections of obejcts that can be
processed in parallel. (more details later)

 Directed Acyclic Graph (DAG) : an abstraction to
model the transformations applied to RDDs.

 Programmers model data with RDDs and the
application logic as a DAG. Then submit it to the
Spark cluster for execution.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 37

Spark: Runtime Architecture
● Driver: Spark application program
● SparkContext: heart of Spark app to establish a

connection to the Spark Execution environment
● Executors: Compute and store distributed data
● Cluster Manager: Maintain a cluster of machines

consisting of master and workers to run Spark
applications.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 38

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 20

Modes of Execution
 Cluster Mode

◦ Most common way of running Spark applications
◦ A pre-compiled driver program (in Scalar, Python, JAR,

R, …) is submitted to the cluster manager.
◦ A driver process and executor processes are launched

and maintained by the cluster manager on worker
nodes.

 Client Mode
◦ Almost the same as cluster mode except that the driver

process remains on the client machine.
◦ The cluster manage maintains the executor processes.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 39

Modes of Execution
 Local Mode

◦ The entire Spark application is run on a single machine
◦ Still observers parallelism through threads
◦ A common way for local development, testing and

debugging
◦ Not recommended for running production applications

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 40

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 21

Client vs Cluster Mode
 In client mode, driver and Spark Session/Context

are on local machine. Application Master(AM) acts
as an Executor Launcher.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 41

Client Mode Architecture
 Runtime architecture of client mode

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 42

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 22

Client vs Cluster Mode
 In cluster mode, the packaged application is

submitted to YARN which starts an AM. The driver
starts in the AM container.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 43

Cluster Mode Architecture
 Runtime architecture of cluster mode

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 44

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 23

Resilient Distributed
Datasets (RDD)
● Distributed data abstraction

○ for in-memory computation on large cluster

● Read-only, partitioned records
○ Only way to “write” is to create a new RDD
○ Partitions are scattered over the cluster

● Only coarse-grained operations are allowed
○ map, join, filter ...
○ operate on the whole dataset

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

The reasons of the
designs will be
discussed later.

In-memory Computation & Spark 45

Resilient Distributed
Datasets (RDD)
● Lazy Evaluation

○ Two types of operations on RDD: Transformations &
Actions

○ Transformations: create a new dataset from an
existing one
 do not compute right away but add this record to Lineage

 only computed when an action requires a result

○ Actions: return a value after a computation on the
dataset
 It would execute all operation of the Lineage

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 46

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 24

RDD Features
 Key

features
of RDDs

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 47

DataFrames & SparkSQL
 A DataFrame is a distributed collection of rows under named columns.

Better than RDDs for structured data.

 Similar to a SQL table in relational database, Python Pandas Dataframe or
R’s DataTables
◦ Immutable once constructed
◦ Lazy evaluation and track lineage
◦ Enable distributed computations

 How to construct Dataframes
◦ Read from files(e.g., CSV, JSON, Parquet, …)
◦ Transforming an existing DFs(Spark or Pandas)
◦ Parallelizing a python collection list
◦ Apply transformations and actions

 Dataframes support a wide range of operations and
transformations (e.g., filtering, aggregating, joingin, grouping)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 48

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 25

DataFrame Examples
import pyspark class Row from module sql

from pyspark.sql import *

Create departments

dept1 = Row(id='123456', name='Computer Science')

dept2 = Row(id='789012', name='Pyhsics')

Create Employees

Employee = Row("firstName", "lastName", "email", "salary")

emp1 = Employee('michael', 'armbrust', 'no-reply@Berkeley.edu', 100000)

emp2 = Employee('xiangrui', 'meng', 'no-reply@stanford.edu', 120000)

emp3 = Employee('matei', None, 'no-reply@waterloo.edu', 140000)

emp4 = Employee(None, 'wendell', 'no-reply@berkeley.edu', 160000)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 49

DataFrame Examples
Create the DepartmentWithEmployees instances from Departments and Employees

deptWithEmp1 = Row(department=dept1, employees=[emp1, emp2])

deptWithEmp2 = Row(department=dept2, employees=[emp3, emp4])

deptWithEmp3 = Row(department=dept3, employees=[emp1, emp4])

deptWithEmp4 = Row(department=dept4, employees=[emp2, emp3])

print(dept1)

print(emp2)

print(deptWithEmp1.employees[0].email)

More on DataFrame later

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 50

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 26

RDDs vs. DataFrames
 RDDs provide a low level interface into Spark
 DataFrames have a schema
 DataFrames are cached and optimized by Spark

 DataFrames are built on top of the RDDs and the
core Spark API

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 51

Dataset cs. DataFrames
 A Dataset is a distributed collection of data that

provides the benefits of strong typing, compile-
time type safety, and object-oriented
programming.

 Essentially a strongly-typed version of DataFrame
 Each row is an object of a specific type
 Can be created from different sources (e.g., RDDs,

DataFrames, structured data files, Hive tables,
external databases, …)

 Compile-time type safety and OOP can help catch
errors at compile time and improve code quality.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 52

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 27

Spark Operations

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 53

Transformations
 Immutable data

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 54

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 28

Narrow vs Wide Transformations

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 55

Actions
What is an action

◦ Aggregates distributed data into values
◦ Modeling a summary stage of the workflow
◦ Triggers the execution of the DAG
◦ Returns the results to the driver
◦ Writes the data to HDFS or to a file

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 56

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 29

Operations on RDD

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Transformations
(create a new RDD)

map
filter
sample
groupByKey
reduceByKey
sortByKey
intersection

flatMap
union

join
cogroup

cross
mapValues

reduceByKey

Actions
(return results to
driver program)

collect first
Reduce take
Count takeOrdered
takeSample countByKey
take save
lookupKey foreach

In-memory Computation & Spark 57

Directed Acyclic Graphs (DAG)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

A

B

S

C

E

D

F

DAGs track dependencies (also known as Lineage)
 nodes are RDDs or DataFrames
 arrows are Transformations

In-memory Computation & Spark 58

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 30

Generality of RDDs
 Spark’s combination of data flow with

RDDs/DataFrames/Datasets unifies many proposed
cluster programming models
◦ General data flow models: MapReduce, Dryad, SQL
◦ Specialized models for stateful apps: Pregel (BSP),

HaLoop (iterative MR), Continuous Bulk Processing

 Instead of specialized APIs for one type of app, give
user first-class control of distributed datasets

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 59

RDDs vs. DSM

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 60

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 31

Spark Workflow

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

FlatMap Map groupbyKey

Spark
Context

Driver
Program

Collect

In-memory Computation & Spark 61

Lineage
● Records of operations to the data(RDDs)

○ Similar to logs

● Maintained by the master node
○ Centralized metadata

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

RDD

In-memory Computation & Spark 62

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 32

Lineage: Progress of
Computation

● Each RDD consists of partitions
○ Detailed lineage structure is a DAG

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 63

Lineage: Lazy Evaluation
● Partitions of RDDs are not necessarily in RAM

○ Only cached partitions are in preserved

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Only dark rectangles
are cached partitions

In-memory Computation & Spark 64

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 33

Fault Tolerance using
Lineage
● RDD can only be created

(written) from
○ Static Storage
○ Other RDDs

● Only coarse-grained
opeations

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Lost partitions can be re-computed efficiently

Less information to maintain

In-memory Computation & Spark 65

Core Concepts
 Job: A piece of code which reads some input data from HDFS or local,

performs some computation and writes some output data.

 Stages: Jobs are divided into stages. Stages are divided based on
computational boundaries. All computations (operators) cannot be
updated in a single stage. It happens over many stages.

 Tasks: Each stage has some tasks, one task per partition. One task is
executed on one partition of data on one executor (machine).

 DAG: DAG stands for Directed Acyclic Graph, which represents the
flow and relationships of operators.

 Executor: The process responsible for executing a task.

 Master: The machine on which the Driver program runs

 Slave: The machine on which the Executor program runs

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 66

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 34

Architectural Components
 Spark cluster: a collection of machines connected

to each other running Spark.
 Spark Master: the node that schedules and

monitors the jobs assigned to the Workers.
 Spark Worker: receive commands from the Master,

launch executors, execute the assigned tasks.

 Spark Executor: an executor inside a worker which
executes the assigned tasks.

 Spark Driver: the coordinator between master and
workers, distribute tasks to executors.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 67

SparkContext (SC)
 The master of any Spark application
 Enable Spark Driver to access the cluster through

resource manager(RM)
 RM can be any of YARN, MESOS, Spark’s cluster

manager, etc.

 Provide functions for getting/setting configuration,
creating objects, scheduling/canceling jobs, etc.

 In Spark shell, it is automatically created for you.
 In your app, you need to set it explicitly.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 68

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 35

Functions of SparkContext
 SparkContext is the entry gate of Spark

functionality. Any Spark driver app must create
one before anything else.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 69

Spark Runtime Architecture

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 70

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 36

Spark Application in Cluster

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 71

How Spark Applications
run on YARN

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Hadoop & MapReduce 72

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 37

Job Execution with RDDs

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

RDD partitions

Filter, map...

Collect...

In-memory Computation & Spark 73

Runtime Components
 Spark Driver:

◦ separate process to execute user applications
◦ creates SparkContext to schedule jobs execution and

negotiate with cluster manager

 Executors:
◦ run tasks scheduled by driver
◦ store computation results in memory/disk or off-heap
◦ interact with storage systems

 Cluster Manager:
◦ Spark Standalone
◦ Mesos
◦ YARN
◦ Kubernetes

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 74

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 38

Runtime Components

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 75

Component Details
 SparkContext

◦ represents the connection to a Spark cluster, and can be used to create
RDDs, accumulators and broadcast variables on that cluster

 DAGScheduler
◦ computes a DAG of stages for each job and submits them to

TaskScheduler, determines preferred locations for tasks (based on
cache status or shuffle files locations) and finds minimum schedule to
run the jobs

 TaskScheduler
◦ sending tasks to the cluster, running them, retrying if there are failures,

and mitigating stragglers

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 76

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 39

Component Details
 SchedulerBackend

◦ backend interface for scheduling systems that
allows plugging in different implementations
(Mesos, YARN, Standalone, local)

 BlockManager
◦ provides interfaces for putting and retrieving

blocks both locally and remotely into various
stores (memory, disk, and off-heap)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 77

Job Scheduling

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

rdd1.join(rdd2)
.groupBy(…)
.filter(…)

RDD Objects

build operator DAG

DAGScheduler

split graph into
stages of tasks
submit each
stage as ready

DAG

TaskScheduler

TaskSet

launch tasks via
cluster manager
retry failed or
straggling tasks

Cluster
manager

Worker

execute tasks

store and serve
blocks

Block
manager

Threads
Task

source: https://cwiki.apache.org/confluence/display/SPARK/Spark+Internals

In-memory Computation & Spark 78

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 40

Other Issue: Dealing with
Stragglers
● Speculative Execution

○ Observe the process of the tasks of a job
○ Launch duplicates of those tasks that are slower
○ It then becomes a race between the original

and the speculative copies

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 79

Other Issue: Dependency

● Execution can be pipelined

● Faster to recompute

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Narrow Dependency:

● 1/N-to-1
Wide Dependency:
● N-to-N

In-memory Computation & Spark 80

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 41

Other Issue: Memory
Management
● Problem:

○ Some RDDs (partitions) are too large to store in
some worker’s memory

○ These RDDs are costly to re-compute

● Solution: Use hard disks
○ Swap RDDs out under LRU eviction policy
○ Users can set persistence priority to RDDs

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 81

Other Issue: Optimization
● Persistence

○ Users can indicate which RDDs they will reuse
=> save them in memory rather than
recomputed

● Partitioning
○ Utilize data locality to optimize transformations
○ Similar to the partition function in MapReduce

when mapping
○ e.g. partition URLs by domain name

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 82

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 42

Spark in the Real World (I)
 Uber – the online taxi company gathers terabytes of event data

from its mobile users every day.
◦ By using Kafka, Spark Streaming, and HDFS, to build a continuous

ETL(Extract-Transform-Load) pipeline
◦ Convert raw unstructured event data into structured data as it is

collected
◦ Uses it further for more complex analytics and optimization of

operations

 Pinterest (social network for sharing pinboards) – Uses a Spark
ETL pipeline
◦ Leverages Spark Streaming to gain immediate insight into how users all

over the world are engaging with Pins—in real time.
◦ Can make more relevant recommendations as people navigate the site
◦ Recommends related Pins
◦ Determine which products to buy, or destinations to visit

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 83

Spark in the Real World (II)
Here are Few other Real World Use Cases:

 Conviva (video AI platform)– 4 million video feeds per month
◦ This streaming video company is second only to YouTube.
◦ Uses Spark to reduce customer churn by optimizing video

streams and managing live video traffic
◦ Maintains a consistently smooth, high quality viewing experience.

 Capital One (online account service) – is using Spark and data
science algorithms to understand customers in a better way.
◦ Developing next generation of financial products and services
◦ Find attributes and patterns of increased probability for fraud

 Netflix – leveraging Spark for insights of user viewing habits and
then recommends movies to them.
◦ User data is also used for content creation

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 84

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 43

Application
Development with
Spark

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 85

Spark Application Development

 Spark is polyglot (works with multiple
programming languages) with APIs to Scala, Java,
Python, R, and SQL.

 Most Spark applications (> 70%) were developed
with Scala which is the primary language.

 With the availability of PySpark and continuous
improvement over the years, Python is getting
popular among all types of programmers.

 In general, Scala is faster than Python but harder to
learn and master.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 86

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 44

Functional Programming and
Stateless with Scala
● Using Scala, a functional programming

language which runs on JVM.
● Recall from the MapReduce session:

stateless properties of functional
programming language is good for
parallelization.

● Scala is a natural choice to work with RDDs.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 87

What is PySpark ?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 88

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 45

PySpark(Spark with Python)

 PySpark is the Python API for Apache Spark.

 Provides PySpark shell for interactive analytics.

 PySpark supports all of Spark’s features

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 89

Advantages of PySpark
 Python is far better than Scala in available libraries.
 For Scala, there are no good visualization tool

which is not a problem with Python.
 The learning curve is less in Python.

 Python is easy to use.
 PySpark works well with RDDs.
 Inbuild-optimization when using DataFrames.

 Supports ANSI SQL.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 90

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 46

Python or Scala ?
 Apache Spark is written in Scala as it is more scalable

on JVM.
 If you know Scala, then use Scala!
 If both are new to you, Python is easier to learn.
 Python is easy to use: Code readability, maintainability

and familiarity is far beter with Python
 Python comes with great libraries !!
 Scala is faster than Python but if your Python code just

calls Spark libraries, the performance differences is
minimal.

 Reminder: New feature added in Spark API will be
available in Scala first!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 91

Python vs Scala
 Detailed comparison of Python vs Scala

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 92

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 47

Programming Model
 RDDs/DataFrames/Datasets

◦ Constructed from HDFS files, “parallelized” collections
◦ Can be transformed with map and filter
◦ Can be cached across parallel operations

 Parallel operations
◦ Foreach, reduce, collect, …

 Shared variables
◦ Accumulators (add-only)
◦ Broadcast variables (read-only)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 93

Resilient Distributed
Datasets (RDDs)
 RDDs are the core data structure in Spark
 Distributed, resilient, immutable, can store

unstructured and structured data, lazy evaluated

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 94

RDD

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 48

Resilient Distributed
Datasets (RDDs)
● In Spark, there are four ways to construct RDDs:

○ From files in a shared filesystem, such as HDFS.
○ An existing collection (e.g., an array) of objects
○ Transforming existing RDDs
○ Changing the persistence of existing RDDs, RDDs by

default are lazy and ephemeral(短暫的)
■ cache: hint that the data need to be cache after the

first time
■ save: save the dataset to distributed file system

(HDFS)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 95

Parallel Operations
● Several parallel operations can be performed

on RDD
○ reduce: combines dataset elements using an

associative function to produce a result at the
driver program.

○ collect: sends all elements of the dataset to the
driver program.

○ foreach: Passes each element through a user
provided function.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 96

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 49

Example: Log Error
Counting
 To count the lines containing errors in a large log

file stored in HDFS (Python)
file = sc.textFile("hdfs://master:9000/.../tst.dat")

errs = file.filter(lambda x: "ERROR" in x))

ones = errs.map(lambda x : ("errorline", 1))

count = ones.reduceByKey(lambda x,y: x + y)

count.saveAsTextFile("hdfs://master:9000/.../output")

 RDDs are lazy that are not materialized
immediately. They can be made by
cachedErrs = errs.cache()

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 97

Example: Log Mining
 Load error messages from a log into memory, then

interactively search for various patterns (Scala)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1Block 1

Block 2Block 2

Block 3Block 3

WorkerWorker

WorkerWorker

WorkerWorker

DriverDriver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1Cache 1

Cache 2Cache 2

Cache 3Cache 3

Base RDDBase RDDTransformed RDDTransformed RDD

Cached RDDCached RDD
Parallel operationParallel operation

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)

In-memory Computation & Spark 98

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 50

RDDs Revisited
 An RDD is an immutable, partitioned, logical

collection of records
◦ Need not be materialized, but rather contains

information to rebuild a dataset from stable storage

 Partitioning can be based on a key in each record
(using hash or range partitioning)

 Built using bulk transformations on other RDDs

 Can be cached for future reuse

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 99

RDD Fault Tolerance
 RDDs maintain lineage information that can be

used to reconstruct the exact lost partitions

 Ex:

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

cachedMsgs = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))
.cache()

HdfsRDD
path: hdfs://…

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

MappedRDD
func: split(…)

CachedRDDCachedRDD

In-memory Computation & Spark 100

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 51

Benefits of RDD Model
 Consistency is easy due to immutability
 Inexpensive fault tolerance (log lineage

rather than replicating/checkpointing data)
 Locality-aware scheduling of tasks on

partitions
 High performance with in-memory

computation
 Despite being restricted, model seems

applicable to a broad variety of applications

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 101

Fault Recovery Test

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

119

57 56 58 58

81

57 59 57 59

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Ite
ra

tr
io

n
tim

e
(s

)

Iteration

Failure happens

In-memory Computation & Spark 102

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 52

Behavior with Increasing
Cache

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

69

58

41

30

12

0

10

20

30

40

50

60

70

80

Cache disabled 25% 50% 75% Fully cached

It
er

at
io

n
tim

e
(s

)

% of working set in cache

In-memory Computation & Spark 103

Spark in Java and Scala
Java API:

JavaRDD<String> lines = spark.textFile(…);

errors = lines.filter(
new Function<String, Boolean>() {
public Boolean call(String s) {
return s.contains(“ERROR”);

}
});

errors.count()

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Scala API:

val lines = spark.textFile(…)

errors = lines.filter(
s => s.contains(“ERROR”))

// can also write
// filter(_.contains(“ERROR”))

errors.count

In-memory Computation & Spark 104

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 53

Which Language to Use?
 Standalone programs can be written in any APIs
 On console (interactive shell), use different

commands (spark-shell, pyspark, sparkr) for
different languages (Scala, Python, R).

 Python developers: can stay with Python for both

 Java developers: consider using Scala for console
(to learn the API)

 Performance: Scala/Java will be faster (statically
typed), but Python can do well for numerical work
with NumPy

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 105

Scala Cheat Sheet
Variables:
var x: Int = 7
var x = 7 // type inferred

val y = “hi” // read-only

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Functions:
def square(x: Int): Int = x*x

def square(x: Int): Int = {
x*x // last line returned

}

Collections and closures:
val nums = Array(1, 2, 3)

nums.map((x: Int) => x + 2) // => Array(3, 4, 5)

nums.map(x => x + 2) // => same
nums.map(_ + 2) // => same

nums.reduce((x, y) => x + y) // => 6
nums.reduce(_ + _) // => 6

Java interop:
import java.net.URL

new URL(“http://cnn.com”).openStream()

More details:
scala-lang.org

In-memory Computation & Spark 106

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 54

Learning Spark

 Easiest way: Spark interpreter (spark-shell or
pyspark)
◦ Special Scala and Python consoles for cluster user

 Runs in local mode on 1 thread by default, but can
control with –-master option:

$ pyspark --master local # local, 1 thread
$ pyspark --master local[4] # local, 4 threads
$ pyspark --master spark://master:9000 # master URL

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 107

First Step: SparkContext
 Main entry point to Spark functionality
 Created for you in Spark shells as variable sc
 In standalone programs, you’d make your own with
from pyspark import SparkContext

sc = SparkContext(“local[2]”, “PySparkErrorCount”)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Cluster URL, or local / local[N]Cluster URL, or local / local[N] App nameApp name

In-memory Computation & Spark 108

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 55

Creating RDDs
// Turn local objects into an RDDs
dat = sc.parallelize([1, 5, 60, ‘a’, 9, ‘c’, 4])
pair = sc.parallelize([(‘a’, 6), (‘a’, 1), (‘b’, 2),
(‘c’, 5), (‘c’, 8), (‘c’, 11)])

// Load text file from local FS, HDFS, or S3
distFile = sc.textFile("data.txt")
// sc.textFile(“directory/*.txt”)
// sc.textFile(“hdfs://namenode:9000/path/file”)

// Use any existing Hadoop InputFormat
sc.hadoopFile(path, inputFmtClass, keyClass,
valClass, valueConverter)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 109

Common Transformations
 map(func): Applies func to each element of the RDD.

 filter(func): Returns a new RDD containing only
the elements that satisfy the given predicate.

 reduceByKey(func): Performs a reduction(func) on
the elements with the same key.

 flatMap(func): Similar to map where each input
item is mapped to zero or more output items, then all
output items are flattened.

 mapValues(func): Applies func to the values of
each key-value pair while keeping the key unchanged.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 110

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 56

Transformations: Examples
nums = sc.parallelize([1, 2, 3])

// Pass each element through a function
squares = nums.map(lambda x: x*x) // => {1, 4, 9}

// Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // => {4}

// Map each element to zero or more others
Rng = nums.flatMap(lambda x: range(1,x)) // => {1, 1, 2}

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 111

Common Actions
 collect(): Retrieves all elements of an RDD and

brings them to the driver program.
 count(): Returns the number of elements in an

RDD.

 first(): Returns the first element of an RDD.
 take(n): Returns the first n elements of an RDD.
 reduce(func): Aggregates the elements of an

RDD using a specified function.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 112

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 57

Actions: Examples
nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums.take(2) # => [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

Write elements to a text file
nums.saveAsTextFile(“hdfs://file.txt”)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 113

Working with Key-Value
Pairs
 Spark’s “distributed reduce” transformations act on

RDDs of key-value pairs

 Python: pair = (a, b)
pair[0] # => a
pair[1] # => b

 Scala: val pair = (a, b)
pair._1 // => a
pair._2 // => b

 Java: Tuple2 pair = new Tuple2(a, b); // scala.Tuple2
pair._1 // => a
pair._2 // => b

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 114

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 58

Some Key-Value Operations

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y)
=> {(cat, 3), (dog, 1)}

pets.groupByKey()
=> {(cat, Seq(1, 2)), (dog, Seq(1)}

pets.sortByKey()
=> {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also automatically implements
combiners on the map side

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 115

Spark for MapReduce

 MapReduce data flow can be expressed using RDD
transformations

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

res = data.flatMap(lambda rec : myMapFunc(rec))
.groupByKey()
.map(lambda(key, vals) : myRdcFunc(key, vals))

Or with combiners:

res = data.flatMap(lambda rec : myMapFunc(rec))
.reduceByKey(lambda x : myCombiner(x))
.map(lambda key, vals : myReduceFunc(key, vals))

In-memory Computation & Spark 116

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 59

Example: WordCount
Create RDD from HDFS
file = sc.textFile("hdfs://...")
counts = file.flatMap(lambda l: l.split(“ ”)) \

.map(lambda w: (w, 1)) \

.reduceByKey(lambda x, y: x + y)
The “map” and “reduce” imply parallelism

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

In-memory Computation & Spark 117

WordCount Complete
from pyspark import SparkContext

create Spark context with necessary configuration

sc = SparkContext("local[2]", "pyWordCount")

read, split, map, and reduce all together

counts = sc.textFile("hdfs://master:9000/home/hadoop/input.txt") \

.flatMap(lambda line: line.split(" ")) \

.map(lambda word: (word,1)) \

.reduceByKey(lambda a,b: a+b)

save the counts to output

counts.saveAsTextFile("hdfs://master:9000/home/hadoop/output/")

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 118

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 60

ErrorCount Complete Example
from pyspark import SparkContext

setting Spark Context
sc = SparkContext("local[2]", "PySparkErrorCount")

reading source text file from HDFS
file = sc.textFile("hdfs://master:9000/user/hadoop/tmp.txt")

filter ERROR message
errs = file.filter(lambda x : "ERROR" in x)

each line is counted once and sum all
ones = errs.map(lambda x : ("errorline", 1))
count = ones.reduceByKey(lambda x,y: x + y)

save to HDFS
count.saveAsTextFile("hdfs://master:9000/user/hadoop/output")

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 119

Other Key-Value Operations
visits = sc.parallelize([(“index.html”, “1.2.3.4”),

(“about.html”, “3.4.5.6”),
(“index.html”, “1.3.3.1”)])

pageNames = sc.parallelize([(“index.html”, “Home”),
(“about.html”, “About”)])

visits.join(pageNames)
(“index.html”, (“1.2.3.4”, “Home”))
(“index.html”, (“1.3.3.1”, “Home”))
(“about.html”, (“3.4.5.6”, “About”))

visits.cogroup(pageNames)
(“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”]))
(“about.html”, ([“3.4.5.6”], [“About”]))

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 120

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 61

Example: Logistic Regression
 Goal: find best line separating two sets of points

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

target

random initial line

In-memory Computation & Spark 121

Example: Logistic Regression
 An iterative classification algorithm to find a

hyperplane w that best separates two sets
of points.

 Popular binary classifier in machine learning
 Gradient Descent

○ ITERATIVELY minimizes the error by computing
the gradient over all data points

○ Computing among data points: parallelization
○ But the iterative instrinsic is another bottleneck

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 122

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 62

Logistic Regression Algorithm
w = random(D) // D-dimensional vector

for i from 1 to ITERATIONS do {
//Compute gradient
g = 0 // D-dimensional zero vector
for every data point (sn, pn) do {

// pn is a vector, sn is +1 or -1
g += sn * pn / (1 + exp(sn * w * pn))

}
w -= LEARNING_RATE * g

}

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Very big!!!!!!

In-memory Computation & Spark 123

Iterative Version
import numpy as np # import the numeric lib
from math import exp
Read and create points from a text file
points = sc.textFile(...)...
Initialize w to a random D-dimensional vector
w = np.random.rand(D)
Run multiple iterations to update w
for i in range(ITERATIONS):

grad = np.zeros(D)
for v in points.collect():

d = v.s/(1+ exp(v.s * np.dot(w, v.p)))
grad += np.dot(d, v.p)

w -= LEARNING_RATE * grad

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 124

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 63

Spark: with accumulator
import ...
Read points from a text file and cache them
points = sc.textFile(...).map(parsePoint).cache()
Initialize w to a random D-dimensional vector
w = np.random.rand(D)
Run multiple iterations to update w
for i in range(ITERATIONS):

grad = sc.accumulator(np.zeros(D))
points.foreach(lambda v: # Run in parallel

d = v.s/(1+ exp(v.s * np.dot(w, v.p)))
grad += np.dot(d, v.p))

w -= LEARNING_RATE * grad

Need to define proper accumulator first

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 125

Spark: MP Version
import ...
Read points from a text file and cache them
points = sc.textFile(...).map(parsePoint).cache()

Initialize w to a random D-dimensional vector
w = np.random.rand(D)

Run multiple iterations to update w
for i in range(ITERATIONS):

grad = points.map(lambda v: v.s/(1+ exp(v.s *
np.dot(w, v.p)))).reduce(lambda x,y: np.add(x,y))

w -= LEARNING_RATE * grad

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 126

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 64

Some Spark Features
 points.foreach(body) is an invocation of the Spark’s

parallel foreach operation
 Accumulator allows results of tasks running on

clusters to be accumulated using operators like +=
 But defult accumulator only suppor numbers.

 Can define our own accumulator.
 Only the driver program can read the

accumulator’s value

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 127

Logistic Regression
Performance

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

127 s / iteration

first iteration 174 s
further iterations 6 s

In-memory Computation & Spark 128

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 65

Example: PageRank
•Use PageRank as a Spark example
• Good example of a more complex algorithm

• Multiple stages of map & reduce
• Benefits from Spark’s in-memory computation

• Multiple iterations over the same data

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 129

Basic Idea
 Give pages ranks based on links to them

• Links from mamy pages -> high rank
• Links from a high ranking page -> high rank

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 130

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 66

PageRank Algorithm

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

DD

AA

BB

CC

1.0 1.0

1.0

1.0

In-memory Computation & Spark 131

PageRank Algorithm

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

1.0 1.0

1.0

1.0

1

0.5

0.5

0.5

1

0.5

In-memory Computation & Spark 132

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 67

PageRank Algorithm

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

0.58 1.0

1.85

0.58

In-memory Computation & Spark 133

PageRank Algorithm

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

0.58 1.0

1.85

0.58

0.58

0.29

0.29

0.5

1.85

0.5

In-memory Computation & Spark 134

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 68

PageRank Algorithm

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

0.39 1.72

1.31

0.58

. . .

In-memory Computation & Spark 135

PageRank Algorithm

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

0.46 1.37

1.44

0.73

Final state:

In-memory Computation & Spark 136

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 69

Spark Program
import . . .

function to calculate rank contributions

def rCalc(neighbors, rank):

n = len(neighbors) # no. of neighbors

for url in neighbors:

yield(url, rank/n)

. . . # Read input graph from text file

links = ...cache() # RDD of (url, neighbors) pairs

ranks = ... # RDD of (url, rank) pairs

perform rank update for ITERATIONS rounds

for i in range(ITERATIONS):

contribs = links.join(ranks).flatMap(# u_nr is (url, (neighbors, rank))

lambda u_nr: rCalc(u_nr[1][0], u_nr[1][1]))

ranks = contribs.reduceByKey(add).mapValues(lambda r: 0.15 + 0.85 * r)

ranks.saveAsTextFile(...)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 137

PageRank Example

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

google

msn adobe yahoo

In-memory Computation & Spark 138

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 70

Spark Program

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

links-RDD
(google,[Ljava.lang.String;@1771f11])
(yahoo,[Ljava.lang.String;@19897e4])
(msn,[Ljava.lang.String;@11c228f])
(adobe,[Ljava.lang.String;@20f065])

ranks-RDD
(google,0.25)
(yahoo,0.25)
(msn,0.25)
(adobe,0.25)

links.join(ranks)-RDD
(google,([Ljava.lang.String;@df1177],0.25))
(msn,([Ljava.lang.String;@f3b9d3],0.25))
(adobe,([Ljava.lang.String;@12cd143],0.25))
(yahoo,([Ljava.lang.String;@15e8963],0.25))

contribs-RDD
(yahoo,0.0833333333333
3333)
(msn,0.083333333333333
33)
(adobe,0.0833333333333
3333)
(google,0.25)
(google,0.25)
(google,0.25)

join

flat
Map

reduceBy
Key

In-memory Computation & Spark 139

PageRank Performance

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

17
1

80

23

14

0

50

100

150

200

30 60

Ite
ra

tio
n

tim
e

(s
)

Number of machines

Hadoop

Spark

In-memory Computation & Spark 140

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 71

Spark Execution

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 141

Solution: Controlled
Partitioning

• Network bandwidth is ~100× as expensive as
memory bandwidth

• Pre-partition the links RDD -
so that links for URLs with the same hash code are
on the same node

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 142

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 72

Controlled Partitioning
. . . # Read input graph from text file

links = ...partitionBy(4).cache()

ranks = ... # RDD of (url, rank) pairs

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 143

New Execution

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 144

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 73

PageRank Performance

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Why does it help so much:
links RDD is much bigger in bytes than ranks RDD

In-memory Computation & Spark 145

PageRank Test
 Input data : simple.dat

google: yahoo msn adobe

yahoo: google

msn: google

adobe: google

 numberIterations = 30, usePartitioner = false

 numberIterations = 30, usePartitioner = true
 numberIterations = 45, usePartitioner = false
 numberIterations = 45, usePartitioner = true
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 146

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 74

Example: Alternating Least
Squares (ALS)
 ALS is for collaborative filtering(CF) such as

predicting u users’ ratings for m movies based on
past rating history.

 Both movies and user’s preferences are
represented as k-dim feature vectors.

 A user’s rating to a movie is the dot product of the
user’s feature vector with the movie’s.

 Let M be a m × k matrix and U be a k × u matrix of
feature vectors, the rating R can be represented as
M × U.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 147

ALS Algorithm
 ALS algorithm: (detail not listed)

1. Initialize M to a random value.
2. Optimize U given M to minimize error on R.
3. Optimize M given U to minimize error on R.
4. Repeat steps 2 and 3 until convergence.

 All steps need R. It is helpful to make R a
broadcast variable so that it does not re-sent
to each node on each step.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 148

(https://spark.apache.org/docs/latest/ml-collaborative-filtering.html)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 75

ALS Program in Spark
Rb = sc.broadcast(R)

for n in range(ITERATIONS):

U = sc.parallelize(0 until u) \

.map(lambda j: updateU(j, Rb, M)) \

.collect()

M = sc.parallelize(0 until m) \

.map(lambda j: updateM(j, Rb, U)) \

.collect()

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 149

Spark Implementation
Overview
 Initially, Spark runs on the cluster manager (eg.

Mesos) , to share resources with Hadoop & others
 Can read from any Hadoop input source (e.g.

HDFS)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

~6000 lines of Scala code thanks to building
on Mesos

SparkSpark HadoopHadoop MPIMPI

MesosMesos

NodeNode NodeNode NodeNode NodeNode

…

In-memory Computation & Spark 150

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 76

Internals of Job Execution

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 151

Language Integration
 Scala closures are Serializable Java objects

◦ Serialize on driver, load & run on workers

 Not quite enough
◦ Nested closures may reference entire outer scope
◦ May pull in non-Serializable variables not used inside
◦ Solution: bytecode analysis + reflection

 Shared variables implemented using custom serialized
form (e.g. broadcast variable contains pointer to
BitTorrent tracker)

 PySpark(with the Py4j library) allow easy integration of
Python with Spark and JVM objects.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 152

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 77

Interactive Spark
 Shell interpreter allows Spark to be used

interactively from the command line
 Required two changes:

◦ Modified wrapper code generation so that each
“line” typed has references to objects for its
dependencies

◦ Place generated classes in distributed file system

 Enables in-memory exploration of big data

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 153

Spark Initial Remarks
 By making distributed datasets a first-class

primitive, Spark provides a simple, efficient
programming model for stateful data analytics

 RDDs provide:
◦ Lineage info for fault recovery and debugging
◦ Adjustable in-memory caching
◦ Locality-aware parallel operations

 Spark can be the basis of a suite of batch and
interactive data analysis tools

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 154

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 78

DataFrames
 DataFrames are a later addition to Spark (early

2015).
 The DataFrames API:

◦ intended to enable wider audiences beyond “Big Data”
engineers to leverage the power of distributed
processing

◦ inspired by data frames in R and Python (Pandas)
◦ designed from the ground-up to support modern big

data and data science applications
◦ an extension to the existing RDD API

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 155

DataFrames: Features
DataFrames have the following features:
 Ability to scale from kilobytes of data on a single

laptop to petabytes on a large cluster
 Support for a wide array of data formats and

storage systems
 State-of-the-art optimization and code generation

through the Spark SQL Catalyst optimizer
 Seamless integration with all big data tooling and

infrastructure via Spark
 APIs for Python, Java, Scala, and R

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 156

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 79

DataFrames: Features
 For new users familiar with data frames in other

programming languages, this API should make
them feel at home.

 For existing Spark users, the API will make Spark
easier to program.

 For both sets of users, DataFrames will improve
performance through intelligent optimizations and
code-generation.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 157

Construct a DataFrame
 Python
Construct a DataFrame from a "users" table in Hive.

df = sqlContext.table("users")

Construct a DataFrame from a log file in S3.

df = sqlContext.load("s3n://someBucket/path/to/data.json", "json")

 Scala
val people = sqlContext.read.parquet("...")

 Java
DataFrame people = sqlContext.read().parquet("...")

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 158

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 80

Using DataFrames
Create a new DataFrame that contains only "young" users

young = users.filter(users["age"] < 21)

Alternatively, using a Pandas-like syntax

young = users[users.age < 21]

Increment everybody's age by 1

young.select(young["name"], young["age"] + 1)

Count the number of young users by gender

young.groupBy("gender").count()

Join young users with another DataFrame, logs

young.join(log, logs["userId"] == users["userId"], "left_outer")

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 159

DataFrames and Spark SQL
 DataFrames are fundamentally tied to Spark SQL.
 The DataFrames API provides a programmatic

interface—a domain-specific language (DSL)—for
interacting with your data

 Spark SQL provides a SQL-like interface.

 What you can do in Spark SQL, you can do in
DataFrames and vice versa.

young.registerTempTable("young")
sqlContext.sql("SELECT count(*) FROM young")

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 160

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 81

Datasets
 Dataset API provides a type-safe, object-oriented

programming interface.
 DataFrame is an alias for untyped Dataset.
 Provide compile-time type safety.
 Offer high-level domain-specific language

operations like sum(), join(), select(), groupBy().
 Making code safer, easier and more natural.
 Provide the benefits of RDDs and Spark SQL’s

optimized execution engine.
 Available in Scala and Java.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 161

Create Datasets
 Two ways: dynamically or read from external files
 Example: Create 100 integers as Dataset[Long]
// range of 100 numbers to create a Dataset.

val range100 = spark.range(100)

// try range100.collect() to see it

 Example: Read from an external JSON file
val df =
spark.read.json("/samples/people.json")

 Also from CSV, Text, Parquet, ORC, etc.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 162

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 82

Read with Schema
 Can define the schema before reading
// Define a class to represent a type-specific obj

case class Person(id:Int, name: String, age: Long)

 Read a JSON file into the class format
val ds =
spark.read.json("/samples/people.json").as[Person]

 Upon reading, will create a generic
DataFrame=Dataset[Rows] which convert a
DataFrame into a type-specific object.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 163

Create Datasets
 Can create a new Dataset from existing Datasets
// in Scala; names is a Dataset[String]

val names = ds.map(_.name)

 The most common way is to read from files first
and transform them if necessary.

val young = ds.filter(d => d.age < 25)

.map(d => (d.ID, d.name))

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 164

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 83

Print the Content
 Can print the content with standard Spark

commands
ds.take(10).foreach(println(_))

 The above will print the first 10 rows of the ds

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 165

Using SQL-like Query
 Can process a Dataset with SQL-like query
 Select a named column
val ageCol = ds("age")

 Can use SQL-like query
val old = ds.select($“name", $“age")

.where($"age" > 60)

.sort($"name")

 In general, Datasets are powerful and friendly

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 166

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 84

New Features in Spark 3
 Spark 3.0.0 was officially released on Jun 18, 2020

(a major upgrade from Spark 2).
 Languages/systems version upgrades to Python 3,

Scala 2.12, JDK 11, Hadoop 3, and Kafka 2.4.1.
 Better ANSI SQL compatibility and improved Spark

SQL engine which is now the main engine parallel
to Spark Core. (2x over Spark 2.4)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 167

New Features in Spark 3
 Adaptive Query Execution (AQE): reoptimizes and

adjusts query plans based on runtime statistics
collected during the execution of the query.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 168

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 85

New Features in Spark 3
 Dynamic Partition Pruning (DPP): Optimized

execution by applying filter on the dimension table
in hash joins to skip scanning unneeded partitions.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 169

New Features in Spark 3
 Python related improvements:

◦ Significant improvements in pandas APIs (Python type
hints and additional pandas UDFs)

◦ Better Python error handling
◦ Simplified PySpark exceptions

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 170

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 86

New Features in Spark 3
 New Structured Streaming UI, including a

structured streaming tab, which provides info
about running and completed queries statistics.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 171

New Features in Spark 3
 Accelerator-aware Scheduling: Users can specify

GPU accelerators via configuration and call new
RDD APIs to leverage them.

 New Spark built-in functions (32 functions)
 Datasource format “binaryFile” to read binary files

 Up to 40x speedups for calling R user-defined
functions.

 A whole new module Spark Graph with major
features (eg. query language Cypher) for Graph
processing.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 172

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 87

Start using Spark 3 today

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Introduction 173

Spark 3.5 – What’s New
 Spark Connect: General availability of the Scala client, support for

distributed training and inference, parity of Pandas API on SPARK.
 New PySpark and SQL functionality: SQL IDENTIFIER clause,

named argument support for SQL function calls, SQL function
support for HyperLogLog approximate aggregations, and Python
user-defined table functions.

 Distributed training with DeepSpeed: Simplified configuration
and improved performance.

 Performance and stability improvements in the RocksDB state
store provider

 Structured Streaming: improved compatibility
 English SDK for Apache Spark enables users to utilize plain English

as their programming language, making data transformations
more accessible and user-friendly.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 174

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 88

New Features and
Improvements

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 175

Assignment 2a
1. Implement the PageRank algorithm with Spark and provide

suitable input to test it.
2. Given a file with store sales records in the format:

StoreID ItemID1 #sold1 ItemID2 #sold2 …
and a file of item prices in the format:

ItemID1 price1 ItemID2 price2 …
Write a Spark program to compute the total sales of each
store, the total number sold of each item, the average total
sales and the grand total sales of all stores.

3. Write a Spark program to compute the inverted index and
frequency counts of keywords on a set of documents. More
specifically, given a set of (DocumentID, text) pairs, output a
list of (word, ((doc1, #1), (doc2, #2) …)) pairs.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 176

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 03 In-memory Computation & Spark

Note 89

Assignment 2b
4. Given a text file of purchase records and a threshold θ,

write a Spark program to find all sets of frequent items
that are purchased together. Each line of the input is a
transaction of the format

<tid> item1 item2 . . .
where <tid> is the transaction ID and itemi are the
purchased items (all represented by integer IDs). A set
of items is considered frequent if it appears in at least
θ transactions. Keep in mind that purchase order is
irrelevant. {A, B} is the same as {B, A}. If a set appears
in a transaction, it is only counted once no matter how
many times it appears in that transaction.

 Due date: 3 weeks from now

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems In-memory Computation & Spark 177

