
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 1

Big Data Storage 2:
Hadoop Distributed File

System (HDFS)
Shiow-yang Wu (吳秀陽)
CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly
taken with permission and courtesy

from Professor Shih-Wei Liao of NTU.

The HDFS Paper
 Konstantin Shvachko, Hairong Kuang, Sanjay Radia,

and Robert Chansler. 2010. The Hadoop
Distributed File System. In Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST) (MSST '10). IEEE
Computer Society

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 2

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 2

Hadoop Server Roles

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 3

What’s HDFS
 HDFS is a distributed file system that is fault

tolerant, scalable and extremely easy to expand.
 HDFS is the primary distributed storage for Hadoop

applications.
 HDFS provides interfaces for applications to move

themselves closer to data.

 HDFS was originally designed to ‘just work’.
 Over the years, it has been improved into a solid

big data storage system for Hadoop ecosystem.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 4

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 3

Assumptions and Goals 1
 Hardware Failure

◦ Hardware failure is the norm. Some component of
HDFS is always non-functional.

◦ Auto detection and quick recovery is a core goal.

 Streaming Data Access
◦ Applications need streaming access to data.
◦ Designed more for batch than interactive processing.
◦ Emphasis is on high throughput rather than low latency
◦ POSIX standard not entirely needed. Some areas can be

traded to increase data throughput.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 5

Assumptions and Goals 2
 Large Data Sets

◦ Typical file is gigabytes to terabytes. HDFS is tuned to
support large files.

◦ Provide high aggregate data bandwidth
◦ Scale to hundreds of nodes in a single cluster.
◦ Support tens of millions of files in a single instance.

 Simple Coherency Model
◦ Write-once-read-many access model, no change except

for appends and truncates. (not arbitrary point)
◦ Simplifies data coherency issues and enables high

throughput.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 6

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 4

Assumptions and Goals 3
 Moving Computation is Cheaper than Moving

Data
◦ This minimizes network congestion and increases the

overall throughput.
◦ Provides interfaces for applications to move themselves

closer to where the data is located.

 Portability Across Heterogeneous Hardware and
Software Platforms
◦ Designed to be easily portable.
◦ Facilitates widespread adoption of HDFS

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 7

Features of HDFS
Features of HDFS that make it good for distributed systems:

 Failure tolerant – data is duplicated across multiple DataNodes to
protect against machine failures. The default is a replication factor of
3 (every block is stored on three machines).

 Scalability – data transfers happen directly with the DataNodes so
read/write capacity scales fairly well with the number of DataNodes

 Space - need more space? Just add more DataNodes and re-balance

 Industry standard - Other distributed applications are built on top of
HDFS (HBase, Map-Reduce)

HDFS is designed to process large data sets with write-once-read-many
semantics, it is not for low latency access

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 8

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 5

Key Features: HDFS
 Highly fault-tolerant
 Auto and quick recovery
 High throughput

 Suitable for applications with large data sets
 Streaming access to file system data
 Batch processing > interactive processing

 Can be built out of commodity hardware
 Support PB level storage space

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 9

Fault Tolerance
 Failure is the norm rather than exception
 A HDFS instance may consist of thousands of

server machines, each storing part of the data.
 Huge number of components and each component

has non-trivial probability of failure.

 There is always some component that is non-
functional.

 Detection of faults and quick, automatic recovery
from them is a core architectural goal of HDFS.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 10

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 6

Data Characteristics
 Streaming data access
 Applications need streaming access to data
 Batch processing rather than interactive user access.
 Large data sets and files: gigabytes to terabytes size
 High aggregate data bandwidth
 Scale to hundreds of nodes in a cluster
 Tens of millions of files in a single instance
 Write-once-read-many: a file once created, written and

closed need not be changed which simplifies coherency
 A map-reduce application or web-crawler application fits

perfectly with this model.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 11

Cat

Bat

Dog

Other
Words
(size:

TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce Revisited

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 12

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 7

HDFS
Architecture

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 13

HDFS Architecture

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 14

(https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 8

HDFS Architecture

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 15

HDFS Namespace
 Hierarchical organization of files and directories.
 In RAM
 NameNode maintains the namespace.

 Attributes: permissions, modification and access
times, namespace and disk space quotas

 No hard links or soft links.
 An application can specify the number of replicas

(replication factor) of a file.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 16

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 9

Blocks
 HDFS blocks are either 64MB or 128MB
 Block size and replication factor are configurable per

file.
 Large blocks minimize the cost of seeks
 Can benefit from any disks in the cluster
 Simplify the storage subsystem by reducing the

metadata per file and fit well with replication.
 NameNode periodically receives Heartbeat and

Blockreport messages from DataNodes.
 Heartbeat implies the DataNode is OK.
 Blockreport contains a list of all blocks on a DataNode.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 17

NameNode & DataNodes
 Master/slave architecture
 The single NameNode is a master server that manages the

file system namespace and regulates access to files.
 Many DataNodes (usually one per node in a cluster) that

manage storage attached to the nodes that they run on.
 HDFS exposes a file system namespace and allows user data

to be stored in files.
 A file is split into one or more blocks which are stored in a set

of DataNodes.
 DataNodes: serves open, close, rename, read, write requests,

performs block creation, deletion, and replication upon
instruction from NameNode.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 18

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 10

NameNode
 A highly available server that manages the File

System Namespace and controls access to files.
 The master that manages DataNodes(slave nodes)
 Maintains file system tree and metadata-

persistently on two files: FsImage and EditLogs
(more on this later)

 Stores locations of blocks-but not persistently
 Metadata: Namespace, DataNodes and replication

information, list of blocks of each file
 User data never flows through the NameNode.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 19

NameNode
 Two files associated with the metadata:

◦ FsImage: contains the complete state of the file system
namespace since the start of the NameNode.

◦ EditLogs: contains all the recent modifications made to the file
system w.r.t. the most recent FsImage.

 Records each change that takes place to the file system
metadata.

 Regularly receives a Heartbeat and a block report from all
the DataNodes.

 Keeps a record of all the blocks in HDFS and in which nodes
these blocks are located.

 Takes care of the replication factor of all the blocks.
 In case of the DataNode failure, chooses new DataNodes for

new replicas.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 20

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 11

DataNodes
 Slave daemons or process which runs on each

slave machine
 Workhorses of the file system
 Store(write) and retrieve(read) blocks for HDFS

clients (actual data is stored on DataNodes)

 Send block reports and Hearbeat to NameNode,
(every 3 seconds by default).

 Do not use data protection mechanisms like
RAID…use replication

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 21

NameNode & DataNodes

Namenode

Breplication

Rack1 Rack2

Client

Blocks

Datanodes Datanodes

Client

Write

Read

Metadata ops
Metadata(Name, replicas..)
(/home/foo/data,6. ..

Block ops

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 22

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 12

Secondary NameNode
 Works concurrently with the primary NameNode as a helper

daemon.
 Not a backup NameNode!!
 Constantly reads all the file systems and metadata from the

RAM of the NameNode and writes it into the hard disk or
the file system

 Responsible for combining the EditLogs with FsImage from
the NameNode

 Downloads the EditLogs from the NameNode at regular
intervals and applies to FsImage

 New FsImage is copied back to the NameNode, which is used
whenever the NameNode is started the next time

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 23

Secondary NameNode
 Secondary NameNode server maintains the edit

log and namespace image information in sync with
the NameNode server.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 24

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 13

Secondary NameNode
 Secondary NameNode performs regular

checkpoints in HDFS. Therefore, it is also called
CheckpointNode.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 25

HDFS – Data Organization
 Each file written into HDFS is split into data blocks
 Each block is stored on one or more nodes
 Each copy of the block is called a replica

 Block placement policy:

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 26

◦ First replica is placed on the local node
◦ Second replica is placed in a different rack
◦ Third replica is placed in the same rack as

the second replica
◦ 4th and following replicas are placed

randomly while keeping #replicas per rack
below an upper limit

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 14

Read Operation in HDFS

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 27

HDFS Client Read

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 28

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 15

Write Operation in HDFS

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 29

HDFS Client Write

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 30

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 16

HDFS Security
 Authentication to Hadoop

◦ Simple – insecure way of using OS username to determine hadoop
identity

◦ Kerberos – a third party authentication mechanism using kerberos
ticket

◦ Set by
hadoop.security.authentication=simple|kerberos

 File/directory permissions are same as in POSIX
◦ read (r), write (w), and execute (x) permissions
◦ also has an owner, group and mode
◦ enabled by default (dfs.permissions.enabled=true)

 ACLs are used for implementing permissions that
differ from natural hierarchy of users and groups
◦ enabled by dfs.namenode.acls.enabled=true

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 31

File System Namespace
 Hierarchical file system with directories and files
 Create, remove, move, rename etc.
 NameNode maintains the file system

 Any meta information changes to the file system
are recorded by the NameNode.

 An application can specify the number of replicas
of the file needed: replication factor of the file.
This information is stored in the NameNode.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 32

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 17

Data Replication
 HDFS is designed to store very large files across

machines in a large cluster.

 Each file is a sequence of blocks.

 All blocks in a file except the last are of the same size.

 Blocks are replicated for fault tolerance.

 Block size and replicas are configurable per file.

 The Namenode receives a Heartbeat and a
BlockReport from each DataNode in the cluster.

 BlockReport contains all the blocks on a DataNode.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 33

Replica Placement
 The placement of the replicas is critical to HDFS reliability

and performance.
 Optimizing replica placement distinguishes HDFS from

other distributed file systems.
 Rack-aware replica placement:

◦ Goal: improve reliability, availability and bandwidth utilization
◦ Research topic

 Many racks, communication between racks are through
switches.

 Network bandwidth between machines on the same rack
is greater than those in different racks.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 34

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 18

Replica Placement
 NameNode determines the rack id for each DataNode.
 Replicas are typically placed on unique racks

◦ Simple but non-optimal
◦ Writes are expensive
◦ Replication factor is 3
◦ Another research topic?

 Replicas are placed: one on a node in the local rack, one
on a different rack and one on a different node of the
same rack as the second.

 Remaining blocks are distributed evenly across remaining
racks.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 35

Replica Selection
 Replica selection for READ operation: HDFS tries to

minimize the bandwidth consumption and latency.
 HDFS tries to satisfy a read request from a replica

that is closest to the reader.
 If there is a replica on the Reader node then that is

preferred.

 HDFS cluster may span multiple data centers:
replica in the local data center is preferred over the
remote one.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 36

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 19

Safemode Startup
 On startup NameNode enters Safemode.
 Replication of data blocks do not occur in Safemode.
 Each DataNode checks in with Heartbeat and

BlockReport.
 NameNode verifies that each block has acceptable

number of replicas
 After a configurable percentage of safely replicated

blocks check, the NameNode exits Safemode.
 It then makes the list of blocks that still need to be

replicated.
 NameNode then proceeds to replicate these blocks to

other DataNodes.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 37

Filesystem Metadata
 The HDFS namespace is stored by NameNode.
 NameNode uses a transaction log called the

EditLog to record every change that occurs to the
filesystem meta data.
◦ For example, creating a new file.
◦ Change replication factor of a file
◦ EditLog is stored in the NameNode’s local filesystem

 Entire filesystem namespace including mapping of
blocks to files and file system properties is stored
in a file FsImage. Stored in NameNode’s local
filesystem.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 38

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 20

NameNode Operations
 Keeps image of entire file system namespace and file Blockmap in

memory.

 4GB of local RAM is sufficient to support the above data
structures that represent the huge number of files and
directories.

 When the NameNode starts up it gets the FsImage and Editlog
from its local file system, update FsImage with EditLog
information and then stores a copy of the FsImage on the
filesytstem as a checkpoint.

 Periodic checkpointing is done. So that the system can recover
back to the last checkpointed state in case of a crash.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 39

DataNode Operations
 A DataNode stores data in files in its local file system.
 Datanode has no knowledge about HDFS filesystem
 It stores each block of HDFS data in a separate file.
 DataNode does not create all files in the same

directory.
 It uses heuristics to determine optimal number of files

per directory and creates directories appropriately:
◦ Research issue?

 When the filesystem starts up it generates a list of all
HDFS blocks and send this report to NameNode:
Blockreport.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 40

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 21

The Communication Protocol
 All HDFS communication protocols are layered on top

of TCP/IP protocol
 A client establishes a connection to a configurable TCP

port on the NameNode machine. It talks ClientProtocol
with the Namenode.

 The DataNodes talk to the NameNode using DataNode
protocol.

 RPC abstraction wraps both ClientProtocol and
DataNode protocol.

 NameNode is simply a server and never initiates a
request; it only responds to RPC requests issued by
DataNodes or clients.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 41

Robustness Objectives
 Primary objective of HDFS is to store data reliably

in the presence of failures.
 Three common failures are:

◦ NameNode failures
◦ DataNode failures
◦ Network partitions

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 42

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 22

DataNode Failure and
Heartbeat
 A network partition can cause a subset of DataNodes

to lose connectivity with the NameNode.

 NameNode detects this condition by the absence of a
Heartbeat message.

 NameNode marks DataNodes without Hearbeat and
does not forward any new IO requests to them.

 Any data registered to the failed DataNode is not
available to the HDFS.

 The death of a DataNode may cause replication factor
of some blocks to fall below their specified value.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 43

Re-Replication
 The NameNode constantly tracks which blocks

need to be replicated and initiates replication
whenever necessary.

 The necessity for re-replication may arise due to:
◦ A DataNode may become unavailable,
◦ A replica may become corrupted,
◦ A hard disk on a DataNode may fail, or
◦ The replication factor on the block may be increased.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 44

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 23

Cluster Rebalancing
 HDFS architecture is compatible with data

rebalancing schemes.
 A scheme might move data from one DataNode to

another if the free space on a DataNode falls
below a certain threshold.

 On a sudden high demand for a particular file, a
scheme might dynamically create additional
replicas and rebalance other data in the cluster.

 Data rebalancing is done by the balancer utility.
(not implemented yet)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 45

HDFS Disk Balancing
 When writing new blocks, DN chooses the target disk

based on volume-choosing policies:
◦ Round-Robin policy: spread new blocks across disks
◦ Available space policy: writes data to disks with more free

space (by percentage)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 46

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 24

HDFS Disk Balancer
 Round-robin leads to unbalance in the long run.
 Available-space creates bottleneck on new disks.
 A tool named Disk Balancer in Hadoop 3 help us in

balancing data on disks.
 A command line tool that distributes data evenly

on all disks of a DataNode.
 It is mainly for Intro-DataNode balancing, i.e. Disk

Balancer distributes data within the DN.
 Solve the new disk bottleneck for available-space

policy.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 47

Data Integrity
 Consider a situation: a block of data fetched from

DataNode arrives corrupted.
 This corruption may occur because of faults in a

storage device, network faults, or buggy software.
 A HDFS client creates the checksum of every block of

its file and stores it in hidden files in the HDFS
namespace.

 When a clients retrieves the contents of file, it verifies
that the corresponding checksums match.

 If not, the client can retrieve the block from another
DataNode with a replica.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 48

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 25

Metadata Disk Failure
 FsImage and EditLog are central data structures of HDFS.
 A corruption of these files can cause a HDFS instance to be

non-functional.
 For this reason, a Namenode can be configured to maintain

multiple copies of the FsImage and EditLog.
 Multiple copies of the FsImage and EditLog files are updated

synchronously.
 Degradation acceptable since HDFS applications are not

metadata intensive.
 The NameNode could be a single point failure: automatic

failover is not supported in Hadoop 1.
 Since Hadoop 2, can have redundant NameNodes for quick

failover. (next slide)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 49

Hadoop NameNode High
Availability Architecture
 Hadoop 2.0 overcomes the SPOF of NameNode by

providing support for many NameNodes.
 HDFS NameNode High Availability(HA) architecture

provides the option of running two redundant
NameNodes in the same cluster in an
active/passive configuration with a hot standby.
◦ Active NameNode – Handles all client operations in the

cluster.
◦ Passive(Standby) NameNode – A standby namenode,

which has similar data as active NN. It acts as a slave,
maintains enough state to provide a fast failover, if
necessary.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 50

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 26

NameNode HA Arch
 If Active NN fails, passive NN takes all the

responsibility and cluster continues to work.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 51

ZK: ZooKeeper
JN: Journal Node

JournalNodes
 HA use JournalNodes (JNs) to synchronize active

and standby NameNodes.
 Active NN writes to each JN with changes (“edits”)

to HDFS namespace metadata.
 During failover, the standby NN applies all edits

from the JNs before promotion to active.

 Must be at least 3 JNs with the Quorum Journal
Manager(QJM) as shared storage.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 52

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 27

NameNode HA Arch
 Active and Standby NameNode are always in sync

with each other, i.e. they have the same metadata.
 This permit to reinstate the Hadoop cluster to the

same namespace state where it got crashed. And
this will provide us to have fast failover.

 Must have only one NameNode active at a time.

 Fencing avoids such scenarios by ensuring that
only one NameNode remains active at a particular
time.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 53

HDFS Erasure Coding
 As we mentioned earlier in new features of

Hadoop 3, Erasure Coding reduces the storage
overhead from 200% to 50%.

 This is primary done in HDFS.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 54

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 28

Data
Organization

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 55

Data Blocks
 HDFS support write-once-read-many with reads at

streaming speeds.
 A typical block size is 64MB (or even 128 MB).
 A file is chopped into 64MB chunks and stored.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 56

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 29

Staging
 A client request to create a file does not reach

NameNode immediately.
 HDFS client caches the data into a temporary file.

When the data reached a HDFS block size the client
contacts the NameNode.

 NameNode inserts the filename into its hierarchy and
allocates a data block for it.

 The NameNode responds to the client with the
identity of the DataNode and the destination of the
replicas (DataNodes) for the block.

 Then the client flushes it from its local memory.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 57

Staging (contd.)
 The client sends a message that the file is closed.
 NameNode proceeds to commit the file for

creation operation into the persistent store.
 If the NameNode dies before file is closed, the file

is lost.

 This client side caching is required to avoid
network congestion; also it has precedence in AFS
(Andrew file system).

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 58

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 30

Replication Pipelining
 When client receives

response from NN, it
flushes its block in
small pieces (4K) to
the first replica, that
in turn copies it to the
next replica and so on.

 Data is pipelined from
DataNode to the next.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 59

HDFS
Federation

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 60

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 31

HDFS Federation
 The HDFS Federation architecture allow multiple

NameNodes (NNs) and Namespaces.
 Each NN has its own namespace and block pool

(independent of the other and no sync required)
 DataNodes are used as common storage for blocks

by all the NameNodes.
 Each DN gets registered to ALL NNs for all block

pools.
 DN periodically send heartbeats to ALL NNs.
 (next slide for arch.)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 61

Benefits of HDFS Federation
 Namespace scalability

◦ Can horizontally scale the namespace.
◦ Good for large clusters.

 Performance
◦ Improve performance since file system operations are

not limited by the throughput of a single NN.

 Isolation
◦ Multiple namespaces provide isolation.

 Future innovations

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 62

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 32

HDFS Federation Arch

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 63

Block Pools

API
(Accessibility)

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 64

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 33

Application Programming
Interface
 HDFS provides Java API for application to use.
 A C language wrapper for Java API and REST API is

also available.
 Python access is also used in many applications.

 An HTTP browser can be used to browse the files
of a HDFS instance.

 With NFS gateway, HDFS can be mounted as part of
the client’s local file system.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 65

FS Shell, Admin and
Browser Interface
 HDFS organizes its data into files and directories.
 It provides a command line interface called the FS shell

that lets the user interact with data in the HDFS.
 The syntax of the commands is similar to bash and csh.
 Example: to create a directory /foodir
hdfs dfs –mkdir /foodir

 There is also a DFSAdmin interface available for HDFS
administrator.

 Browser interface is also available to view the
namespace.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 66

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 34

Space Reclamation
 When a file is deleted, HDFS renames file to a file in

the /trash directory for a configurable amount of time.
 A client can request for an undelete in this allowed

time.
 After the specified time the file is deleted and the

space is reclaimed.
 When the replication factor is reduced, the NameNode

selects excess replicas that can be deleted.
 Next heartbeat transfers this information to the

DataNode which clears the blocks for use.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 67

Interfaces to HDFS
 Java API (DistributedFileSystem)
 C wrapper (libhdfs)
 Python hdfs module (and many others)
 HTTP protocol
 WebDAV protocol
 WebHDFS REST API
 . . .
 Shell Commands
The Shell command line is still the simplest and most
familiar one.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 68

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 35

HDFS – Shell Commands
There are two types of shell commands
User Commands
hdfs dfs – runs filesystem commands on the HDFS
hdfs fsck – runs a HDFS filesystem checking
command

Administration Commands
hdfs dfsadmin – runs HDFS administration
commands

(https://hadoop.apache.org/docs/stable/hadoop-project-
dist/hadoop-hdfs/HDFSCommands.html)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 69

HDFS – User Commands (dfs)
List directory contents

Display the disk space used by files

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 70

hdfs dfs –ls
hdfs dfs -ls /
hdfs dfs -ls -R /var

hdfs dfs -du -h /
hdfs dfs -du /hbase/data/hbase/namespace/
hdfs dfs -du -h /hbase/data/hbase/namespace/
hdfs dfs -du -s /hbase/data/hbase/namespace/

“human-readable”

Recursive display

Aggregate summary

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 36

HDFS – User Commands (dfs)
Copy data to HDFS

Copy the file back to local filesystem

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 71

hdfs dfs -mkdir tdata
hdfs dfs -ls
hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata
hdfs dfs -ls –R

cd tutorials/data/
hdfs dfs –copyToLocal tdata/geneva.csv geneva.csv.hdfs
md5sum geneva.csv geneva.csv.hdfs

HDFS – User Commands (acls)
List acl for a file

List the file statistics – (%r – replication factor)

Write to hdfs reading from stdin

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 72

hdfs dfs -getfacl tdata/geneva.csv

hdfs dfs -stat "%r" tdata/geneva.csv

echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt
hdfs dfs -ls –R
hdfs dfs -cat tdataset/tfile.txt

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 37

HDFS – User Commands (fsck)

Removing a file

List the blocks of a file and their locations

Print missing blocks and the files they belong to

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 73

hdfs dfs -rm tdataset/tfile.txt
hdfs dfs -ls –R

hdfs fsck /user/cloudera/tdata/geneva.csv -files -blocks
–locations

hdfs fsck / -list-corruptfileblocks

HDFS – Adminstration
Commands
Comprehensive status report of HDFS cluster

Prints a tree of racks and their nodes

Get the information for a given datanode (like ping)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 74

hdfs dfsadmin –report

hdfs dfsadmin –printTopology

hdfs dfsadmin -getDatanodeInfo localhost:50020

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 38

HDFS – Advanced Commands

Get a list of namenodes in the Hadoop cluster

Dump the NameNode fsimage to XML file

The general command line syntax is
hdfs command [genericOptions] [commandOptions]

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 75

hdfs getconf –namenodes

cd /var/lib/hadoop-hdfs/cache/hdfs/dfs/name/current
hdfs oiv -i fsimage_0000000000000003388 -o
/tmp/fsimage.xml -p XML

Other Interfaces to HDFS
HTTP Interface

Mountable HDFS–FUSE

Once mounted all operations on HDFS can be performed
using standard Unix utilities such as 'ls', 'cd', 'cp', 'mkdir',
'find', 'grep', …

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 76

http://quickstart.cloudera:50070

mkdir /home/cloudera/hdfs
sudo hadoop-fuse-dfs dfs://quickstart.cloudera:8020
/home/cloudera/hdfs

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Lecture 05 Big Data Storage 2 - HDFS

Note 39

Summary
 We discussed the features of the Hadoop

Distributed File System(HDFS), a peta-scale file
system to handle big data sets.

 What discussed: Architecture, data organization,
protocols, APIs, basic implementation, etc.

 Missing elements: Advanced implementation
details

 Look for “HDFS Internals”

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Big Data Storage 2 – HDFS 77

(https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html)

