
CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 1

Structured Big Data 1:
Bigtable & HBase
Shiow-yang Wu (吳秀陽)
CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly
taken with permission and courtesy

from Professor Shih-Wei Liao of NTU.

Outline
 Problems of big data processing with Hadoop

MapReduce
 Structured big data processing
 Traditional RDBMS
 ACID vs BASE
 Distributed DB
 Google Bigtable
 Apache Hbase
 CAP theorem

Structured Big Data 1 – Bigtable & HBase 2CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 2

Problems of MR Processing
 Hadoop MapReduce is simple and powerful but:

◦ The one-input data format (key-value pairs) and two-
stage dataflow computing are extremely rigid.

◦ Custom code has to be written for even the most
common operations (e.g., projection and filtering)

 Programmers could be unfamiliar with the
MapReduce and would prefer to use SQL-like lang

 Performing tasks with a different dataflow (e.g.,
joins or n stages) would require implementing
inelegant workarounds.

 Hadoop MR is not good for interactive queries.

Structured Big Data 1 – Bigtable & HBase 3CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Structured Big Data
Processing
 This lecture discuss various solutions on adding

SQL flavor on top of the Big Data platforms for
processing large-scale structured data.

 Starting with the structured data store Google
Bigtable.

 Then discuss the open source counterpart Apache
HBase.

 Continue with NoSQL, NewSQL and Distributed
SQL systems. (next lecture)

Structured Big Data 1 – Bigtable & HBase 4CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 3

Traditional DBMS
 Mostly based on relational model (tables, tuples,

attributes)
 Well-defined schema
 Support relational operators (SELECT, PROJECT,

JOIN, …)

 SQL language
 Transaction management
 ACID properties (next slide)

Structured Big Data 1 – Bigtable & HBase 5CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

ACID Properties
 Atomicity

◦ either all the operations of a transaction are executed
or none of them are (all-or-nothing)

 Consistency
◦ the database is in a legal state before and after

executing a transaction

 Isolation (next slide)
 Durability (next slide)

Structured Big Data 1 – Bigtable & HBase 6CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 4

ACID Properties
 Atomicity
 Consistency
 Isolation

◦ the effects of one transaction on the database are
isolated from other transactions even under concurrent
execution

 Durability
◦ the effects of successfully completed (i.e., committed)

transactions endure subsequent failures

Structured Big Data 1 – Bigtable & HBase 7CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Benefits of RDBMS
 High level semantics

o Easy to understand (just tables)
o Easy to program
o Programmers are more familiar with
o Transactions

 Lots of mature commercial implementations
o MySQL, PostgreSQL, MSSQL…..

 Optimizations makes them really fast
o But only under small scale of data

Structured Big Data 1 – Bigtable & HBase 8CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 5

Problems of RDBMS on Large
Scale Data
 Most important of all, current implementations

lack, or only come with limited support of
distributed deployment.

 Not very feasible when it comes to BIG data.
o Especially when it come to scalability

 ACID properties are too strong (next slide)

Structured Big Data 1 – Bigtable & HBase 9CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

ACID vs BASE
 ACID properties seem indispensable
 They are incompatible with availability, scalability

and performance requirements in very large
systems.

 An alternative to ACID is BASE:
◦ Basic Availability
◦ Soft-state
◦ Eventual consistency

Structured Big Data 1 – Bigtable & HBase 10CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 6

CAP Theorem
 Eric Brewer (Brewer’s Theorem): It is impossible for

a distributed system to simultaneously provide all
three of the following guarantees:
◦ Consistency
◦ Availability
◦ Partition tolerance

 (more on this later)

Structured Big Data 1 – Bigtable & HBase 11CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Distributed Database
 Transaction

o A unit of consistent and atomic execution against the database.

 Termination protocol
o A protocol by which individual sites can decide how to terminate a

particular transaction when they cannot communicate with other
sites where the transaction executes.

 Distributed DBMS, concurrency control algorithm,
distributed locking, logging protocol, one-copy
equivalence, query processing, query optimization,
quorum-based voting algorithm, Read-once-write-
all protocol, serializability, transparency, two-phase
commit, two-phase locking

Structured Big Data 1 – Bigtable & HBase 12CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 7

BigTable: Motivations
 Consider Google …

◦ Lots of (semi-)structured data
◦ Copies of the web, satellite data, user data, geographic data, email and

USENET, Subversion backing store

◦ Millions of machines
◦ Different projects/applications
◦ Hundreds of millions of users
◦ Many incoming requests (thousands of queries/sec)
◦ 1000TB+ of satellite image data

 Need both offline data processing and online
serving

Structured Big Data 1 – Bigtable & HBase 13CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Why not a DBMS?
• Few DBMS’s support the requisite scale

◦ Required DB with wide scalability, wide applicability,
high performance and high availability

• Couldn’t afford it if there was one
◦ Most DBMSs require very expensive infrastructure

• DBMSs provide more than Google needs
◦ E.g., full transactions, SQL

• Google has highly optimized lower-level systems
that could be exploited
◦ GFS, Chubby(distributed lock service), MapReduce, Job

scheduling

Structured Big Data 1 – Bigtable & HBase 14CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 8

BigTable: Goals
 Wide applicability

o Can be used by many Google products and projects
o Often want to examine data changes over time, e.g., Contents of a

web page over multiple crawls
o Both throughput-oriented batch-processing jobs and latency-

sensitive serving of data to end users

 Scalability
o Handful to thousands of servers, hundreds of TB to PB

 High performance
o Millions of ops per second

 High availability
o Want access to most current data at any time

Structured Big Data 1 – Bigtable & HBase 15CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

What is a BigTable?
 “A BigTable is a sparse, distributed, persistent

multidimensional sorted map. The map is indexed
by a row key, a column key, and a timestamp; each
value in the map is an uninterpreted array of bytes.”
◦ Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. In 7th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2006, pp. 205-218.

◦ Also in ACM Transactions on Computer Systems, Vol. 26,
No. 2, Article 4, June 2008.

Structured Big Data 1 – Bigtable & HBase 16CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 9

Google Cloud Bigtable
 Now advertised as Cloud Bigtable.

(https://cloud.google.com/bigtable?hl=en)
 “HBase-compatible, enterprise-grade NoSQL database

service with single-digit millisecond latency, limitless
scale, and 99.999% availability for large analytical and
operational workloads.”

 Latest: 2.29.1 (2023-11-07)
 Related products: Cloud SQL(relational DBMS),

BigQuery(data warehouse)
 Used by many Google applications: Google Analytics,

Google Maps, Google Earch, GMail, Youtube, web
indexing, …

Structured Big Data 1 – Bigtable & HBase 17CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Apache HBase
 An open source NoSQL distributed databae

modeled after Google Bigtable
 Runs on top of Hadoop/HDFS
 Used by Facebook (2010~2018) before migrating to

its own solution MyRocks and Presto.
 Latest release: 2.5.6 (2023/10/20)
 Most widely used open-source NoSQL DBMS
 More about this later

Structured Big Data 1 – Bigtable & HBase 18CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 10

BigTable: Introduction
 A sparse, distributed, persistent multidimensional

sorted map
o With an interesting data model

 Fault-tolerant, persistent
 Scalable

o Thousands of servers
o Terabytes of in-memory data
o Millions of reads/writes per second, efficient scans

 Self-managing
o Servers can be added/removed dynamically
o Servers adjust to load imbalance

Structured Big Data 1 – Bigtable & HBase 19CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Compare with DBMS, BigTable
provides …
 Simplified data retrieval mechanism

◦ A map
◦ <Row, Column, Timestamp> -> string
◦ No relational operators

 Atomic updates only possible at row level
 Arbitrary number of columns per row
 Arbitrary data type for each column
 Designed for Google’s application set
 Provides extremely large scale (data, throughput)

at extremely small cost

Structured Big Data 1 – Bigtable & HBase 20CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 11

Simple Data Model
 Bigtable is a sparse, distributed, multidimensional

sorted map (from the paper)
 Provides clients with a simple data model that

supports dynamic control over data layout and
format

 Data is described using row names and column
names of arbitrary strings

 The map is indexed by a row key, column key, and a
timestamp; each value in the map is an
uninterpreted array of bytes

 (row:string, column:string, time:int64) string

Structured Big Data 1 – Bigtable & HBase 21CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model
 Row-based, key-value pairs
 “Semi” Three Dimensional datacube

◦ Input(row, column, timestamp) Output(cell contents)

R
o

w
s

Columns

Time

“com.cnn.www”

.

.

.

.

“contents:”

Structured Big Data 1 – Bigtable & HBase 22CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 12

Data Model
 BigTale data model in table form

 Bigtable tables are sparse; if a column is not used
in a particular row, it does not take up any space.

Structured Big Data 1 – Bigtable & HBase 23

Column family 1 Column family 2

Column 1 Column 2 Column 1 Column 2

Row key 1

Row key 2

t1

t2

t3

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model: Rows
 Row keys are arbitrary strings up to 64KB
 Row is the unit of transactional consistency

◦ Every read/write of data under a single row is atomic
◦ Multi-row atomicity not guaranteed

 Identified and sorted in lexicographic order by row
keys

 Rows with consecutive keys (row range) are grouped
together as “tablets”.
◦ Unit of distribution and load-balancing
◦ reads of short row ranges are efficient and typically require

communication with only a small number of machines

Structured Big Data 1 – Bigtable & HBase 24CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 13

Data Model: Columns
 Provide schema-like semantic
 Column keys are grouped into sets called “column families”, which

form the unit of access control.
 Data stored under a column family is usually of the same type

(easier to be compressed together)
 A column family must be created before data can be stored in a

column key
• After a family has been created, any column key within the family can be used

for queries

 Column key is named using: family:qualifier
 Access control and disk/memory accounting are performed at

column family level
 Managed by the Chubby lock service

Structured Big Data 1 – Bigtable & HBase 25CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model: Timestamps
 Each cell can contain multiple versions of data, each

indexed by timestamp (called version in HBase)
 Timestamps are 64-bit integers
 Assigned by:

◦ Bigtable: real-time in microseconds
◦ Client application: when unique timestamps are a necessity

 Data is stored in decreasing timestamp order
◦ Application specifies how many versions (n) or how new enough

(last 7 days) items to be maintained in a cell
◦ Bigtable garbage collects obsolete versions

 Retrieve most recent version if no version specified
◦ If specified, return version where timestamp ≤ requested time

Structured Big Data 1 – Bigtable & HBase 26CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 14

Data Model Example
Example: Zoo

Structured Big Data 1 – Bigtable & HBase 27CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model Example
Example: Zoo

row key col. key timestamp

Structured Big Data 1 – Bigtable & HBase 28CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 15

Data Model
Example: Zoo

row key col. key timestamp

- (zebras, length, 2006) --> 7 ft
- (zebras, weight, 2007) --> 600 lbs
- (zebras, weight, 2006) --> 620 lbs

Structured Big Data 1 – Bigtable & HBase 29CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model
Example: Zoo

row key col. key timestamp

- (zebras, length, 2006) --> 7 ft
- (zebras, weight, 2007) --> 600 lbs
- (zebras, weight, 2006) --> 620 lbs

Each key is sorted in
Lexicographic order

Structured Big Data 1 – Bigtable & HBase 30CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 16

Data Model
Example: Zoo

row key col. key timestamp

- (zebras, length, 2006) --> 7 ft
- (zebras, weight, 2007) --> 600 lbs
- (zebras, weight, 2006) --> 620 lbs

Timestamp ordering is
defined as “most
recent appears first”

Structured Big Data 1 – Bigtable & HBase 31CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model – WebTable
Example

A large collection of web pages and related info

Structured Big Data 1 – Bigtable & HBase 32CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 17

Data Model – WebTable
Example

Row Key

Tablet - Group of rows with consecutive keys.
Unit of Distribution

Bigtable maintains data in lexicographic order by row
key

Structured Big Data 1 – Bigtable & HBase 33CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model – WebTable
Example

Structured Big Data 1 – Bigtable & HBase 34

Column
Family

Column family is the
unit of access control

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 18

Data Model – WebTable
Example

ColumnColumn key is specified by
“ColumnFamily:qualifier”

Structured Big Data 1 – Bigtable & HBase 35CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model – WebTable
Example

ColumnYou can add a column in a
column family if the column
family was created

Structured Big Data 1 – Bigtable & HBase 36CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 19

Data Model – WebTable
Example

Cell
Cell: the storage referenced
by a particular row key,
column key, and
timestamp

Structured Big Data 1 – Bigtable & HBase 37CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model – WebTable
Example

Different cells in a table
can contain multiple
versions indexed by

timestamp

Structured Big Data 1 – Bigtable & HBase 38CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 20

A Table Example

Structured Big Data 1 – Bigtable & HBase 39CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Some Characteristics
 Each row/column intersection can contain

multiple cells.
 Each cell contains a unique timestamped version of

the data for that row and column.
 A column provides a record of how the stored data

has changed over time.

 Columns can be unused in a row.
 Each value is typically no larger than 10 MB.

Structured Big Data 1 – Bigtable & HBase 40CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 21

Bigtable Advantages
 Large-scale storage (petabytes of data)
 High throughput
 Low latency (sub-10ms, millions of requests/second)
 High availability (99.999%)
 High scalability (table can scale to billions of rows and

thousands of columns)
 Fully-managed database (simple administration)
 Cluster resizing without downtime
 Integration with AI/ML Tools
 HBase compatible (work with Apache ecosystem)

Structured Big Data 1 – Bigtable & HBase 41CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Types of Data/Applications
 Examples of data/applications:

◦ Time-series data, such as CPU and memory usage over
time for multiple servers.

◦ Marketing data, such as purchase histories and
customer preferences.

◦ Financial data, such as transaction histories, stock
prices, and currency exchange rates.

◦ Internet of Things data, such as usage reports from
energy meters and home appliances.

◦ Graph data, such as information about how users are
connected to one another.

Structured Big Data 1 – Bigtable & HBase 42CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 22

Bigtable API
 Bigtable APIs provide functions for:

◦ Creating/deleting tables, column families
◦ Changing cluster, table and column family

metadata such as access control rights
◦ Support of single row transactions
◦ Allowing cells to be used as integer counters
◦ Executing client supplied scripts in the address

space of servers

 Supported languages: Java, C++, C#, Go, Node.js,
Python, PHP, and Ruby

Structured Big Data 1 – Bigtable & HBase 43CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Bigtable API (Java)
Write API

o Write or delete different granularities up to row
o Applied atomicity within a row

Structured Big Data 1 – Bigtable & HBase 44CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 23

Bigtable API (Java)
 Read API

o selection by a combination of row, column or timestamp ranges

Structured Big Data 1 – Bigtable & HBase 45CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Bigtable API (Python)
 Import
from google.cloud import bigtable

from google.cloud.bigtable import column_family

from google.cloud.bigtable import row_filters

 Connecting to Bigtable
client = bigtable.Client(project=project_id, admin=True)

instance = client.instance(instance_id)

Structured Big Data 1 – Bigtable & HBase 46CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 24

Bigtable API (Python)
 Creating a table
table = instance.table(table_id)

Define GC policy to retain only the most recent 2 versions

max_versions_rule = column_family.MaxVersionsGCRule(2)

column_family_id = "cf1"

column_families = {column_family_id: max_versions_rule}

if not table.exists():

table.create(column_families=column_families)

Structured Big Data 1 – Bigtable & HBase 47CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Bigtable API (Python)
 Writing rows to a table
greetings = ["Hello World!", "Hello Cloud Bigtable!", "Hello Python!"]

rows = []

column = "greeting".encode()

for i, value in enumerate(greetings):

row_key = "greeting{}".format(i).encode()

row = table.direct_row(row_key)

row.set_cell(

column_family_id, column, value, timestamp=datetime.datetime.utcnow()

)

rows.append(row)

table.mutate_rows(rows)

Structured Big Data 1 – Bigtable & HBase 48CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 25

Bigtable API (Python)
 Reading a row by key and filter
row_filter = row_filters.CellsColumnLimitFilter(1)

key = "greeting0".encode()

row = table.read_row(key, row_filter)

cell = row.cells[column_family_id][column][0]

print(cell.value.decode("utf-8"))

 Scanning all rows
partial_rows = table.read_rows(filter_=row_filter)

for row in partial_rows:

cell = row.cells[column_family_id][column][0]

print(cell.value.decode("utf-8"))

Structured Big Data 1 – Bigtable & HBase 49CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Google Applications using
BigTable

Structured Big Data 1 – Bigtable & HBase 50CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 26

Building Blocks
On top of Google File System (vs HDFS)

o stores persistent data

 Scheduler (in-house):
o Schedule Bigtable jobs

 Chubby (vs ZooKeeper)
o As synchronization service

MapReduce: not a building block, but uses
Bigtable / HBase heavily

Structured Big Data 1 – Bigtable & HBase 51CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Building Blocks: GFS
 Bigtable uses the distributed Google File System

(GFS) to store log and data files
 The Google SSTable file format is used internally to

store Bigtable data
 An SSTable provides a persistent , ordered

immutable map from keys to values
◦ Operations are provided to look up the value associated

with a specified key, and to iterate over all key/value
pairs in a specified key range

Structured Big Data 1 – Bigtable & HBase 52CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 27

Building Blocks: Chubby
 Bigtable relies on a highly-available and persistent

distributed lock service called Chubby
 Chubby provides a namespace that consists of

directories and small files. Each directory or file
can be used as a lock
◦ Consists of 5 active replicas, one replica is the master

and serves requests
◦ Service is functional when majority of the replicas are

running and in communication with one another –
when there is a quorum

Structured Big Data 1 – Bigtable & HBase 53CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

BigTable and Chubby
 Bigtable uses Chubby to:

◦ Ensure there is at most one active master at a time
◦ Store the bootstrap location of Bigtable data (Root

tablet)
◦ Discover tablet servers and finalize tablet server deaths,
◦ Store Bigtable schema information (column family

information)
◦ Store access control list.

 If Chubby becomes unavailable for an extended
period of time, Bigtable becomes unavailable.

Structured Big Data 1 – Bigtable & HBase 54CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 28

Building Blocks

Shared pool of machines that also run other distributed applications

Structured Big Data 1 – Bigtable & HBase 55CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Bigtable Architecture

Structured Big Data 1 – Bigtable & HBase 56CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 29

Arch on top of Colossus
 Current Cloud Bigtable is built on top of Colossus.

Structured Big Data 1 – Bigtable & HBase 57CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Organization
 A Bigtable cluster stores tables
 Each table consists of tablets

◦ Initially each table consists of one tablet
◦ As a table grows it is automatically split into multiple

tablets

 Tablets are assigned to tablet servers
◦ Multiple tablets per server.
◦ Each tablet is 100-200 MB
◦ Each tablet lives at only one server

Structured Big Data 1 – Bigtable & HBase 58CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 30

Master Node
 The master is responsible for assigning tablets to

tablet servers.
 Detecting the addition or expiration of tablet

servers.
 Balancing the tablet server load.

 Garbage collection.
 Handle schema changes.

Structured Big Data 1 – Bigtable & HBase 59CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tablet Server
 Tablet servers can be added and removed

dynamically from a cluster to accommodate
changes in the workload.

 Each tablet server manages a set of tablets.
 Tablet server handles read and write requests

 Also splits tablets that have grown too large.
 Clients communicate directly with the tablet

server.

Structured Big Data 1 – Bigtable & HBase 60CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 31

Tablets
 Large tables broken into tablets at row boundaries

o Tablet holds contiguous range of rows
o Aim for ~100MB to 200MB of data per tablet

 Serving machine responsible for ~100 tablets
o Fast recovery:
 100 machines each pick up 1 tablet from failed

machine
o Fine-grained load balancing:
 Migrate tablets away from overloaded machine
 Master makes load-balancing decisions

Structured Big Data 1 – Bigtable & HBase 61CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tablets

 Dynamic fragmentation of rows
o Unit of load balancing
o Distributed over tablet servers
o Tablets split and merge
 automatically based on size and load or manually

o Clients can choose row keys to achieve locality

Structured Big Data 1 – Bigtable & HBase 62CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 32

Where is my Tablets?
 Question: given a row, how does a client find the

right tablet server?
o Tablet server location is ip:port
o Need to find tablet whose row range covers the target

row
o One approach: could use the BigTable master
 Central server almost certainly would be bottleneck in

large system
 Instead: store tablet location info in special tablets

similar to a B+ tree
 We’ll talk about this later

Structured Big Data 1 – Bigtable & HBase 63CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

System Architecture

Structured Big Data 1 – Bigtable & HBase 64CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 33

System Architecture

Structured Big Data 1 – Bigtable & HBase 65CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

System Architecture

Structured Big Data 1 – Bigtable & HBase 66CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 34

System Architecture

Structured Big Data 1 – Bigtable & HBase 67CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

System Architecture

Structured Big Data 1 – Bigtable & HBase 68CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 35

Implementation
 Tablet Location
 Tablet Serving
 Compaction

Structured Big Data 1 – Bigtable & HBase 69CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tablet Location
 Remind: Where is my Tablets?
 Question: given a row, how does a client find the

right tablet server?
o Tablet server location is ip:port
o Need to find tablet whose row range covers

the target row
oOne approach: could use the BigTable master

◦ Central server almost certainly would be bottleneck in
large system

o Instead: store tablet location info in special
tablets similar to a B+ tree

Structured Big Data 1 – Bigtable & HBase 70CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 36

Finding Tablet Location
 Client caches tablet locations.
 In case if it does not know, it has to make 3

network round-trips in case cache is empty
and up to 6 round trips in case cache is stale

 Tablet locations are stored in memory, so no
GFS accesses are required

Structured Big Data 1 – Bigtable & HBase 71CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tablet Location
 A 3-level hierarchy analogous to that of a B+-tree to

store tablet location information :
◦ A file stored in chubby contains location of the root tablet
◦ Root tablet contains location of Metadata tablets

◦ The root tablet never splits
◦ Each metadata tablet contains the locations of a set of user

tablets

 Client reads the Chubby file that points to the root
tablet
◦ This starts the location process

 Client library caches tablet locations
◦ Moves up the hierarchy if location N/A

Structured Big Data 1 – Bigtable & HBase 72CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 37

Metadata Tablets
 3-level B+-tree like scheme for tablets

o 1st level: Chubby, points to root tablet
o 2nd level: Root tablet data points to appropriate METADATA

tablet
o 3rd level: METADATA tablets point to data tablets

 METADATA tablets can be split when necessary
 Root tablet never splits so number of levels is fixed

Structured Big Data 1 – Bigtable & HBase 73CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Size Analysis
 Each metadata row stores ~ 1KB of data,

 With 128 MB tablets, the three level store addresses 234

tablets (261 bytes in 128 MB tablets).

 Approaches a Zetabyte (million Petabytes).

Structured Big Data 1 – Bigtable & HBase 74CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 38

Tablet Storage
 Commit log on GFS – Redo log

o buffered in tablet server's memory

 A set of locality groups
o one locality group = a set of SSTable files on GFS
o key = <row, column, timestamp>, value = cell content

Structured Big Data 1 – Bigtable & HBase 75CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

SStable(Sorted String Table)
SSTable: Sorted String Table

o persistent, ordered, immutable map from keys to
values.
 keys and values are arbitrary byte strings.
 SSTable: Immutable on-disk ordered map from string->string
 string keys: <row, column, timestamp> triples

o contains a sequence of blocks (typical size = 64KB),
with a block index at the end of SSTable loaded at
open time (next slide).

o one disk seek per block read.
o operations: lookup(key), iterate(key_range).
o an SSTable can be mapped into memory.

Structured Big Data 1 – Bigtable & HBase 76CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 39

Tablet
 Contains some range of rows of the table
 Built out of multiple SSTables

Structured Big Data 1 – Bigtable & HBase 77CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Table
 Multiple tablets make up the table
 SSTables can be shared
 Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet
aardvark apple

Tablet
apple boat

Structured Big Data 1 – Bigtable & HBase 78CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 40

System Architecture:
Locate Tablet

Structured Big Data 1 – Bigtable & HBase 79CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

System Architecture : Serve
Tablet

Structured Big Data 1 – Bigtable & HBase 80CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 41

Tablet Serving: Write

Write
Operation:
Record the
logs in GFS
then write data
in memtable

Sorted in-memory
buffer for keeping

recently committed
updates

Structured Big Data 1 – Bigtable & HBase 81CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tablet Serving: Read

Read
Operation:
executed on a
merged view
of data from
memtable &
SStable

Structured Big Data 1 – Bigtable & HBase 82CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 42

Implementation: Three
major components
 A library that is linked into every client

 One master server
◦ Assigning tablets to tablet servers
◦ Detecting the addition and deletion of tablet servers
◦ Balancing tablet-server load
◦ Garbage collection of files in GFS

 Many tablet servers
◦ Tablet servers manage tablets
◦ Tablet server splits tablets that get too big

 Client communicates directly with tablet server for
reads/writes.

Structured Big Data 1 – Bigtable & HBase 83CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Architecture
BigTable

BigTable Master

Performs metadata ops
and load balancing

BigTable Tablet Server BigTable Tablet Server

Serves data Serves data

Cluster scheduling system GFS Chubby

Holds tablet
data, logs

Holds metadata, handles
master election

Handles failover,
monitoring

BigTable Client

BigTable Client
Library

Structured Big Data 1 – Bigtable & HBase 84CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 43

Tablet Server
 When a tablet server starts, it creates and acquires

exclusive lock on a uniquely-named file in a specific
Chubby directory
◦ Call this servers directory

 A tablet server stops serving its tablets if it loses its
exclusive lock
◦ This may happen if there is a network connection failure

that causes the tablet server to lose its Chubby session

Structured Big Data 1 – Bigtable & HBase 85CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tablet Server
 A tablet server will attempt to reacquire an

exclusive lock on its file as long as the file still exists
 If the file no longer exists then the tablet server

will never be able to serve again
◦ Kills itself
◦ At some point it can restart; it goes to a pool of

unassigned tablet servers

Structured Big Data 1 – Bigtable & HBase 86CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 44

Master Startup Operation
 Upon start up, the master needs to discover the

current tablet assignment.
◦ Grabs unique master lock in Chubby

◦ Prevents concurrent master instantiations
◦ Scans servers directory in Chubby for live servers
◦ Communicates with every live tablet server

◦ Discover all tablets
◦ Scans METADATA table to learn the set of tablets

◦ Unassigned tablets are marked for assignment

Structured Big Data 1 – Bigtable & HBase 87CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Master Operation
 Detect tablet server failures/resumption
Master periodically asks each tablet server

for the status of its lock

Structured Big Data 1 – Bigtable & HBase 88CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 45

Master Operation
 Tablet server lost its lock or master cannot contact

tablet server:
◦ Master attempts to acquire exclusive lock on the server’s file

in the servers directory
◦ If master acquires the lock then the tablets assigned to the

tablet server are assigned to others
◦ Master deletes the server’s file in the servers directory

◦ Assignment of tablets should be balanced

 If master loses its Chubby session then it kills itself
◦ An election can take place to find a new master

Structured Big Data 1 – Bigtable & HBase 89CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tablet Server Failure

Structured Big Data 1 – Bigtable & HBase 90CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 46

Tablet Server Failure
Chubby Server

Tablet server

GFS Chunkserver

SSTable SSTable SSTable

Tablet Tablet Tablet

Tablet server

GFS Chunkserver

SSTable

(replica)
SSTable

SSTable

Tablet Tablet Tablet

(replica)
SSTable

Logical
view:

Physical
layout:

SSTable

X

X X X X

Master

Structured Big Data 1 – Bigtable & HBase 91CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tablet Server Failure

Structured Big Data 1 – Bigtable & HBase 92CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 47

Tablet Serving
 Commit log stores the updates that are made to

the data
 Recent updates are stored in memtable
 Older updates are stored in SStable files

Structured Big Data 1 – Bigtable & HBase 93CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tablet Serving
 Reads/Writes that arrive at tablet server

o Is the request well-formed?

oAuthorization: Chubby holds the permission file

o If a mutation occurs it is written to commit log and
finally a group commit is used

Structured Big Data 1 – Bigtable & HBase 94CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 48

Tablet Serving
 Tablet recovery process

oRead metadata containing SSTables and redo
points

oRedo points are pointers into any commit logs

oApply redo points

Structured Big Data 1 – Bigtable & HBase 95CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Compactions
 As writes execute, size of memtable increases.
 Once memtable reaches a threshold:

◦ Memtable is frozen,
◦ A new memtable is created,
◦ Frozen metable is converted to an SSTable and written

to GFS.

 This minor compaction – convert the memtable
into an SSTable
◦ Reduce memory usage
◦ Reduce log traffic and recovery time on restart

Structured Big Data 1 – Bigtable & HBase 96CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 49

Minor Compaction

When in-memory
state fills up, pick
tablet with most
data and write
contents to
SSTables stored
in GFS

Structured Big Data 1 – Bigtable & HBase 97CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Compactions
 Merging compaction (in the background)

◦ Read a few SSTables and memtable to produce one
SSTable. (Input SSTables and memtable are discareded.)

◦ Reduce number of SSTables
◦ Good place to apply policy “keep only N versions”

 Major compaction
◦ Periodically compact all SSTables for tablet into a new

base SSTable on GFS
◦ Merging compaction that results in only one SSTable
◦ No deletion records, only live data

Structured Big Data 1 – Bigtable & HBase 98CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 50

Major Compaction

Structured Big Data 1 – Bigtable & HBase 99CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Minor Compaction

Structured Big Data 1 – Bigtable & HBase
100

memtable

SSTable

Memory

GFS

Write Op

Commit Log
SSTable

SSTable
SSTable

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 51

Minor Compaction

Structured Big Data 1 – Bigtable & HBase
101

memtable

SSTable

Memory

GFS

Write Op

Commit Log
SSTable

SSTable
SSTable

Threshold reached

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Minor Compaction

Structured Big Data 1 – Bigtable & HBase
102

memtable

SSTable

Memory

GFS

Write Op

Commit Log
SSTable

SSTable
SSTable

SSTable

Threshold reached

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 52

Minor Compaction

Structured Big Data 1 – Bigtable & HBase
103

memtable

SSTable

Memory

GFS

Write Op

Commit Log
SSTable

SSTable
SSTable

SSTable

A new memtable

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Major Compaction

Structured Big Data 1 – Bigtable & HBase
104

memtable

Memory

GFS

Write Op

Commit Log
SSTable

Major
compaction

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 53

System Performance

 Not linear, but not bad up to 250 tablet servers

Structured Big Data 1 – Bigtable & HBase
105CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Performance Observation
 Random reads slow because tablet server channel

to GFS saturated
 Random reads (mem) is fast because only

memtable involved
 Random & sequential writes > sequential reads

because only log and memtable involved
 Sequential read > random read because of block

caching
 Scans even faster because tablet server can return

more data per RPC

Structured Big Data 1 – Bigtable & HBase
106CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 54

Refinements
 Locality groups

◦ Clients can group multiple column families together into
a locality group.

 Compression
◦ Compression applied to each SSTable block separately
◦ Uses Bentley and McIlroy's scheme and fast

compression algorithm
 Caching for read performance

◦ Uses Scan Cache and Block Cache
 Bloom filters

◦ Reduce the number of disk accesses

Structured Big Data 1 – Bigtable & HBase
107CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Refinements
 Commit-log implementation

◦ Suppose one log per tablet rather than one log per
tablet server

 Exploiting SSTable immutability
◦ No need to synchronize accesses to file system when

reading SSTables
◦ Concurrency control over rows efficient
◦ Deletes work like garbage collection on removing

obsolete SSTables
◦ Enables quick tablet split: parent SSTables used by

children

Structured Big Data 1 – Bigtable & HBase
108CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 55

CAP Revisit
 Consistency

o Everybody see the same result of an operation

 Availability
o No matter an operation succeeds or fails, a result

must be returned -- the system must respond

 Partition Tolerance
o The system must work still despite of message

loss or node failure -- communication within
cluster

Structured Big Data 1 – Bigtable & HBase
109CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CAP Theorem
 The CAP theorem: in distributed system,

consistency, availability & partition tolerance
can’t be fulfilled together.

 Proposed by E. Brewer of UCB as a conjecture
 Proved by Seth Gilbert and Nancy Lynch of MIT

Structured Big Data 1 – Bigtable & HBase
110CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 56

CAP on Bigtable
 Bigtable is a distributed database
 Something must be sacrificed

o Partition tolerance is required: things will fail
o Consistency is fulfilled: row atomicity
o Availability not fulfilled: what if Chubby fails?

 Consistency is more important for their
applications than availability

 Other systems may have different goals

Structured Big Data 1 – Bigtable & HBase 111CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

NoSQL Databases
 NoSQL stands for “not only SQL”
 The type of systems for structured big data with

SQL-like capabilities
 Arise in the big data era

 Must trade off between C, A and P.

Structured Big Data 1 – Bigtable & HBase
112CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 57

Structured Big Data 1 – Bigtable & HBase
113CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Apache HBase

114CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 58

HBase Intro
 A distributed column-oriented data store built on

top of HDFS.
 Can scale horizontally to 1,000s of commodity

servers and petabytes of indexed storage.
 Designed to operate on top of the HDFS or Kosmos

File System(KFS, aka Cloudstore) for scalability,
fault tolerance, and high availability.

 Integrated into the Hadoop MapReduce platform
and paradigm.

 Latest version: 2.5.6 (2023/10/20)
Structured Big Data 1 – Bigtable & HBase

115CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase Benefits
 Distributed storage on commodity machines

 Table-like in data structure
◦ multi-dimensional map

 High scalability, works on extremely large scale data

 High availability

 Offers high security and easy management which
results in high write throughput and performance

 For both structured and semi-structured data types

 MapReduce jobs can be backed with HBase Tables.

Structured Big Data 1 – Bigtable & HBase
116CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 59

HBase History
 Started by Chad Walters and Jim

 2006.11
◦ Google releases paper on BigTable

 2007.2
◦ Initial HBase prototype created as a Hadoop contribution.

 2007.10
◦ First useable HBase released (along with Hadoop 0.15.0)

 2008.1
◦ Hadoop became Apache top-level project and HBase became a subproject

 2008.10~2009
◦ HBase 0.18, 0.19, 0.20 released

Structured Big Data 1 – Bigtable & HBase
117CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase History
 2010.05

◦ HBase became an Apache top-level project

 2010.06
◦ HBase 0.89.20100621, first developer release

Structured Big Data 1 – Bigtable & HBase
118CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 60

HBase History
 2015~2017: HBase 1.1 ~ 1.4
 2018.04.30: HBase 2.0.0, the second major release
 2019.07~2022.08: HBase 2.2 ~ 2.5

 2023.10.20: HBase 2.5.6 (latest release)
 2021.07: HBase 3.0.0-alpha-1
 2023.06: HBase 3.0.0-alpha-4

 Visit Apache HBase Project homepage
(http://hbase.apache.org/) for details

Structured Big Data 1 – Bigtable & HBase
119CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase vs BigTable Terms

Structured Big Data 1 – Bigtable & HBase
120CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 61

Data Model
 Almost the same as BigTable
 Tables are sorted by Row Key
 Table schema only define it’s column families .

◦ Each family consists of any number of columns
◦ Each column consists of any number of versions
◦ Columns only exist when inserted, NULLs are free.
◦ Columns within a family are sorted and stored together

 Everything except table names are byte[]

 (Row, Family:Column, Timestamp) Value

Structured Big Data 1 – Bigtable & HBase
121CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Model
 Very similar to BigTable

Structured Big Data 1 – Bigtable & HBase
122

Row key

Column Family

value
TimeStamp

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 62

HBase Architecture
 A simplified architecture of HBase (details later)

Structured Big Data 1 – Bigtable & HBase
123CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Components
 Zookeeper

◦ Distributed coordination service
◦ Maintain cluster status and server failure notification

 Master Server (HMaster)
◦ Responsible for monitoring region servers
◦ Load balancing for regions
◦ Redirect client to correct region servers
◦ The current SPOF

 Region Servers (slaves)
◦ Serving requests(Write/Read/Scan) of Client
◦ Send HeartBeat to Master
◦ Throughput and Region numbers are scalable by region servers

Structured Big Data 1 – Bigtable & HBase
124CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 63

HBase Architecture

Structured Big Data 1 – Bigtable & HBase
125CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Tables & Regions
 HBase tables are divided into regions and are being

served by region servers.
 Regions are divided into Column Families vertically

into Stores. And then stores are saved in HDFS
files.

Structured Big Data 1 – Bigtable & HBase
126CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 64

Regions
 Tables are divided horizontally by row-key range (with

starKey and endKey) into regions.

 Regions are assigned to region servers. A single region
server can server around 1000 regions.

Structured Big Data 1 – Bigtable & HBase
127CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Region Servers
 Manages regions and runs on HDFS DataNodes.
 When tables grow beyond the configurable limit,

HBase system automatically splits the table and
distributes the load to another Region Server.

 The process is called auto-sharding.
 Communicates with the client and handles data-

related operations
 Decide the size of the region
 Handle the read and write requests for all the

regions under it.

Structured Big Data 1 – Bigtable & HBase
128CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 65

HMaster Server
 Assigns regions to region server with the help of

Zookeeper
 Responsible for load balancing. Unload busy

servers and assign regions to less occupied servers.
 Responsible for schema changes like HBase table

creation, the creation of column families etc.

 Interface for creating, deleting, updating tables
 Monitor all the region servers in the cluster

Structured Big Data 1 – Bigtable & HBase
129CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HMaster Server

Structured Big Data 1 – Bigtable & HBase
130CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 66

ZooKeeper: The Coordinator
 HBase uses ZooKeeper as a distributed coordination

service to maintain server state.
 Zookeeper maintains which servers are alive and

available, and provides server failure notification.
 Zookeeper uses consensus to guarantee common

shared state. (3 or 5 machines for consensus)
 Provides distributed synchronization
 Client communication establishment with region

servers
 Master and region servers registered themselves with

ZooKeeper(ZK). The client needs access to ZK quorum
configuration to connect with master and region
servers.

Structured Big Data 1 – Bigtable & HBase
131CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

ZooKeeper: The Coordinator

Structured Big Data 1 – Bigtable & HBase
132CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 67

How HBase Work
 Zookeeper is used to coordinate shared state info.
 Region servers and the active HMaster connect with a

session to ZooKeeper.
 ZooKeeper maintains ephemeral nodes for active sessions

via heartbeats.
 Each Region Server creates an ephemeral node.
 HMaster monitors these nodes to discover available region

servers and server failures.
 Zookeeper makes sure that only one master is active.
 The active HMaster sends heartbeats to Zookeeper.
 The inactive HMaster listens for notifications of the active

HMaster failure.

Structured Big Data 1 – Bigtable & HBase
133CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

How HBase Work

Structured Big Data 1 – Bigtable & HBase
134CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 68

How HBase Work
 If a region server or the active HMaster fails to

send a heartbeat, the session is expired and the
corresponding ephemeral node is deleted.

 Corresponding listeners will be notified of the
deleted nodes.

 The active HMaster listens for region servers, and
will recover region servers on failure.

 The Inactive HMaster listens for active HMaster
failure, and if an active HMaster fails, the inactive
HMaster becomes active.

Structured Big Data 1 – Bigtable & HBase
135CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase Read/Write
 A special HBase Catalog table (the META table) holds

the location of the regions in the cluster.

 ZooKeeper stores the location of the META table.

 On the first read/write of a client to HBase:
◦ The client gets the Region Server that hosts the META table

from ZooKeeper.
◦ The client will query the META server to get the region

server corresponding to the row key it wants to access.
◦ The client caches this information along with the META

table location.
◦ It will get the Row from the corresponding Region Server.

Structured Big Data 1 – Bigtable & HBase
136CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 69

HBase Read/Write
 For more reads, the client uses the cache for the META location and

previously read row keys.

 It does not need to query the META table unless there is a miss
(region has moved), then it will re-query and update the cache.

Structured Big Data 1 – Bigtable & HBase
137CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase Meta Table

Structured Big Data 1 – Bigtable & HBase
138

 META table keeps a list of all regions in the system.

 META table is like a B tree and is structured as:
◦ Key: region start key, region id
◦ Values: Region Server

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 70

Region Server Components
 A Region Server runs on an HDFS data node and

has the following components:
◦ Write Ahead Log (WAL): a file on HDFS for storing new

data that hasn't yet been persisted to permanent
storage; it is used for recovery in the case of failure.

◦ BlockCache: the read cache to store frequently read
data in memory. Least Recently Used data is evicted
when full.

◦ MemStore: the write cache to store new data which has
not yet been written to disk. It is sorted before writing
to disk. One MemStore per column family per region.

◦ HFiles store the rows as sorted KeyValues on disk.

Structured Big Data 1 – Bigtable & HBase
139CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Region Server Components

Structured Big Data 1 – Bigtable & HBase
140CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 71

HBase Write Steps (1)
 On a client Put request, the data is first written to WAL:

◦ Edits are appended to the end of the WAL file.
◦ The WAL is used to recover not-yet-persisted data in case a

server crashes.

Structured Big Data 1 – Bigtable & HBase
141CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase Write Steps (2)
 Once the data is written to the WAL, it is placed in the

MemStore.

 Then, the put request acknowledgement returns to the
client.

Structured Big Data 1 – Bigtable & HBase
142CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 72

HBase MemStore
 The MemStore stores updates in memory as sorted

KeyValues (same as it would be stored in an HFile).

 There is one MemStore per column family. The updates
are sorted per column family.

Structured Big Data 1 – Bigtable & HBase
143CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase Region Flush
 When the MemStore accumulates enough data, the entire

set is flushed to a new HFile in HDFS.

 HBase uses multiple HFiles per column family, which
contain the actual cells (KeyValue instances).

Structured Big Data 1 – Bigtable & HBase
144CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 73

HBase HFile
 Data is flushed/stored in an HFile of sorted key/values.

 This is a sequential write. It is very fast, as it avoids moving
the disk drive head.

Structured Big Data 1 – Bigtable & HBase
145CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase Read Merge
 A Read merges Key Values from the block cache,

MemStore, and HFiles in the following steps:
1. First, the scanner looks for the Row cells in the Block Cache
2. Next, the scanner looks in the MemStore, the write cache in

memory containing the most recent writes.
3. If still not found, load HFiles into memory.

Structured Big Data 1 – Bigtable & HBase
146CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 74

HBase Read Merge
 There may be many HFiles per MemStore. For a

read, multiple files may have to be examined. This
is called read amplification.

Structured Big Data 1 – Bigtable & HBase
147CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase Minor Compaction
 HBase will automatically pick some smaller HFiles and rewrite them

into fewer bigger HFiles (minor compaction).

 Minor compaction reduces the number of storage files by rewriting
smaller files into fewer but larger ones, performing a merge sort.

Structured Big Data 1 – Bigtable & HBase
148CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 75

HBase Major Compaction
 Major compaction merges and rewrites all the HFiles in a

region to one HFile per column family. This improves read
performance. However, lots of disk I/O and network traffic
might occur. This is called write amplification.

Structured Big Data 1 – Bigtable & HBase
149CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Regions Review
 A table can be divided horizontally into one or

more regions.
 A region contains a contiguous, sorted range of

rows between a start key and an end key.
 Each region is 1GB in size (default)

 A region is served to the client by a RegionServer
 A region server can serve about 1,000 regions

(which may belong to the same table or different
tables)

Structured Big Data 1 – Bigtable & HBase
150CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 76

Regions Review

Structured Big Data 1 – Bigtable & HBase
151CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Region Split
 Initially there is one region per table.
 When a region grows too large, it splits into two

child regions.
 Both child regions are opened in parallel on the

same Region server, and then the split is reported
to the HMaster.

 For load balancing, the HMaster may schedule for
new regions to be moved off to other servers.

Structured Big Data 1 – Bigtable & HBase
152CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 77

Region Split

Structured Big Data 1 – Bigtable & HBase
153CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Read Load Balancing
 Splitting happens initially on the same region

server.
 HMaster may schedule for new regions to be

moved off to other servers for load balancing.
 The new Region server serves data from a remote

HDFS node until a major compaction moves the
data files to the Regions server’s local node.

 HBase data is local when it is written, but when a
region is moved (for load balancing or recovery), it
is not local until major compaction.

Structured Big Data 1 – Bigtable & HBase
154CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 78

Read Load Balancing

Structured Big Data 1 – Bigtable & HBase
155CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HDFS Data Replication
 HBase relies on HDFS to provide the data safety.

 HDFS replicates the WAL and HFile blocks automatically.

Structured Big Data 1 – Bigtable & HBase
156CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 79

HBase Crash Recovery
 When a RegionServer fails, crashed Regions are unavailable.
 Zookeeper will detect node failure when it loses region

server heart beats.
 HMaster will then be notified of Region Server failure.
 HMaster reassigns the regions from the crashed server to

active Region servers.
 HMaster splits the WAL belonging to the crashed region

server into separate files and stores these file in the new
region servers’ data nodes.

 Each Region Server then replays the WAL from the
respective split WAL, to rebuild the Memstore for that
region.

Structured Big Data 1 – Bigtable & HBase
157CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase Crash Recovery

Structured Big Data 1 – Bigtable & HBase
158CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 80

Data Recovery
 WAL files contain a list of edits, with one edit

representing a single put or delete.

 Edits are written chronologically(按時間順序),
additions are appended to the end of the WAL file
that is stored on disk.

 On a failure when the data is still in memory and
not persisted to an HFile, the WAL is replayed on
the current MemStore.

 At the end, the MemStore is flush to write changes
to an HFile.

Structured Big Data 1 – Bigtable & HBase
159CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Data Recovery

Structured Big Data 1 – Bigtable & HBase
160CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 81

HBase Summary
 Distributed and Scalable: can handle large data

sets and can scale out horizontally (adding nodes)
 Column-oriented Storage: stores data in a column-

oriented manner
 Hadoop Integration: built on top of Hadoop, can

leverage HDFS and MapReduce

 Consistency and Replication: provides strong
consistency guarantees for read/write operations,
supports replication of data across multiple nodes

Structured Big Data 1 – Bigtable & HBase
161CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

HBase Summary
 Scales automatically

◦ Regions split when data grows too large
◦ Uses HDFS to spread and replicate data

 Built-in Caching: built-in caching can cache frequently
accessed data in memory

 Compression: supports compression to reduce storage
requirements and improve query performance.

 Built-in recovery: using WAL(similar to journaling)
 Flexible Schema: supports flexible schemas (can be

updated on the fly without requiring a database
schema migration.

Structured Big Data 1 – Bigtable & HBase
162CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 82

HBase Has Problems Too…
 WAL replay slow
 Slow & complex crash recovery
 Major Compaction I/O storms

 Results in business continuity reliability problems
 Doesn’t support full SQL functionalities
 Cannot completely replace traditional RDBMS

 Integrated with MapReduce jobs may result in
unpredictable latencies.

Structured Big Data 1 – Bigtable & HBase
163CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Assignment 3: Open Data
Analytics with HBase

1. In this assignment, you are to learn to search,
download and analyze open data from Government
Web site with Spark and HBase.

2. Visit any Gov open data site and collect data about
public bike service(eg. YouBike, in csv, xml, json).

3. Collect all service station data of a city for at least 24
hours. Many of them are updated every minute. You
need to collect at least once every 15 minutes.

4. Convert and store the data with HBase.

Structured Big Data 1 – Bigtable & HBase
164CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 83

Assignment 3: Open Data
Analytics with HBase

5. Analyze the usage pattern w.r.t. time using Spark.
List at least the top 10 busiest stations/areas
every hour.

6. Based on bike IDs, find the hottest rent/return
station pairs.

7. Conduct another usage analysis of your choice.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 1 – Bigtable & HBase
165

