

SQL vs NoSQL vs NewSQL					
Functions	RDBMS	NoSQL	NewSQL		
SQL	Supported	Not supported	Supported		
Machine dependency	Singe machine	Multi- machine/Distributed	Multi- machine/Distributed		
DBMS type	Relational	Non- relational	Relational		
Schema	Table	Key-value, column store, document store	Both		
Storage	On disk + cache	On disk + cache	On disk + cache		
Properties support	ACID	CAP through BASE	ACID		
Horizontal scalability	Not supported	Supported	Supported		
Query Complexity	Low	High	Very High		
Security concern	Very high	Low	Low		
Big volume	Less performance	Fully supported	Fully supported		
OLTP	Not fully supported	Supported	Fully supported		
Cloud support	Not fully supported	Supported	Fully supported		
CSIE59830/CSIEM0410/AlIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 6					

Implem	entation	BIS			
Problem	Technique	Advantage Contract represent			
Partitioning of data	Consistent Hashing	Incremental Scalability			
Handling temporary failures	Sloppy Quorum	Provides high availability and durability guarantee when some of the replicas are not available.			
High availability for writes	Vector clocks with reconciliation during reads	Version size is decoupled from update rates			
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 38					

Slo	op	p	y (Quorem Core of the second seco
	Ν	R	W	Affection
	3	2	2	Typical configuration,Consistent, durable, interactive user state
	n	1	n	Strong consistency while poor availability
	n	1	1	High availability while weak consistency
CSIE59830/C	SIEM04	10/AIIA5	60050 Big	Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 56

	<u> </u>	D/A
	Dynamo	BigTable
Architecture	decentralized	centralized
Data model	key-value	sorted map
API	get, put	get, put, scan, delete
Security	no	access control
Partitioning	consistent hashing	key range based
Replication	successor nodes in the ring	chunkservers in GFS
Storage	Plug-in	SSTables in GFS
Membership and failure detection	Gossip-based protocol	Handshakes initiated by master

 DynamoDB CRUD APIs The primary CRUD operations for reading/writing items in DynamoDB table: 					
	Operation	Description			
	PutItem	Inserts a new item, or replaces an old item with a new item.			
	UpdateItem	Updates an existing item, or adds a new item to the table if it doesn't already exist.			
	DeleteItem	The DeleteItem operation deletes a single item from the table by the primary key.			
	GetItem	The GetItem operation returns a set of at- tributes for the item with the given primary key.			
Table 1: DynamoDB CRUD APIs for items					
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 68					

 DynamoDB Transasctions 2 Transactions are serially ordered using timestamps. Timestamp ordering is extended to accommodate and exploit the semantics of a key-value store. 				
	Operation	Description		
	TransactGetItems	Reads a set of items from a consistent snapshot and returns their values		
	TransactWriteItems	Performs a set of writes that include PutItem, Up- dateItem, and DeleteItem operations and optionally a set of conditions		
	CheckItem	Checks that the latest value of an item matches the condition		
Table 2: DynamoDB Transaction APIs				
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – 1			ewSQL & Distributed SQL 76	

Column Family Image: Column family : column • column_family : column • column					
	keyA	column1	column2	column3	
	keyC	column1	column7	column11	
	Column				
	Byte[] Name				
	Byte[] Value				
	164 timesta	mp			
CSIE59	CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 93				

	Consistency Levels - Write Level Description ANY At least one node				
	Level	Description			
	ANY	At least one node			
	ONE	At least one replica node			
	TWO	At least two replica nodes			
	THREE	At least three replica nodes			
	QUORUM	Write to a quorum of replica nodes			
	LOCAL_QUORUM	Write to a quorum of the current data center as the coordinator			
	EACH_QUORUM	Write to quorums of all data centers			
	ALL	Write to all replica nodes in the cluster			
cs	IE59830/CSIEM0410/AIIA50050 Bi	g Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 98			

Consistency Levels - Read

	Level	Description		
	ONE	Read from the closest replica		
	TWO	Read from two of the closest replicas		
	THREE	Read from three of the closest replicas		
	QUORUM	Read from a quorum of replicas		
	LOCAL_QUORUM	Read from a quorum of the current data center as the coordinator		
	EACH_QUORUM	Read from quorums of all data centers		
ALL Read from all replicas in the cluste		Read from all replicas in the cluster		
cs	CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 99			

Dynamo vs Bigtable vs Cassandra Table II : Comparison of Dynamo, Bigtable and Cassandra					
	Dynamo	Bigtable	Cassandra		
Data model	Key-value, row store	Column store	Column store similar to Bigtable		
API	Single tuple	Single tuple and range	Single tuple and range		
Data partition	Random	Ordered	Random and ordered		
Optimized for	Writes	Writes	Writes		
Consistency	Eventual	Atomic	Tunable consistency level		
Multiple versions	Version	Time stamp	Time stamp		
Persistency	Local and pluggable	Replicated and distributed file system	Replicated and distributed file system		
Architecture	Decentralized	Hierarchical	Decentralized		
Concurrency control	Multi version concurrency control	Locks and time stamps	Multi version concurrency control		
Client library	Yes	Yes	Yes		
Data storage	Plug-in	Google File system	Disk		
Replication	Asynchronous	Synchronous & asynchronous	Asynchronous		
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 119					

 Popularity of MongoDB MongoDB is very popular in recent years. It is the only NoSQL in the top 5 DB engine ranking 							
Dec 2023	Rank Nov 2023	Dec 2022	DBMS	Database Model	Dec 2023	core Nov 2023	Dec 2022
1.	1.	1.	Oracle 🖶	Relational, Multi-model 👔	1257.41	-19.62	+7.10
2.	2.	2.	MySQL 🛨	Relational, Multi-model 👔	1126.64	+11.40	-72.76
3.	3.	3.	Microsoft SQL Server 🖶	Relational, Multi-model 👔	903.83	-7.59	-20.52
4.	4.	4.	PostgreSQL 🚼	Relational, Multi-model 👔	650.90	+14.05	+32.93
5.	5.	5.	MongoDB 🚼	Document, Multi-model 👔	419.15	-9.40	-50.18
6.	6.	6.	Redis 🞛	Key-value, Multi-model 👔	158.35	-1.66	-24.22
7.	7.	↑ 8.	Elasticsearch	Search engine, Multi-model 🛐	137.75	-1.87	-7.18
8.	8.	4 7.	IBM Db2	Relational, Multi-model 👔	134.60	-1.40	-12.02
9.	1 0.	9.	Microsoft Access	Relational	121.75	-2.74	-12.08
10.	↑ 11.	↑ 11.	Snowflake 🗄	Relational	119.88	-1.12	+5.11
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 141							

N	MongonDB vs RDBMS							
	MongoDB	RDBMS						
	Collection	Table/View						
	Document	Tuple/Row						
	Field	Column						
	PK: _id Field	PK: Any Attribute(s)						
	Reference	Foreign Key						
	Uniformity not Required	Uniform Relation Schema						
	Index	Index						
	Embedded Structure	Joins						
	Shard	Partition						
		·						
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 147								

JSON vs XML	E the field equitable	
XML	NOSL	
It is a markup language.	It is a way of representing objects.	
This is more verbose than JSON.	This format uses less words.	
It is used to describe the structured data.	It is used to describe unstructured data which include arrays.	
JavaScript functions like <i>eval(), parse()</i> doesn't work here.	When <i>eval</i> method is applied to JSON it returns the described object.	
Example: <car> <company>Volkswagen</company> <name>Vento</name> <price>800000</price> </car>	Example: { "company": Volkswagen, "name": "Vento", "price": 800000 }	
	Structured Pig Data 2 NoCOL NouCOL 8 Distributed COL 122	
CSIE53050/CSIEWI0410/AIIAS0050 Big Data Systems	Structured big Data 2 - NOSQL, NewSQL & Distributed SQL 153	

NoSQL vs NewSQL						
NoSQL	NewSQL Con Stat Pres-reg (50007					
 New breed of non -relational database products 	 New breed of relational database products 					
 Rejection of fixed table schema and join operations 	 Retain SQL and ACID Designed to meet scalability requirements of 					
 Designed to meet scalability requirements of distributed architectures 	 Or improve performance sc 					
 And/or schema-less data management requirements 	horizontal scalability is no longer a necessity					
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems	Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 180					

VoltDB vs Others						
	VoltDB	NoSQL	Traditional RDBMS			
Scale-out architecture	Ø	O				
Built-in high availability	0	O				
Multi-master replication	Ø	O				
Built-in durability	Ø		O			
ACID compliant	0		O			
SQL data language	0		Ø			
Cross-partition joins	Automatic	In app code	In app code			
Cost at scale	\$	\$\$\$	\$\$\$\$			
		(From VoltDB	Technical Overview)			
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 185						

SQL, NoSQL, NewSQL all fall short

Structured Big Data 2 - NoSQL, NewSQL & Distributed SQL 22

- Traditional SQL DBs are not scalable, not elastic.
- NoSQL DBs (HBase, Cassandra, MongoDB, ...) are scalable and elastic but sacrificing the best of SQL.
- NewSQL DBs (VoltDB, NuoDB, ClustrixDB, ...) try to bring the best of both but fall short.
- What we REALLY need is complete SQL/transactions (compatibility) yet highly elastic/scalable, globally distributed, externally-consistent and fault tolerant.
- We want SQL from a distributed system POV, i.e. we want "distributed SQL" !!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Spanner supports several types of transactions. Timestamp Concurrency							
Operation	Discussion	Control	Replica Required				
Read-Write Transaction	§ 4.1.2	pessimistic	leader				
Read-Only Transaction	§ <mark>4.1.4</mark>	lock-free	leader for timestamp; any for read, subject to $\{4.1.3\}$				
Snapshot Read, client-provided timestamp	_	lock-free	any, subject to § 4.1.3				
Snapshot Read, client-provided bound	§ 4.1.3	lock-free	any, subject to § 4.1.3				
Table 2: Types of reads a	nd writes in Sp	anner, and how	hey compare.				

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 258

 Scalability of Spanner Two-phase commit is crucial for concurrency control. 								
 Spanner scales well in two-phase commit. 								
		laten	cy (ms)	1				
	participants	mean	99th percentile	-				
	1	17.0 ± 1.4	75.0 ± 34.9	1				
	2	24.5 ± 2.5	87.6 ±35.9					
	5	31.5 ± 6.2	104.5 ± 52.2					
	10	30.0 ± 3.7	95.6 ± 25.4					
	25	35.5 ± 5.6	100.4 ± 42.7	-				
	50	42.7 ± 4.1	93.7 ±22.9	1				
	100	71.4 ±7.6	131.2 ± 17.6	1				
	200	150.5 ± 11.0	320.3 ± 35.1	- 6				
Table 4: Two-phase commit scalability. Mean and standard deviations over 10 runs. CSIE59830/CSIEM0410/All450050 Big Data Systems								

- F1 was the Google's advertising backend which was originally based on MySQL.
- Spanner has been successfully evaluated on F1.

	laten		
operation	mean	std dev	count
all reads	8.7	376.4	21.5B
single-site commit	72.3	112.8	31.2M
multi-site commit	103.0	52.2	32.1M

Table 6: F1-perceived operation latencies measured over the course of 24 hours.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 260

Structured Big Data 2 - NoSQL, NewSQL & Distributed SQL 279

CSIE59830/CSIEM0410/AIIA5005	0 Big	Data	System
------------------------------	-------	------	--------

Comparing Distr SQL DBs By YogabyteDB Comparing Distributed SQL Databases * 0 Ø PingCap's TiDB CockroachDB Amazon Auro MySQL (No Foreign Keys & Serializable Isolatio PostgreSQL (No Partial Indexes, Stored Procedures & Triggers) SQL & Transaction: Compatibility PostgreSQL & MySQL (Full Compatibility) Proprietary SQL (No Foreign Keys) PostgreSQL (Full Compatibil ~ ~ ~ ~ ~ Native Failover/Repai Horizontal Write Scalability (Multi-Master) (Auto-Sharded) (Auto-Sharded) (Auto-Sharded) (Auto-Sharded) Global Clock Sync for Consistency) a Single Region n Take Writes) Clock Sync lobal Clock Sync ngle Region Timesta Generator Leads to High Latency) Geographic Data Distribution Ξ 3 ~ High Performance d Replicas Canno Process Writes (High Latency for Multi-Region Clusters) (Not Optimized for tigh Volume Ingest) (Optimized for High Volume Ingest ietary to AWS) 8 Cloud Neutral w/ Kubernetes Native ~ ~ ~ Θ C 8 Open Source (Apache 2.0) (BSL 1.0 is not Open Source) (Apache 2.0) Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 280 CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

