
CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 1

Structured Big Data 2:
NoSQL, NewSQL and

Distributed SQL Systems
Shiow-yang Wu (吳秀陽)
CSIE, NDHU, Taiwan, ROC

Recap from Last Lecture
 Why can’t we use traditional RDBMS?

o As data scales, RDBMS cannot handle it
o The schema from RDBMS will hinder the scalability

 Need the data model with loosen schema and
high scalability
→ NoSQL

 Want the best of both worlds
→ NewSQL

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 2

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 2

SQL vs NoSQL vs NewSQL
SQL:
 Relies solely on relational tables for storing and

accessing transactional data.
 Relies on basic SQL as its primary query language.
 Employs rigid and well-defined data schema.
 Minimizes redundancies via normalization.
 Utilizes traditional vertical scalability (up, not out).
 Popular SQL Databases: Microsoft SQL Server, MySQL,

Oracle Database, IBM Db2, Informix, MariaDB,
PostgreSQL, SQLite,

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 3

SQL vs NoSQL vs NewSQL
NoSQL:
 Relies on different models, such as key-value, document,

wide-column, or graph.
 Relies on high performance writes and huge, horizontal

scalability for big data.
 Does not rely on a defined schema for writing data.
 Supports a large variety of modern programming languages,

tools, and applications.
 Lacks strong consistency (instead, relies on a default

“eventual consistency” for higher availability).
 Popular NoSQL Databases: HBase, Cassandra, Amazon

DynamoDB, Couchbase Server, CouchDB, MongoDB, Oracle
NoSQL, Redis, ….

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 4

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 3

SQL vs NoSQL vs NewSQL
NewSQL:
 Combines relational model of SQL databases with the

versatile scalability and speed of NoSQL databases.
 Uses cluster-native and shared-nothing architecture to

provide low latency, high read/write performance.
 Favors consistency over availability (though

configurations can be tuned for better balance).
 Variety in schema management, depending on the

vendor.
 Popular NewSQL Databases: Apache Trafodion,

Altibuse, ClusterixDB, MemSQL, VoltDB, NuoDB, TIBCO
ActiveSpaces, ….

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 5

SQL vs NoSQL vs NewSQL

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 6

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 4

Systems to be discussed
 Deep dive into some NoSQL & NewSQL databases
 NoSQL systems to be discussed:

◦ DynamoDB
◦ Cassandra
◦ MongoDB

 NewSQL systems to be discussed:
◦ VoltDB
◦ NuoDB (if time)
◦ ClustrixDB (if time)
◦ Vitess (if time)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 7

What do we REALLY want?
 What’s wrong with SQL, NoSQL and NewSQL?
 Back to basics: Re-examine the fundamental

requirements.
 What we REALLY want is Distributed SQL!!
 Google Spanner, the first of its kind
 Distributed SQL DBs:

◦ CockroachDB
◦ YugabyteDB
◦ SkySQL
◦ Google F1

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 8

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 5

NoSQL
Databases

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems 9

NoSQL: The Name
 “SQL” = Traditional relational DBMS (RDBMS)
 Recognition over past decade or so:

Not every data management/analysis problem
is best solved using a traditional RDBMS

 “NoSQL” = “No SQL” =
Not using traditional relational DBMS

 “No SQL”  Don’t use SQL language
 “NoSQL” = “Not Only SQL”

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 10

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 6

What’s Wrong with RDBMS
 Nothing. One size fits all? Not really.
 Impedance mismatch

◦ Object relational mapping doesn‘t work quite well due to conceptual
difficulty mapping between the two (relational & OO) logic models.

 Rigid schema design
 Harder to scale
 Replication
 Joins across multiple nodes? Hard.
 How does RDMS handle data growth? Hard.
 Need for a DBA.
 Many programmers are already familiar with it.
 Transactions and ACID make development easy.
 Lots of tools to use.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 11

NoSQL Systems
 Alternative to traditional relational DBMS

+ Flexible schema
+ Quicker/cheaper to set up
+ Massive scalability (scale horizontally instead of

vertically)
+ Relaxed consistency  higher performance &

availability

– No declarative query language more programming
– Relaxed consistency  fewer guarantees

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 12

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 7

How did we get here?
 Explosion of social media sites (Facebook, Twitter)

with large data needs
 Rise of cloud-based solutions such as Amazon S3

(Simple Storage Solution)
 Just as moving to dynamically-typed languages

(Ruby/Groovy), a shift to dynamically-typed data
with frequent schema changes

 Open-source community

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 13

Seeds of the NoSQL
Movement
 Three major development were the seeds of the

NoSQL movement
◦ BigTable (Google)
◦ Dynamo (Amazon)

◦ Gossip protocol (discovery and error detection)
◦ Distributed key-value data store
◦ Eventual consistency

◦ CAP Theorem

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 14

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 8

CAP Theorem Revisited

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 15

The Perfect Storm
 Large datasets, acceptance of alternatives, and

dynamically-typed data has come together in a
perfect storm.

 Not a backlash/rebellion against RDBMS
 SQL is a rich query language that cannot be rivaled

by the current list of NoSQL offerings

 NoSQL = “Not Only SQL”

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 16

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 9

Example #1: Web log analysis

Each record: UserID, URL, timestamp, additional-info

Task: Load into database system

Why NoSQL?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 17

Example #1: Web log analysis

Each record: UserID, URL, timestamp, additional-info

Task: Find all records for…
 Given UserID
 Given URL
 Given timestamp
 Certain construct appearing in additional-info

Why NoSQL?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 18

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 10

Example #1: Web log analysis

Each record: UserID, URL, timestamp, additional-info
Separate records: UserID, name, age, gender, …

Task: Find average age of user accessing given URL

Why NoSQL?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 19

Example #2: Social-network graph

Each record: UserID1, UserID2
Separate records: UserID, name, age, gender, …

Task: Find all friends of friends of friends of … friends of
given user

Why NoSQL?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 20

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 11

Example #3: Wikipedia pages

Large collection of documents
Combination of structured and unstructured data

Task: Retrieve introductory paragraph of all pages about
U.S. presidents before 2015

Why NoSQL?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 21

Key Features of NoSQL

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 22

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 12

4 Types of NoSQL DBs
 There are 4 basic types of NoSQL DBs.
 We will discuss the key-value, column based and

document based DBs.
 Graph DBs will be discussed in next lecture.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 23

7 Types of NoSQL DBs
 Another 3 types are added later

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 24

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 13

Popular NoSQL DBs
 Some of the most popular NoSQL DBs (all except

DynamoDB are open-source)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 25

Dynamo: Outline
 Background & motivation
 System internals
 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swami Sivasubramanian, Peter Vosshall and Werner Vogels,
“Dynamo: Amazon's Highly Available Key-Value Store”, in
the Proceedings of the 21st ACM Symposium on Operating
Systems Principles, Stevenson, WA, October 2007.

 Mostafa Elhemali, et. al. “Amazon DynamoDB: A Scalable,
Predictably Performant, and Fully Managed NoSQL Database
Service”, in Proceedings of the 2022 USENIX Annual Technical
Conference, Carlsbad, CA, USA, July 2022.

 Joseph Idziorek, et. Al. “Distributed Transactions at Scale in
Amazon DynamoDB”, in Proceedings of the 2023 USENIX
Annual Technical Conference, Boston, MA, USA, July 2023.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 26

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 14

Amazon DynamoDB

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 27

Background
 Amazon’s eCommerence platform architecture
 Composed of highly decentralized, loosely

coupled, service-oriented architecture
 Service based on a well-defined interface

accessible over the network
 hosted in an infrastructure that consists of tens of

thousands of servers located across many data
centers world-wide

 Need high availability and SLA(Service Level
Agreements) guarantee

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 28

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 15

Amazon Services
 Many services store and retrieve data based on

key (called key-value access)
 Examples of key-value access in Amazon

o best seller lists, shopping carts, customer preferences,
sales rank

 Traditional RDBMS as persistent store is not
suitable
o No need for strong consistency
o No use of rigid schema
o No need of complex querying and optimization
o No need for complex management functionalities
o Scale up v.s. scale out

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 29

Motivation
 Focus on reliability and scalability
 Need a highly-available storage system instead of

consistency
 Consistency v.s. Availability

o High availability is more important
o Client-perceived consistency
o Tradeoff consistency in favor of higher availability

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 30

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 16

Requirements and
Assumptions
 Query model:

o Simple read and write data based on key
o Data stored as a blob (Binary Large Object)
o Object size small (less than 1MB)

 ACID properties
o Weaker consistency: Eventual consistency
o No isolation guarantee
o Only single key updates

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 31

Eventual Consistency
 When no updates occur for a long period of time,

eventually all updates will propagate through the
system and all the nodes will be consistent

 For a given accepted update and a given node,
eventually either the update reaches the node or
the node is removed from service

 Known as BASE (Basically Available, Soft state,
Eventual consistency), as opposed to ACID

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 32

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 17

Requirements and
Assumptions
 Efficiency

o Based on commodity hardware
o Stringent SLA requirements (next slide)
o Tradeoffs: performance, cost efficiency,

availability, and durability

 Other: non-hostile environment, no security-
related requirements (used only by Amazon’s
internal services)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 33

Service Level Agreements
 Definition: a formally negotiated contract where a

client and a service agree on several system-
related characteristics, which most prominently
include the client’s expected request rate
distribution for a particular API and the expected
service latency under those conditions

 Example: response time within 300ms for 99.9% of
its requests for a peak client load of 500 req/sec

 SLAs expresses as 99.9th percentile of the
distribution
o Not the traditional mean or average
o Why? What is the implication of this?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 34

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 18

Amazon’s Service Oriented
Infrastructure
 Decentralized SOA (next slide)
 a page request to a e-commerce site typically

requires the rendering engine to construct its
response by sending requests to over 150 services

 Services often have multiple dependencies (call
chains)

 To ensure a clear bound on page delivery each
service within the call chain must obey its
performance contract

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 35

SOA of Amazon’s platform

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 36

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 19

Design Consideration
 Sacrifice strong consistency for availability
 Conflict resolution is executed during read

instead of write, i.e. “always writeable”.
 Other principles:

◦ Incremental scalability.
◦ Symmetry.
◦ Decentralization.
◦ Heterogeneity.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 37

Implementation
Problem Technique Advantage

Partitioning of
data

Consistent Hashing Incremental
Scalability

Handling
temporary
failures

Sloppy Quorum Provides high availability
and durability guarantee
when some of the
replicas are not available.

High availability
for writes

Vector clocks with
reconciliation
during reads

Version size is decoupled
from update rates

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 38

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 20

Implementation
 Partition: must be balanced
 Why ?

o Design requirement: to scale incrementally
o Need to partition data over the set of

nodes(e.g storage host) dynamically
o balanced distribution of data
o =>Consistent hashing

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 39

Basic Consistent Hashing
 Hash keys to a fixed circular space or “ring”
 Each node is assigned a random position in the

ring
 Each data is assigned to a node by hashing its key

and walking clockwise

 Each node is responsible for the region between it
and its predecessor

 Departure or arrival of a node only affects its
immediate neighbors

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 40

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 21

Partition: Consistent

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 41

Insert New Data

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 42

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 22

Insert new data: Replication

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 43

Insert New Data

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 44

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 23

Adding New Node

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 45

Load Balancing

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 46

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 24

Implementation
Handling temporary failures
 Sloppy Quorem

o Availability too high will reduce durability
even under the simplest failure

o Sloppy Quorem is to control the tradeoff
between availability and consistency

o To get enough durability to handle temporary
failures

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 47

Sloppy Quorem
 R/W is the minimum number of nodes that

must participate in a successful read/write
operation.

 Configurable N, R, W
o N: number of successful copies in ideal state
o R: number of successful reads nodes for

successful read
o W: number of successful writes nodes for

successful write

 Setting R + W > N yields a quorum-like system.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 48

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 25

Sloppy Quorem

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 49

Sloppy Quorem: Write

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 50

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 26

Sloppy Quorem: Write

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 51

Sloppy Quorem: Read

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 52

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 27

Sloppy Quorem: Read

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 53

Sloppy Quorum: write after
B fails

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 54

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 28

Sloppy Quorum: After B
Recover

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 55

Sloppy Quorem

N R W Affection

3 2 2 Typical configuration,Consistent,
durable, interactive user state

n 1 n Strong consistency while poor
availability

n 1 1 High availability while weak
consistency

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 56

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 29

Implementation
 Data Version

o Dynamo provides fully availibility
o Consistency => eventually consistency
o To guarantee eventually consistency

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 57

Data Versioning
 A put() call may return to its caller before the update has

been applied at all the replicas
o Put(key, context, object): context contains metadata

& version
o Each put operation is a new immutable version

 A get() call may return many versions of the same object.
o Get(key)

 Challenge: an object having distinct version sub-
histories, which the system will need to reconcile in the
future.

 Solution: uses vector clocks in order to capture causality
between different versions of the same object.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 58

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 30

Vector Clock
 A vector clock is a list of (node, counter) pairs.
 Every version of every object is associated with one

vector clock.
 If the counters on the first object’s clock are less-

than-or-equal to all of the nodes in the second
clock, then the first is an ancestor of the second
and can be forgotten.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 59

Data Versioning with Vector
Clock D0

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 60

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 31

Gossip
 Admin issue command to join/remove node
 Serving node records in its local membership

history
 Gossip based protocol used to agree on the

memberships
 Partition and Placement information sent

during gossip

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 61

READ Operation
 Send read requests to nodes
 Wait for minimum no of responses (R)
 Too few replies fail within time bound

 Gather and find conflicting versions
 Create context (opaque to caller)
 Read repair

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 62

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 32

Values of N, R and W
 N represents durability

◦ Typical value 3

 W and R affect durability, availability,
consistency

 What if W is low?
 Durability and Availability go hand-in-hand?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 63

Dynamo vs BigTable

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 64

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 33

Conclusion and Influence
 Dynamo has provided high availability and fault

tolerance
 Provides owners to customize according to their

SLA requirements
 Decentralized techniques can provide highly

available system

 Some of the principles used by S3
 Open source implementation

◦ Cassandra
◦ Voldemort

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 65

Amazon DynamoDB
 A fully managed NoSQL cloud database service

motivated by Dynamo.
 Multi-tenant architecture
 Boundless scale for tables

 Provide predictable performance
 Highly available (99.99 for regular table, 99.999 for

global tables)
 Flexible use cases (doesn’t require a particular data

model or consistency model, no fixed schema, …)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 66

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 34

DynamoDB Data Model
 A DynamoDB table is a collection of items.
 Each item is a collection of attributes.
 Primary key is specified at table creation time and

contains a partition key or a partition and sort keys
(a composite primary key).

 Item is stored/located based on hashing partition
key followed by sort key (if present).

 A table can have secondary indexes.
 Support ACID transactions.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 67

DynamoDB CRUD APIs
 The primary CRUD operations for reading/writing

items in DynamoDB table:

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 68

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 35

DynamoDB Tables
 A table is divided into multiple partitions.
 Each partition hosts a disjoint and contiguous part of the key-

range.
 Each partition has multiple replicas across different Availability

Zones and form a replication group.
 Use Multi-Paxos for leader election and consensus.
 Only the leader can serve write and strongly consistent read

requests.
 Upon a write, the leader generates a write-ahead log record

and sends it to its peers (other replicas).
 A write is acknowledged once a quorum of peers persists the

log record to their write-ahead logs.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 69

DynamDB Replication
 Supports strongly and eventually consistent reads.
 Any replica can serve eventually consistent reads.
 Leader extends leadership by a lease mechanism.

 On leader failure, any peer can start an election.
 A replication group consists of storage replicas to

keep the write-ahead logs and the B-tree for the
key-value data. (next page)

 Can also contains log replicas with recent write-
ahead logs only. (next page)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 70

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 36

DynamoDB Architecture
 DynamoDB consists of tens of microservices such

as: metadata service, request routing service, the
storage nodes, and the autoadmin service.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 71

DynamoDB Services
 Metada service: stores routing info about tables,

indexes, and replication groups.
 Request routing service: for authorizing,

authenticating, and routing requests to servers.
 Request routers: look up routing info from the metada

service for request routing.
 Autoadmin service: All resource creation, update, and

data definition requests are routed to the autoadmin
service.

 Storage service: storing customer data on storage
nodes which host replicas of partitions.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 72

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 37

DynamDB Replication
 Storage replica

 Log replica

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 73

DynamoDB Transasctions 0
 Distributed transactions with full ACID were added

to Amazon DynamoDB using a timestamp ordering
protocol.

 Still able to exploit the semantics of a key-value
store to achieve low latency for both transactional
and non-transactional operations.

 On Prime Day 2022, DynamoDB handles trillions
(1012) API calls with high availability, single-digit
millisecond responses and 105.2 million requests/s

 High scalability, high availability, and predictable
performance at scals.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 74

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 38

DynamoDB Transasctions 1
 Transactions are submitted as single request and

either succeed or fail w/o blocking.
 Transactions rely on a transaction coordinator

while non-transaction operations bypass the two-
phase coordination.

 Transactions update items in place. No multi-
version. Read-only and read-write might conflict.

 Transactions do not acquire locks. An optimistic
concurrency control scheme is used to avoid
locking altogether.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 75

DynamoDB Transasctions 2
 Transactions are serially ordered using timestamps.

Timestamp ordering is extended to accommodate
and exploit the semantics of a key-value store.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 76

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 39

DynamoDB Transactions -
Architecture
 The architecture for transaction processing is done

by adding a fleet of Transaction Coordinators. Any
one can take responsibility for any transaction.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 77

DynamoDB Transactions –
Two-phase Protocol
 A two-phase protocol ensures that all of the writes

within a transaction are performed atomically and
in the proper order.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 78

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 40

Use Cases of DynamoDB
 Duolilngo  an online learning site with 31 billion data

objects and ~ 18 million monthly users.
 Major Leagure Baseball (MLB) MLB uses a combination of

AWS components among which DynamoDB plays a key role.
 Hess Corporation  a well-known energy company.

DynamoDB helps in separating potential buyers’ data freom
business systems.

 GE Healthcare  well-known for medical imaging
equipment. Use DynamoDB to increase customer value.

 NTT Docomo  a popular mobile phone operating company.
Use DynamoDB for voice recognition services and marketing
data management.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 79

Apache
Cassandra

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 80

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 41

Apache Cassandra

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 81

Best of Both Worlds

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 82

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 42

Proven
 The Facebook stores 150TB of data on 150 nodes
 Used at Twitter, Rackspace, Mahalo, Reddit,

Cloudkick, Cisco, Digg, SimpleGeo, Ooyala, OpenX,
others.

 At Netflix, Cassandra runs 30 million ops/s on its
most active single cluster and 98% of streaming
data is stored on Cassandra.

 Apple runs 160,000+ Cassandra instances with
thousands of clusters.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 83

What is Cassandra
 A distributed data store for big data applications
 A schema free NoSQL distributed DBMS
 A hybrid between a key-value and a column-oriented

data model
 High availability with no single point of failure
 Symmetric architecture to scale horizontally with

automatic cluster maintenance
 Tunable consistency
 Open source
 Latest version: Apache Cassandra 5.0 (2023-11-04)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 84

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 43

Best of Both Worlds
 From BigTable

◦ Sparse , ”columnar”
data model
◦ Optional,2-level maps Called

Super-Column Families

◦ SSTable Disk Storage
◦ Append-only Commit Log
◦ MemTable (Buffer & Sort)
◦ Immutable SSTable Files

◦ Hadoop Integration

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

 From Dynamo
– Symmetric,P2P

architecture
• No Special nodes, No

SPOF(Single Point Of Failure)

– Gossip Based cluster
management

– Distributed hash table for
data placement

• Pluggable partitioning
• Pluggable topology discovery
• Pluggable placement strategies

– Tunable, Eventual
Consistency

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 85

Features of Cassandra
 Big data ready
 Easy data distribution
 Flexible data storage
 Elastic scalability with fast linear-scale performance
 Good read-write performance with fast writes
 Highest availability with always on architecture
 Transaction support
 Self-healing and automation
 Geographical distribution
 Platform agnostic
 Vendor independent

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 86

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 44

Cassandra and CAP
 Cassandra is usually described as an “AP” system

under the CAP theorem.
 Cassandra is configurably consistent : You can set

the Consistency Level you need and tune it to be
more AP or CP according to your use case.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 87

Design Goals 1
 High availability
 Flexible consistency

◦ trade-off strong consistency in favor of high availability

 Incremental scalability

 Optimistic replication
 “Knobs” to tune tradeoffs between consistency,

durability and latency
 Low total cost of ownership

 Minimal administration
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 88

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 45

Design Goals 2
 Full multi-master database replication
 Global availability at low latency
 Scaling out on commodity hardware

 Linear throughput increase with each additional
processor

 Online load balancing and cluster growth
 Partitioned key-oriented queries

 Flexible schema

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 89

Data Model
 The whole cluster contains several keyspaces
 Keyspace (Database)  Typically, a cluster has one

keyspace per application
 Data is stored as a multi dimensional map indexed by

key (row key)
 Column Families (Tables)  Contains several simple

columns or super columns
 Super Column  Consists of several columns
 Column  Described by name, value, timestamp
 Row is a unit of replication.
 Column is a unit of storage.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 90

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 46

Keyspace
 Keyspace is the outermost container for data.
 Basic attributes of a Keyspace:

◦ Replication facto
◦ Replica placement strategy
◦ Column families

 A keysapce contains one or more column families.

 A column family contains a collection of rows.
 Each row contains ordered columns.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 91

Creating Keyspace
 The syntax of creating a Keyspace

 Replica placement strategies
◦ Simple strategy (rack-unaware strategy)
◦ Ole network topology strategy (rack-aware strategy)
◦ Network topology strategy (rack-aware strategy)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 92

CREATE KEYSPACE Keyspace name
WITH replication = {'class': 'SimpleStrategy',
'replication_factor' : 3};

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 47

Column Family
 column_family : column

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 93

Super column family
 column_family : super_column : column

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 94

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 48

Data Model

KEY
ColumnFamily1 Name : MailList Type : Simple Sort : Name

Name : tid1

Value : <Binary>

TimeStamp : t1

Name : tid2

Value : <Binary>

TimeStamp : t2

Name : tid3

Value : <Binary>

TimeStamp : t3

Name : tid4

Value : <Binary>

TimeStamp : t4

ColumnFamily2 Name : WordList Type : Super Sort : Time

Name : aloha

ColumnFamily3 Name : System Type : Super Sort : Name

Name : hint1

<Column List>

Name : hint2

<Column List>

Name : hint3

<Column List>

Name : hint4

<Column List>

C1

V1

T1

C2

V2

T2

C3

V3

T3

C4

V4

T4

Name : dude

C2

V2

T2

C6

V6

T6

Column Families
are declared

upfront

Columns are
added and
modified

dynamically

SuperColumns
are added and

modified
dynamically

Columns are
added and
modified

dynamically

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 95

Data Model Example

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

• Column Families:
– Like SQL tables
– but may be

unstructured (client-
specified)

– Can have index tables

• “Column-oriented
databases”/ “NoSQL”
– No schemas
– Some columns

missing from some
entries

– “Not Only SQL”
– Supports get(key) and

put(key, value)
operations

– Often write-heavy
workloads

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 96

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 49

Consistency Model
 Consistency indicates how recent and in-sync all

replicas of a row of data are.
 Consistency level is based on replication factor N

(usually 3)
 Can set read quorum R (usually 2) and write

quorum W (usually 2)

 Different levels of consistency are allowed (next
two slides)

 R + W > N means strong consistency

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 97

Consistency Levels - Write
Level Description

ANY At least one node

ONE At least one replica node

TWO At least two replica nodes

THREE At least three replica nodes

QUORUM Write to a quorum of replica nodes

LOCAL_QUORUM Write to a quorum of the current data center as
the coordinator

EACH_QUORUM Write to quorums of all data centers

ALL Write to all replica nodes in the cluster

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 98

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 50

Consistency Levels - Read

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Level Description

ONE Read from the closest replica

TWO Read from two of the closest replicas

THREE Read from three of the closest replicas

QUORUM Read from a quorum of replicas

LOCAL_QUORUM Read from a quorum of the current data center
as the coordinator

EACH_QUORUM Read from quorums of all data centers

ALL Read from all replicas in the cluster

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 99

Strong Consistency Levels

 Write CL = QUORUM and Read CL = QUORUM
◦ If RF = 3, W = QUORUM or LOCAL_QUORUM, R =

QUORUM or LOCAL_QUORUM, then W (2) + R (2) > RF
(3)

 Write CL = ALL and Read CL = ONE
◦ If RF = 3, W = ALL, R = ONE, then W (3) + R (1) > RF (3)

 Consistency level can be configured based on
application needs.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 100

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 51

Write Operations
 A client issues a write request to a random node in

the Cassandra cluster.
 The “Partitioner” determines the replica nodes

responsible for the data.
 Locally, write operations are logged and then

applied to an in-memory version (memTable).

 Commit log is stored on a dedicated disk local to
the machine.

 When memTable is full, data is flushed to SSTable.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 101

Write Op in Cassandra
 A replica node responds with success if data is

written successfully to commit log and memTable.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 102

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 52

Write Properties
 No locks in the critical path
 Sequential disk access
 Behaves like a write back cache (vs write through)

 Append support without read ahead
 Atomicity guarantee for a key per replica

 “Always Writable”
◦ accept writes during failure scenarios

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 103

Read Operations
 Three types of read requests (next slide)

◦ Direct request
◦ Digest request
◦ Read repair request

 Coordinator sends direct request to one replica.
Then sends digest requests to # replicas specified
by the consistency level.

 After that, sends digest requests to all remaining
replicas.

 A background read repair request is send to each
outdated replica.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 104

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 53

Read

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if
digests differ
Read repair if
digests differ

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 105

Gossip Protocols
 Network Communication protocols inspired for real life

rumour spreading.

 Periodic, Pairwise, inter-node communication.

 Low frequency communication ensures low cost.

 Random selection of peers.

 Example – Node A wish to search for pattern in data
◦ Round 1 – Node A searches locally and then gossips with node B.
◦ Round 2 – Node A, B gossips with C and D.
◦ Round 3 – Nodes A, B, C and D gossips with 4 other nodes ……

 Round by round doubling makes protocol very robust.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 106

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 54

Gossip - Initial State

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 107

Gossip – 1st Round

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 108

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 55

Gossip – 2nd Round

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 109

Gossip – 3rd Round

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 110

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 56

Gossip – 4th Round

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 111

Facebook Inbox Search
 Term Search

 Interactions
a. Given the name of a

person

b. Return all messages
that the user might
have ever sent or
received from that
person

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 112

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 57

Facebook Inbox Search
 Cassandra was developed to address this problem.

 50+TB of user messages data in 150 node cluster on which
Cassandra was tested.

 Search user index of all messages in 2 ways.
◦ Term search : search by a key word
◦ Interactions search : search by a user id

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 113

Example: Term Search
 Key: User id

 Super column: Words that make up the message

 Column: Individual message identifiers of the messages
that contain the word

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 114

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 58

Comparison with MySQL
 MySQL > 50 GB Data

Writes Average : ~300 ms
Reads Average : ~350 ms

 Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 115

Why FB pick HBase?
 At 2010, FB chose HBase instead of Cassandra for

their new Real-Time Messaging System to store
135+ billion messages a month.

 Cassandra's eventual consistency model
o Wasn't a good match for their product

 2 types of data patterns
o A short set of temporal data that tends to be

volatile
o An ever-growing set of data that rarely gets

accessed
CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 116

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 59

Why FB pick HBase? (II)
 HBase

o Has a simpler consistency model than Cassandra
o Very good scalability and performance for their data

patterns
o HDFS(filesystem of HBase) supports replication, end-

to-end checksums, and automatic rebalancing
o Facebook's operational teams have a lot of

experience using HDFS because Facebook is a big
user of Hadoop and Hadoop uses HDFS

 But Cassandra has been improved significantly
over the years.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 117

Why FB pick HBase? (Ref.)
• The Underlying Technology of Messages (FB)
• Why HBase is a better choice than Cassandra

with Hadoop? (StackOverflow)

• HBase vs Cassandra: 我們遷移系統的原因
(Blogger)

• Taking the Bait (Apache HBase)
• Oracle NoSQL Database Compared to Cassandra

and HBase (PDF)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 118

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 60

Dynamo vs Bigtable vs
Cassandra

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 119

Yahoo PNUTS/Sherpa
Yahoo’s hosted data serving platform
Motivation: designed for web apps

o Complex data management
 ex: comments

o Response time is very important
o Focus on scalability and availability

 Downtime ⇔Money loss

Key-Value based data model, schema free

Geographically distributed
Relaxed consistency model

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 120

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 61

Examples
User database

o Different users can be mastered in different data
centers

o User himself wants to see the update immediately
with low latency, while others might not.

Social Applications
o Others don’t have to immediately know you’re in a

relationship with someone

Session Data
o Only needs to be preserved locally, no need to be

synced world-wide
o Even if corrupted, just re-login :P

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 121

Geographical Distribution
Web audience is worldwide
Benefit for response time

o Think about CDN(Content Distribution Network)

Higher availability
o Catastrophic crash on a single data center

Consistency is sacrificed

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 122

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 62

Sherpa Overview
 Sherpa is a suite of data services:

◦ PNUTS: Data serving platform
◦ YMB: message delivery service
◦ YDOT (ordered table), YDHT (hash table): sort

and hash files to organize globally

 Distributed NoSQL key-value store
 At 2015/06, handles 1M queries/second
 We will focus on PNUTS

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 123

What is PNUTS?
 PNUTS: Platform for Nimble(靈巧的, 敏捷的)

Universal Table Storage
 Goals/Requirements

◦ Scalability, Scalability, Scalability
◦ Low latency
◦ Availability (…or else, $--)
◦ A certain degree of Consistency

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 124

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 63

System Architecture Overview
Servers are split into regions

o Think of different data centers
o Wide-area replication

Data hashed by key and splited into tablets
Tablets splits/migrates when it’s too big
A tablet controller/tablet router would

determine which server to ask
o Simple API

Regions sync via Yahoo! Message Broker
o A reliable message delivery service
o Supports publish/subscribe

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 125

PNUTS Data Storage
Architecture

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 126

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 64

Relaxed Consistency
Timeline consistency supported

o It’s guaranteed that updates are performed in order,
although results might not be seen immediately

o The model lies between serializable and eventual
consistency

Transactions are not that important here
But the model should be simple to web

developers

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 127

Timeline Consistency
The consistency is at record (row) level
Data is replicated to regions, but only one region

would become the master of a record
Updates are commited if published to YMB

o On master: directly publish it
o On non-master: forward to master and publish

Low latency: no need to wait to sync to all
replicas
o Important for web applications

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 128

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 65

Timeline Consistency Example

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Transactions:
◦ Alice changes status from “Sleeping” to “Awake”
◦ Alice changes location from “Home” to “Work”

(Alice, Home, Sleeping) (Alice, Home, Awake)

Region 1

(Alice, Home, Sleeping) (Alice, Work, Awake)

Region 2

Awake Work

(Alice, Work, Awake)

Work

(Alice, Work, Awake)

No replica should see record as (Alice, Work, Sleeping)

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 129

Eventual Consistency
 Timeline consistency comes at a price

◦ Writes not originating in record master region forward
to master and have longer latency

◦ When master region down, record is unavailable for
write

 PNUT added eventual consistency mode
◦ On conflict, latest write per field wins
◦ Target customers

◦ Those that externally guarantee no conflicts
◦ Those that understand/can cope

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 130

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 66

APIs
Different levels

o read-any
o read-critical(required_version)
o read-latest
o write
o test-and-set-write(required_version)

Users got to choose between response time or
consistency

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 131

PNUTS in Production
 Over 100 Yahoo! applications/platforms on PNUTS

◦ Movies, Travel, Answers
◦ Over 450 tables, 50K tablets
◦ (Sherpa hosts over 2,000 tables, 1 trillion records,

2015/06)

 Growth, past 18 months
◦ 10s to 1000s of storage servers
◦ Less than 5 data centers to over 15

 Should be more by now!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 132

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 67

Comparison using YCSB
 Taken from ‘Benchmarking Cloud Serving Systems

with YCSB’ by Brain F Cooper et all.
 YCSB is Yahoo Cloud Server Benchmarking

framework.
 Comparison between Cassandra, HBase, PNUTS,

and Shared MySQL.

 Cassandra and Hbase have higher read latencies
on a read heavy workload than PNUTS and MySQL,
and lower update latencies on a write heavy
workload.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 133

Comparison using YCSB

 PNUTS and Cassandra scaled well as the number of
servers and workload increased proportionally.

 Cassandra, HBase and PNUTS were able to grow
elastically while the workload was executing.

 HBase’s performance was more erratic as the
system scaled.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 134

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 68

Comparison – Read Heavy

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 135

Comparison – Update Heavy

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 136

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 69

Comparison – Cluster Size

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 137

Comparison – Elastic Speedup

 Start with 2 servers
 Add more servers, one at a time.
 Until 6 servers

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 138

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 70

MongoDB

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 139

What is MongoDB
 Originally developed by 10gen (Founded in 2007)
 A document-oriented, NoSQL database

◦ Hash-based, schema-less database
◦ No Data Definition
◦ Can store hashes with any keys and values
◦ Keys are a basic data type (stored as strings)
◦ Document Identifiers (_id) will be created for each document
◦ Application tracks the schema and mapping
◦ Uses BSON format (ased on JSON – B stands for Binary)

 Written in C++
 Supports APIs (drivers) in many computer languages:

JavaScript, Python, Ruby, Perl, Java, Java Scala, C#, C++,
Haskell, Erlang

 Latest release: MongoDB 7.0 (2023)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 140

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 71

Popularity of MongoDB
 MongoDB is very popular in recent years.
 It is the only NoSQL in the top 5 DB engine ranking

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 141

Most Popular DBs
 Another statistics

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 142

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 72

Key MongoDB Features
 Document-oriented storage
 Schema free
 Full index support

 Replication & high availability
 Auto-sharding
 Easy and efficient querying

 Fast in-place updates
 Map/Reduce integration

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 143

MongoDB
 mongoDB = “Humongous DB”

Open-source (MongoDB Community)
Commercial version needs Licence fee.
“High performance, high availability”
Automatic scaling
CP system on CAP

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 144

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 73

Data Model
 Document-Based (max doc size is 16 MB)
 Documents are in BSON format, consisting of field-

value pairs
 Each document stored in a collection

 Collections
◦ Have index set in common
◦ Like tables of relational DB’s.
◦ Documents do not have to have uniform structure

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 145

Data Model
 A MongoDB instance may have zero or more

databases
 A database may have zero or more ‘collections’.
 A collection may have zero or more ‘documents’.

 A document may have one or more ‘fields’.
 MongoDB ‘Indexes’ function much like their

RDBMS counterparts.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 146

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 74

MongonDB vs RDBMS

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

MongoDB RDBMS
Collection Table/View
Document Tuple/Row

Field Column
PK: _id Field PK: Any Attribute(s)
Reference Foreign Key

Uniformity not Required Uniform Relation Schema

Index Index
Embedded Structure Joins

Shard Partition

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 147

JSON
 “JavaScript Object Notation”
 Easy for humans to write/read, easy for computers

to parse/generate
 Objects can be nested

 Built on
◦ name/value pairs
◦ Ordered list of values

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 148

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 75

BSON
 “Binary JSON”
 Binary-encoded serialization of JSON-like docs
 Zero or more key/value pairs are stored as a single entity
 Each entry consists of a field name, a data type, and a value
 Also allows “referencing”
 Embedded structure reduces need for joins
 Large elements in a BSON document are prefixed with a

length field to facilitate scanning
 Goals: Lightweight, traversable, efficient (decoding and

encoding)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 149

Why JSON as Doc Struc?
 JSON document has simple structure and very easy

to understand the content.
 JSON is smaller, faster and lightweight compared to

XML.
 For data delivery between servers and browsers,

JSON is a better choice
 Easy in parsing, processing, validating in all

languages with rich set of tools
 JSON can be mapped more easily into object

oriented system.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 150

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 76

JSON Format
 Data is in name/value pairs
 A name/value pair consists of a field name followed by

a colon, followed by a value:
◦ Example: “name”: “R2-D2”

 Data is separated by commas
◦ Example: “name”: “R2-D2”, race : “Droid”

 Curly braces { } hold objects
◦ Example: {“name”: “R2-D2”, race : “Droid”, affiliation:

“rebels”}
 An array is stored in brackets []

◦ Example: [{“name”: “R2-D2”, race : “Droid”, affiliation:
“rebels”}, {“name”: “Yoda”, affiliation: “rebels”}]

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 151

A JSON Document Example
{

"_id" : 1,
"name" : { "first" : "John", "last" : "Backus" },
"contribs" : ["Fortran", "ALGOL", "BCNF", "FP"],
"awards" : [

{ "award" : "W.W. McDowell Award",
"year" : 1967,
"by" : "IEEE Computer Society“

}, {
"award" : "Draper Prize",
"year" : 1993,
"by" : "National Academy of Engineering“

}
]

}

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 152

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 77

JSON vs XML

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

XML JSON

It is a markup language. It is a way of representing objects.

This is more verbose than JSON. This format uses less words.

It is used to describe the structured data. It is used to describe unstructured data
which include arrays.

JavaScript functions like eval(), parse()
doesn’t work here.

When eval method is applied to JSON it
returns the described object.

Example:
<car>
<company>Volkswagen</company>
<name>Vento</name>
<price>800000</price> </car>

Example:
{

"company": Volkswagen,
"name": "Vento",
"price": 800000

}

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 153

Processing JSON vs XML
Using XML
1. Fetch an XML document from web server.
2. Use the XML DOM to loop through the document.
3. Extract values and store in variables.
4. It also involves type conversions.
Using JSON
1. Fetch a JSON string.
2. Parse the JSON string using eval() or parse()

JavaScript functions.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 154

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 78

Schema Free
 MongoDB does not need any pre-defined schema
 Every document could have different data

◦ Addresses NULL data fields

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 155

Index Functionality
 B+ tree indexes
 An index is automatically created on the _id field (the PK)
 Users can create other indexes to improve query

performance or to enforce Unique values for a particular
field

 Supports single field index as well as Compound index
◦ Like SQL order of the fields in a compound index matters
◦ If an array field is indexed, MongoDB creates separate index

entries for every element of the array
 Sparse property of an index ensures that the index only

contain entries for documents that have the indexed field.
(so ignore records that do not have the field defined)

 If an index is both unique and sparse – then the system will
reject records that have a duplicate key value but allow
records that do not have the indexed field defined

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 156

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 79

Getting Started
 MongoDB can be installed on Linux, Windows and

macOS.
 Can also use MongoDB Atlas online.
 You should install at least the Linux version to work

with other Big Data tools we’ve discussed so far.

 Go to
https://docs.mongodb.com/manual/installation/

 Follow the Installation Tutorials, you should have
your MongoDB running in minutes.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 157

Using MongoDB
 To use MongoDB, you can start the mongod (the

primary daemon) first. Then on a terminal window,
type mongo for the mongodb shell.

 You can also use MongoDB Atlas online service.
 Use PyMongo if you intend to work with MongoDB

from Python.
 You can create RDDs from MongoDB collections

using pymongo-spark library(PyMongo+PySpark).
 Can also use the MongoDB Spark Connector

package(mongo-spark-connector)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 158

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 80

CRUD Operations
 Create

◦ db.<collection>.insertOne(<document>)
◦ db.<collection>.insertMany([<doc1>, <doc2>, …])
◦ db.<collection>.save()
◦ db.<collection>.update(, , { upsert: true })

 Read
◦ db.<collection>.find(,)
◦ db.<collection>.findOne(,)

 Update
◦ db.<collection>.update(, ,)

 Delete
◦ db.<collection>.remove(,)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

The <collection>
specifies the
collection or the
‘table’ to store the
document.

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 159

The insert Method
 To insert data into

MongoDB collection,
use insert or save.

 The insertOne() and
insertMany() are for
inserting one or many
docs.

“db.COLLECTION_NAME.in
sertOne(document)”

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

db.StudentRecord.insertMany([
{

"Name": "Tom",
"Age": 30,
"Role": "Student",
"University": "CU",

},
{

"Name": “Sam",
"Age": 22,
"Role": "Student",
"University": “OU",

}
])

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 160

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 81

The find() Method
 To query data from MongoDB collection, you can

use the find() method.
 The basic syntax: db.COLLECTION_NAME.find()

◦ Returns a cursor, which is iterated over shell to display
first 20 results.

◦ Add .limit(<number>) to limit results
◦ db.<collection>.findOne() to get one document

 To display the results in a formatted way, you can
use pretty() method.

db.StudentRecord.find().pretty()

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 161

Querying with find()
 db.<collection>.find(

{ <field1>:<value1>, <field2>:<value2> })

is like

SELECT *
FROM <table>
WHERE <field1> = <value1> AND <field2> = <value2>;

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 162

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 82

Querying with find()
 db.<collection>.find({ $or:

[{ <field>:<value1> }, { <field>:<value2> }]
})

Is like

SELECT *
FROM <table>
WHERE <field> = <value1> OR <field> = <value2>;

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 163

The update() Method
 db.<collection>.update(

{<field1>:<value1>}, //all docs with field = value
{ $set: {<field2>:<value2>} }, //set field to value
{ multi: true, //update multiple docs

upsert: true } //if no doc match, insert new doc
)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 164

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 83

The remove() Method
 remove() method is used to remove a document

from the collection. It accepts two parameters:
deletion criteria and justOne flag.

 deletion criteria − (OpƟonal) deleƟon criteria on
documents to be removed.

 justOne − (OpƟonal) if set to true or 1, then
remove only one document.

 Syntax:
db.COLLECTION_NAME.remove(DELLETION_CRITTE
RIA)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 165

remove() Examples
 Remove based on DELETION_CRITERIA

db.StudentRecord.remove({"Name": "Tom"})
 Remove Only One: Removes first record

db.StudentRecord.remove(DELETION_CRITERIA,1)
 Remove all Records

db.StudentRecord.remove()

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 166

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 84

CRUD Isolation
 By default, all writes are atomic only on the level of

a single document.
 This means that, by default, all writes can be

interleaved with other operations.
 You can isolate writes on an unsharded collection

by adding $isolated:1 in the query area:
db.<collection>.remove({ <field>:<value>,

$isolated: 1 })

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 167

MongoDB Aggregations
 The MongoDB aggregation framework provides

powerful mechanisms for document processing
such as the aggregation pipeline.

 An aggregation pipeline consists of stages:
◦ Each stage performs an operation on the i/p docs.
◦ The docs that are o/p from a stage are passed on as the

i/p of the next stage.
◦ A pipeline can return results for groups of docs.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 168

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 85

Aggregation Operators
 Each stage begins with a stage operators such as:

◦ $match: Matching(filtering) the i/p documents.
◦ $project: Pick a subset of a collection’s fields.
◦ $group: Classify documents according to value.
◦ $sort: Sort the documents based on value.
◦ $skip: Skip doex and pass the remaining.
◦ $limit: Limit the first n docs to pass.
◦ $unwind: Deconstruct an array field to return

documents for each element.
◦ $out: Output and add new documents to a collection.
◦ Expression makes reference to the field’s name.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 169

Aggregation Accumulators
 Various aggregation accumulators can be in the

group stage:
◦ Sum: Sums the numeric values for docs in the group.
◦ Count: Totals the number of documents.
◦ Avg: Determines the average of all given values across all

documents.
◦ Min: The mininum value from all the documents.
◦ Max: The maximum value from all the documents.
◦ First: Retrieves the first document from the group.
◦ Last: Retrieves the last document from the group.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 170

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 86

Example of Aggregation

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 171

Aggregation Resources
 Can also use single purpose aggregation methods

to aggregate docs from a single collection.
 For more information:

◦ Introduction to the MongoDB Aggregation Framework (
https://www.mongodb.com/developer/products/mong
odb/introduction-aggregation-framework/)

◦ MongoDB Manual - Aggregation Pipeline (
https://www.mongodb.com/docs/manual/core/aggrega
tion-pipeline/)

◦ Aggregation in MongoDB
(https://www.geeksforgeeks.org/aggregation-in-
mongodb/)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 172

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 87

NoSQL Conclusion
 In 2021 Dzone Data Persistence Trend Report,

relational DBs are still the most popular.
 Combined, NoSQL DBs are more popular.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 173

NoSQL Conclusion
 There’s no Holy Grail

 Add fancy features only when absolutely needed.

 Many types of failures are possible.

 Need proper systems-level monitoring.

 Value simple designs

 Analyze carefully and choose, or even design your own
solution.
o Data model
o Consistency
o Throughput or response time
o Fault tolerance

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 174

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 88

NewSQL
Databases

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 175

Why NewSQL
 Traditional RDBMS guarantee ACID, support SQL,

transactions, … but not scalable!
 NoSQL DBs scale well, flexible schema, flexible

consistency, … but no guarantee and powerful
query language.

 Can we have the best of both worlds?!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 176

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 89

What do We Need?
 New DBMSs that can scale across multiple

machines natively and provide ACID guarantees.
 DBMS that delivers the scalability and flexibility

promised by NoSQL while retaining the support for
SQL queries and/or ACID, or to improve
performance for appropriate workloads.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

We want NewSQL !!

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 177

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Introduction 178

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 90

Stonebraker’s Definition
 Michael Ralph Stonebraker (renowned scholar in

DB, received the 2014 Turing Award) summarized
the key features of NewSQL:
◦ SQL as the primary interface.
◦ ACID support for transactions
◦ Non-locking concurrency control.
◦ High per-node performance.
◦ Parallel, shared-nothing architecture.

 Michael Stonebraker. New SQL: An Alternative to
NoSQL and Old SQL For New OLTP Apps.
Communications of the ACM, June, 2011.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 179

NoSQL vs NewSQL
NoSQL
 New breed of non--

-relational database
products

 Rejection of fixed table
schema and join operations

 Designed to meet scalability
requirements of distributed
architectures

 And/or schema-less data
management requirements

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

NewSQL
 New breed of relational

database products

 Retain SQL and ACID

 Designed to meet
scalability requirements of
distributed architectures

 Or improve performance so
horizontal scalability is no
longer a necessity

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 180

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 91

NoSQL vs NewSQL
NoSQL
 BigTable: data mapped by

rwo key, column key and
time stamp

 Key-value stores: store keys
and associated values

 Document store: stores all
data as a single document

 Graph database: use nodes,
properties and edges to
store data and the
relationships between
entities

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

NewSQL
 MySQL storage engines:

scale-up and scale-out
 Transparent sharding: reduce

manual effort required to
scale

 Appliances: take advantage of
improved hardware
performance, solid state
drives

 New databases: designed
specifically for scale-out

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 181

VoltDB
(Volt Active Data)

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 182

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 92

Scaling Traditional OLTP
Databases
 Sharding improves performance but introduces…

◦ Management complexity
◦ disjointed backup/recovery and replication
◦ manual effort to re-partition data

◦ Application complexity
◦ shard awareness
◦ cross partition joins
◦ cross partition transactions

◦ And, each shard still suffers from traditional OLTP
performance limitations

 If you can shard, your application is probably great
in VoltDB.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 183

VoltDB Overview
 “OLTP Through the Looking Glass”

http://cs-www.cs.yale.edu/homes/dna/papers/oltpperf-sigmod08.pdf

 VoltDB avoids the overhead of traditional
databases
◦ K-safety for fault tolerance

- no logging
◦ In memory operation for maximum throughput

- no buffer management
◦ Partitions operate autonomously and single-threaded

- no latching or locking

 Built to horizontally scale

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 184

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 93

VoltDB vs Others

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

(From VoltDB Technical Overview)

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 185

VoltDB Architecture
 In-memory storage to maximize throughput, avoiding

costly disk accesses
 Serializing all data access, thus avoiding overheads

such as locking, latching and buffer management
 Performance and scale through horizontal partitioning
 High availability through synchronous, multi-master

replication (in VoltDB parlance, “K-safety”)
 Durability through an innovative combination of

database snapshots and command logs that store
recoverable state information on persistent devices
(i.e., spinning disks and/or SSDs)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 186

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 94

VoltDB Partitions 1/4
 1 partition per physical CPU core

◦ Each physical server has multiple VoltDB partitions

 Data - Two types of tables
◦ Partitioned

◦ Single column serves as partitioning key
◦ Rows are spread across all VoltDB partitions by partition column
◦ Transactional data (high frequency of modification)

◦ Replicated
◦ All rows exist within all VoltDB partitions
◦ Relatively static data (low frequency of modification)

 Code - Two types of work – both ACID
◦ Single-Partition

◦ All insert/update/delete operations within single partition
◦ Majority of transactional workload

◦ Multi-Partition
◦ CRUD against partitioned tables across multiple partitions
◦ Insert/update/delete on replicated tables

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 187

VoltDB Partitions 2/4
 Single-partition vs. Multi-partition

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

1 101 2
1 101 3
4 401 2

1 knife
2 spoon
3 fork

Partition 1

2 201 1
5 501 3
5 502 2

1 knife
2 spoon
3 fork

Partition 2

3 201 1
6 601 1
6 601 2

1 knife
2 spoon
3 fork

Partition 3

table orders : customer_id (partition key)
(partitioned) order_id

product_id

table products : product_id
(replicated) product_name

select count(*) from orders where customer_id = 5
single-partition

select count(*) from orders where product_id = 3
multi-partition

insert into orders (customer_id, order_id, product_id) values (3,303,2)
single-partition

update products set product_name = ‘spork’ where product_id = 3
multi-partition

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 188

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 95

VoltDB Partitions 3/4
 For large tables(A, B, C), partitioning is appropriate.
 Replication of small, read-mostly tables (D)

improves performance.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 189

VoltDB Partitions (4/4)
 Looking inside a VoltDB

partition…
◦ Each partition contains data and

an execution engine.
◦ The execution engine contains a

queue for transaction requests.
◦ Requests are executed

sequentially (single threaded).

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

Work
Queue

execution engine

Table Data
Index Data

- Complete copy of all replicated tables
- Portion of rows (about 1/partitions) of all partitioned
tables

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 190

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 96

VoltCompiler
 The database is

constructed from
◦ The schema (DDL)
◦ The work load (Java stored

procedures)
◦ The Project (users, groups,

partitioning)

 VoltCompiler creates
application catalog
◦ Copy to servers along with

1 .jar and 1 .so
◦ Start servers

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

CREATE TABLE HELLOWORLD (
HELLO CHAR(15),
WORLD CHAR(15),
DIALECT CHAR(15),
PRIMARY KEY (DIALECT)

);

Schema

import org.voltdb. * ;

@ProcInfo(
partitionInfo = "HELLOWORLD.DIA
singlePartition = true

)

public class Insert extends VoltPr
public final SQLStmt sql =

new SQLStmt("INSERT INTO HELLO

public VoltTable[] run(String hel

import org.voltdb. * ;

@ProcInfo(
partitionInfo = "HELLOWORLD.DIA
singlePartition = true

)

public class Insert extends VoltPr
public final SQLStmt sql =

new SQLStmt("INSERT INTO HELLO

public VoltTable[] run(String hel

import org.voltdb. * ;

@ProcInfo(
partitionInfo = "HE
singlePartition = t

public final SQLStmt
public VoltTable[] run

Stored Procedures

<?xml version="1.0"?>
<project>

<database name='data
<schema path='ddl.
<partition table=‘

</database>
</project>

Project.xml

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 191

VoltDB Transactions
 All access to VoltDB is via Java stored

procedures (Java + SQL)

 A single invocation of a stored
procedure is a transaction (committed
on success)

 Limits round trips between DBMS and
application

 High performance client applications
communicate asynchronously with
VoltDB

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems

SQL

Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 192

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 97

Single/Multiple Partition
Transactions

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 193

Cluster and Durability
 Scalability

◦ Increase RAM in servers to add capacity
◦ Add servers to increase performance / capacity
◦ Consistently measuring 90% of single-node performance

increase per additional node

 High availability
◦ K-safety for redundancy(next slide)

 Snapshots
◦ Scheduled, continuous, on demand

 Spooling to data warehouse
 Disaster Recovery/WAN replication (Future)

◦ Asynchronous replication

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 194

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 98

K-safety
 A synchronous multi-

master replication
strategy for fault
tolerance.

 When a DB is configured
for K-safety, VoltDB
automatically replicates
partitions so that the DB
can withstand the loss of
“K” nodes.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 195

Network Fault Detection
 When network partition occurs, may have “split

brain” scenario if K-safety works on both parts.
 VoltDB automatically detects net faults, evaluates

and assigns all work to the “surviving” sub cluster.
 Snapshots data in the “orphaned” sub cluster and

performs orderly shutdown of those nodes.

 Once net repaired, orphaned nodes can be
reintroduced to the cluster using Live Node Rejoin.
(next slide)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 196

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 99

Live Node Rejoin
 Nodes can be reintroduced to the cluster via the

“rejoin” operation.
 On rejoin, the node retrieves data(partitions) from

its sibling nodes.
 Siblings continue to serve during rejoining.

 Once the rejoined node catches up, it returns to
normal operation.

 The cluster regains its full K-safety and
performance status.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 197

Asynchronous Comm
 Client applications communicate asynchronously with

VoltDB
◦ Stored procedure invocations are placed “on the wire”
◦ Responses are pulled from the server
◦ Allows a single client application to generate > 100K TPS
◦ The client library can simulate synchronous if needed

Traditional
salary := get_salary(employee_id);

VoltDB
callProcedure(asyncCallback, “get_salary”, employee_id);

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 198

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 100

Transaction Control
 VoltDB does not support client-side transaction

control
 Client applications cannot:

◦ insert into t_colors (color_name) values
(‘purple’);

◦ rollback;

 Stored procedures commit if successful, rollback if
failed

 Client code in stored procedure can call for rollback

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 199

Interfacing with VoltDB
 Client applications interface with VoltDB via stored

procedures
◦ Java stored procedures – Java and SQL
◦ No ODBC/JDBC

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 200

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 101

Lack of Concurrency
 Single-threaded execution within partitions (single-

partition) or across partitions (multi-partition)
 No need to worry about locking/dead-locks

◦ great for “inventory” type applications
◦ checking inventory levels
◦ creating line items for customers

 Because of this, transactions execute in microseconds.
 However, single-threaded comes at a price

◦ Other transactions wait for running transaction to complete
◦ Don’t do anything crazy in a Stored Procedure (request web page,

send email)
◦ Useful for OLTP, not OLAP

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 201

Throughput vs. Latency
 VoltDB is built for throughput over latency
 Latency measured in mid single-digits in a properly

sized cluster
 Do not estimate latency too optimistically. Many

causes of latency should be considered:
◦ Other applications
◦ Frequent snapshots
◦ I/O contention
◦ JVM statistics collection
◦ Hardware power saving options

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 202

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 102

SQL Support
 SELECT, INSERT (using values), UPDATE, and

DELETE
 Aggregate SQL supports AVG, COUNT, MAX, MIN,

SUM
 Materialized views using COUNT and SUM
 Hash and Tree Indexes
 SQL functions and functionality will be added over

time, for now use Java
 Execution plan for all SQL is created at compile

time and available for analysis

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 203

SQL in Stored Procedures
 SQL can be parameterized, but not dynamic

“select * from foo where bar = ?;” (YES)

“select * from ? where bar = ?;” (NO)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 204

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 103

Connecting to the Cluster
 Clients connect to one or more nodes in the VoltDB

cluster, transactions are forwarded to the correct
node.
◦ Clients are not aware of partitioning strategy
◦ In the future, may send back data in the response

indicating if the transaction was sent to the correct
node.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 205

Schema Changes
 Traditional OLTP

◦ add table…
◦ alter table…

 VoltDB
◦ modify schema and stored procedures
◦ build catalog
◦ deploy catalog

 Add/drop users, stored procedures
 Add/drop tables
 Add/drop column, …

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 206

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 104

Table/Index Storage
 VoltDB is entirely in-memory

 Cluster must collectively have enough RAM to hold
all tables/indexes (k + 1 copies)

 Even data distribution is important

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 207

Hadoop Integration
 Combination of VoltDB and

Hadoop offer the flexibility to
handle a continuum of “fast”
and “deep” data applications.

 VoltDB’s export client
automates the process of
exporting data from VoltDB
to Hadoop.

 VoltDB can integrate directly
with HDFS or through
Hadoop’s Sqoop import
technology.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 208

Apache Sqoop is a tool for transferring
bulk data between Hadoop and RDBMS.

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 105

Libraries Support
 Many VoltDB-provided and community-developed

libraries for application development.

 The VoltDB Community Edition is open source.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 209

Volt Active Data
 As the VoltDB evolved into a data platform (not

just a DB), the name is changed to Volt Active Data.
 ACTIVE = Engaged in action; Being in a state of

progress or motion; Having the power of quick
motion.

 ‘Active Data’ means that it’s not just passively
reacting to events, but responding to them
dynamically with integration and analysis of
related data to serve core business functions.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 210

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 106

Volt Active Data Snapshot
 A snapshot of the Volt Active Data platform:

 The work happens in the Active Data Plane (next
slide)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 211

Volt Active Data Plane 1
 Ingest: Read messages off the network, from

wireline API and a C++/Java client or off Kafka.
 Store: Store data if we need to. Unlike a DB, which

is “Always Store And Sometimes Process”, Volt is
“Always Process And Sometimes Store”.

 Aggregate: Aggregate data on the fly to provide
accurate running totals without having to scan or
process any data at query time.

 Measure: Take incoming events and measure them
in some non-trivial way for decision aid.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 212

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 107

Volt Active Data Plane 2
 Detect: Detect anomalies. To spot when something

hasn’t happened as expected, as well as being
driven by incoming events.

 Decide: Determine what to do next.
 Act: The action to take once a decision has been

made. E.g. updating stored data and/or sending
multiple messages.

 Machine learning: Work with any deterministic ML
decision engine as long as it’s in Java and can be
instantiated inside a class.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 213

Volt Active Data & Open
Source
 Volt Active Data offers the fully open source,

AGPL3-licensed Community Edition through
GitHub (https://github.com/voltdb/voltdb/)

 The open source version is frozen at 2023.
 Trials of the enterprise edition are available at the

Volt Active Data website
(https://www.voltactivedata.com)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 214

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 108

NuoDB

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 215

The Elastic SQL Database
 NuoDB is a NewSQL database which claims to be

elastic, ANSI-SQL compliant w/o sharding or
strongly-consistent replication.

 Combine the scale-out simplicity, elasticity, and
continuous availability of cloud applications

 with the transactional consistency and durability of
traditional databases.

 A relational database architected for the cloud.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 216

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 109

The Missing Puzzle

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 217

NuoDB takes the best from
both sides
 Designed to be always on, always available, and

still always consistent!
 P2P architecture ensures that database services

can be natively distributed across multiple nodes,
data centers, and even clouds

 without the complexity, expense, and additional
software that traditional relational databases
require.

 The Community Edition is open source with limited
functionalities.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 218

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 110

NuoDB Architecture 1
 NuoDB splits the traditional monolithic database

process into two independent services: a
transactional processing service and a storage
management service. (next slide)

 Both services are scaled separately and handle
failure independently.

 It also has an administration component for
administrative functions.

 Splitting the transactional and storage processing
services is key to making a relational system scale.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 219

NuoDB Architecture 2

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 220

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 111

NuoDB Architecture 3
 Transaction service is responsible for Atomicity,

Consistency, and Isolation in running transactions.
◦ Has no visibility into how data is being made durable
◦ A purely in-memory tier
◦ An always-active, always consistent, on-demand cache

 Storage management service ensures Durability.
◦ Responsible for making data durable on commit
◦ Provide access to data when there’s a miss in the

transactional cache.
◦ Through a set of peer-to-peer coordination messages

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 221

NuoDB Architecture 4
 Services are processes on an arbitrary # hosts.
 A single executable is running in one of two

modes: as a Transaction Engine (TE) or a Storage
Manager (SM).

 All processes are peers, with no single coordinator
or point of failure.

 No special configuration required at any hosts.
 All processes (SMs and TEs) communicate through

a simple peer-to-peer coordination protocol.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 222

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 112

TEs and SMs
 TEs accept SQL client connections, parsing and

running SQL queries against cached data.
 On a local cache miss, a TE can get the data from

any of its peers (another TE or an SM).
 Makes bootstrapping, on-demand scale-out, and

live migration very easy.

 Starting and scaling a DB is simple: by choosing
how many processes to run, where, and in which
roles.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 223

NuoDB References
 NuoDB Docs

(https://doc.nuodb.com/nuodb/latest/introductio
n-to-nuodb/)

 Quick Dive into NuoDB Architecture
(https://blog.3ds.com/topics/company-
news/quick-dive-into-nuodb-architecture/)

 NuoDB: Distributed SQL Database
(https://www.3ds.com/nuodb-distributed-sql-
database)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 224

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 113

Distributed SQL

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 225

SQL vs. NoSQL
 The debate of “SQL vs. NoSQL” for the past decade
 The truth is that companies are using both

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 226

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 114

SQL, NoSQL, NewSQL all
fall short
 Traditional SQL DBs are not scalable, not elastic.

 NoSQL DBs (HBase, Cassandra, MongoDB, …) are
scalable and elastic but sacrificing the best of SQL.

 NewSQL DBs (VoltDB, NuoDB, ClustrixDB, …) try to
bring the best of both but fall short.

 What we REALLY need is complete SQL/transactions
(compatibility) yet highly elastic/scalable, globally
distributed, externally-consistent and fault tolerant.

 We want SQL from a distributed system POV, i.e. we
want “distributed SQL” !!

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 227

Origin of Distributed SQL
 Google again was among the first to recognize that

and develop Spanner.
 James C. Corbett, et al. “Spanner: Google’s

Globally-Distributed Database”. Proceedings of
OSDI 2012.

 Spanner demonstrated a new way of looking at
databases, one that was rooted in distributed
systems and global scale.

 Marks the beginning of the next evolution of DB:
Distributed SQL.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 228

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 115

What is Distributed SQL?
 A truly Distributed SQL database must support:

1. Scalability: seamlessly scale wrt computing, data,
users, storage, geo regions w/o operational
complexity.

2. Consistency: transactional consistency and isolation in
global scale.

3. Resiliency: always-on and fast recovery (~0 down time)
4. Geo-replication: allow distribution of data throughout

widely dispersed geo env.
5. SQL: speak SQL, of course.
6. Data locality: geo-partition of data based on locality
7. Multi-cloud: can work with data/services on multi-

cloud environments.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 229

Foundational Requirements
 Just like all database systems, a Distributed SQL DB

also has foundational requirements:
1. Administration: friendly admin tools
2. Optimization: insight into performance for different

types/levels of optimization
3. Security: AAA capabilities of authentication,

authorization, and accountability
4. Integration: integrate well with existing applications

and ETL tools

 Must meets ALL the requirements in prev/current
slide to be trusted for mission-critical applications.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 230

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 116

Evaluating NewSQL using
Distributed SQL Criteria
 Are NewSQL DBs good enough?

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 231

Distributed SQL Arch
 Should be like a single

logical SQL DB with 3
layers:
1. SQL API
2. Distributed Query

Execution
3. Distributed Data Storage

 Support
◦ Strongly consistent

replication
◦ Distributed ACID trans

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 232

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 117

Key Benefits of Distr SQL
 Developer agility with

SQL & transactions
 Ultra resilience with

native failover/repair
 Scale on-demand with

horizontal write
scalability

 Low user latency with
geographic data
distribution

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 233

Google Spanner

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 234

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 118

Papers
 James C. Corbett, et al. “Spanner: Google’s Globally-

Distributed Database”. Proceedings of OSDI 2012. (the
original paper)

 James C. Corbett, et al. “Spanner: Google’s Globally-
Distributed Database”. ACM Transactions on Computer
Systems, Vol. 31, No. 3, Article 8, August 2013. (the
journal version, more details)

 Doug Judd. “Spanner under the hood: Understanding
strict serializability and external consistency”. Google
Cloud Blog. Apr 8, 2023.
(https://cloud.google.com/blog/products/databases/s
trict-serializability-and-external-consistency-in-
spanner)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 235

What is Spanner?
 Scalable, multi-version, globally distributed,

synchronously-replicated database.

 Support:
 General-purpose transactions (ACID)
 SQL-based query language
 Schematized tables
 Semi-relational data model

 Running in production
 Storage for Google’s ad data
 Replaced a sharded MySQL database

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 236

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 119

Motivations
 Bigtable is used in many projects.
 Consistently receiving complaints about Bigtable in

complex, evolving schemas, requiring strong
consistency on wide-area replication.

 Evolving Bigtable into a multi-version DB with
schematized semi-relational tables.

 Data version is automatically timestamped with its
commit time and garbage collected when expired.

 Can read data at specified timestamps.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 237

Spanner Overview
 Feature: Lock-free distributed read transactions
 Property: External consistency of distributed

transactions
◦ First system at global scale

 Implementation: Integration of concurrency
control, replication, and 2PC
◦ Correctness and performance

 Enabling technology: TrueTime
◦ Interval-based global time

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 238

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 120

Main Features
 Shards data across many machines in data centers

all over the world.
 Replication for global availability, geographic

locality, and auto clients failover btw replicas.
 Auto data reshard and auto data migration (even

across datacenters) for load balancing.

 Scale up to millions of machines, hundreds of data
centers, and trillions of database rows.

 First of its kind.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 239

Replication Management
 Can configure dynamically at fine grain:

◦ Placement of data on different datacenters
◦ How far from users (control read latency)
◦ How far btw replicas (control write latency)
◦ How many replicas (control durability, availability, and

read performance)

 Dynamic and transparent data movement btw
datacenters for load balancing.

 Provide externally consistent reads/writes and
globally consistent reads. (more on this later)

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 240

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 121

Global Timestamps
 Spanner assigns global commit timestamps to

transactions that reflect serialization order.
 External consistency: if T2 calls Commit() after T1’s

call to Commit() has returned, then T2 commit
timestamp > T1 commit timestamp.

 Guarantee at global scale. (i.e. transactions may be
distributed across the globe)

 Enabled by a new TrueTime API that exposes clock
uncertainty so that bounds can be determined to
provide timestamp guarantees.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 241

Spanner Architecture 1
 A Spanner deployment is called a universe

organized as a set of zones.
 Zones are units of deployment analogous to that of

Bigtable servers, as well as the locations for data
replication.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 242

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 122

Spanner Architecture 2
 A zone has one zonemaster and 100s to 1000s

spanservers.
 Zonemaster assigns data to spanservers.
 Spanservers serve data to clients.
 Per-zone location proxes are used by clients to find the

spanservers of the target data.
 The universe master is a console for status display and

interactive debugging.
 The placement driver handles auto movement of data

across zones for replication and load balancing

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 243

Spanner Software Stack
 The Spanner

software
stack
supports the
replication
and
distributed
transactions.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 244

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 123

Spanner Software Stack
 Each spanserver handles 100~1000 tablets.
 A tablet is a bag of mappings:

(key:string, timestamp:int64)  string
 Spanner is more like a multi-version DB than a key-

value store.
 Tablet data is stored as files in Colossus (GFS2).
 A Paxos state machine for each tablet to store the

metadata and log for that tablet.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 245

Replica Management
 Paxos state machines implement a consistently

replicated bag of mappings.
 Writes initiate the Paxos protocol at the leader.
 Reads access state directly from tablet at any

replica that is sufficiently up-to-date.

 The set of replicas is called a Paxos group.
 A lock table is maintained on each replica leader

for two-phase locking in concurrency control.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 246

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 124

Distributed Transactions
 A transaction manager on each leader is for

distributed transaction management.
 The transaction manager implements a participant

leader; the other replicas are participant slaves.
 When a transaction involves multiple Paxos groups,

group leaders coordinate to perform two-phase
commit (2PC) with one being the coordinator leader
and others the coordinator slaves.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 247

Directory and Placement
 A directory (not file directory, more like bucket) is a

set of contiguous keys that share a common prefix.
 Applications can control locality by choosing keys.
 A directory is the unit of data placement. When a

movement is required, data is moved directory-by-
directory.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 248

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 125

Replication Control
 A directory is also the smallest unit for replica

placement configuration.
 Administrators control:

◦ number/types of replicas
◦ Geographic placement of replicas

 Applications control:
◦ How data is replicated

 Spanner supports synchronous replication across
datacenters.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 249

Data Model
 Spanner offers applications with:

1. A data model on schematized semi-relational tables.
2. A query language
3. General purpose transactions.

 An application creates one or more databases.
 Each database can have unlimited number of

schematized tables.

 Tables have rows, columns, and versioned values.
 An SQL-like query language.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 250

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 126

Data Model
 Every table has a set of one or more primary-key

columns which form the name of a row.
 A table is a mapping from the primary-key columns

to the non-primary-key columns.
 Database is partitioned into hierarchies of tables

specified via INTERLEAVE IN declarations. (next)

 The top is a directory table.
 Each row in the directory table with key K and rows

in descendant tables start with K forms a directory.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 251

Schema and Layout
 Directories are

formed by the
interleaving of
tables.

 Albums(2,1)
represents the
row from the
Albums table
for uid 2, aid 1.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 252

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 127

TrueTime API
 The key enabler of the synchronous replication and

distributed transactions.
 Represents time as a TTinterval, an interval with

bounded time uncertainty.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 253

TrueTime is Global
 TrueTime can be considered as “global wall-clock

time” with bounded uncertainty.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 254

time

earliest latest

TT.now()

2*ε

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 128

TrueTime API
 Endpoints of a TTinterval are of type TTstamp.
 TT.now() method returns a TTinterval that is

guaranteed to contain the absolute time during
which TT.now() was invoked.

 TT.after() and TT.before() methods are convenience
wrappers around TT.now().

 Let the absolute time of an event e be tabs(e).
TrueTime guarantees that for an invocation tt =
TT.now(), tt.earliest ≤ tabs(enow) ≤ tt.latest, where
enow is the invocation event.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 255

TrueTime Implementation
 TrueTime is implemented by a set of time master

machines per datacenter and a time slave daemon
per machine.

 The underlying time references are GPS and atomic
clocks.

 Masters have GPS receivers. remaining masters
(Armageddon masters) are equipped with atomic
clocks.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 256

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 129

Supported Operations
 Spanner supports several types of transactions.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 257

Operation Benchmarks
 Microbenchmarks on Spanner demonstrate the

performance of different operations.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 258

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 130

Scalability of Spanner
 Two-phase commit is crucial for concurrency

control.
 Spanner scales well in two-phase commit.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 259

Spanner in F1
 F1 was the Google’s advertising backend which

was originally based on MySQL.
 Spanner has been successfully evaluated on F1.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 260

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 131

YogabyteDB

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 261

YogabyteDB
 Another distributed

SQL database:
◦ Low total cost of

ownership with high
performance

◦ Cloud neutral with
Kubernetes native

◦ High release velocity
with open source

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 262

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 132

Design Goals of YogabyteDB
 Consistency

◦ CP database (in terms of CAP theorem)
◦ Single-rwo linearizability
◦ Multi-row ACID transactions

 Query APIs
◦ YSQL: a fully-relational SQL API
◦ YCQL: a semi-relational SQL API rooted at Cassandra

 Performance
◦ High write throughput, client concurrency, data density, and growing

event data use-cases

 Geo-distributed deployments
 Cloud native architecture

◦ Run on commodity hardware
◦ Kubernetes ready
◦ Open souce

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 263

Key Concepts
 A YugabyteDB universe is a group of nodes (VMs,

physical machines, or containers) that collectively
function as a distributed database.

 A universe consists of one or more namespaces.
Each of these namespaces can contain one or
more user tables.

 YugabyteDB automatically shards, replicates and
load balances these tables across the nodes in the
universe.

 A namespace is referred to as a database in YSQL
and a keyspace in YCQL.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 264

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 133

Component Services
 A universe comprises of two sets of servers, YB-

TServer and YB-Master.

 The YB-TServer (YugabyteDB Tablet Server) is for
hosting/serving user data and handle user queries.

 The YB-Master (YugabyteDB Master Server) is for
keeping metadata, coordinating system-wide
operations (create/alter/drop tables…) and initiating
maintenance operations (load balancing…).

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 265

YogabyteDB Architecture
 YugabyteDB

architecture
follows a
layered
design.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 266

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 134

CockroachDB

CSIE59830/CSIEM0410/AIIA50050 Big Data
Systems 267

Scalable SQL with Global OLTP
 CockroachDB is a scalable SQL DBMS with global

OLTP, high availability and strong consistency.
 Resilient to disasters through replication and

automatic recovery.

 Rebecca Taft, et. al. “CockroachDB: The Resilient
Geo-Distributed SQL Database”, ACM SIGMOD
2020, Portland, OR, USA.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 268

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 135

Basic Concepts 1
 Cluster: a CockroachDB deployment, can have

many nodes.
 Node: An individual machine running

CockroachDB.
 Range: Data are stored as a giant sorted map of

key-value pairs. This keyspace is divided into
“ranges” (contiguous chunks of keys).

 Replica: Each range is replicated (3 by default) and
stored on different node.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 269

Basic Concepts 2
 Lease-holder: One replica in each range holds the

“range lease” and is referred as the “leaseholder”
for coordinating all read/write requests for the
range.

 Raft Leader: One replica in each range is the
“leader” for write requests to ensure majority with
Raft consensus protocol. (almost always the same
as the leaseholder)

 Raft Log: Each range has a time-ordered log of
writes that all replicas have agreed on.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 270

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 136

Basic Concepts 3
 CockroachDB uses both ACID and CAP theorem

based consistency.
 When a range receives a write, a quorum of nodes

containing replicas acknowledge the write.
 When a write doesn’t achieve consensus, forward

progress halts.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 271

Relication in CockroachDB
 Two types of replication: synchronous and

asynchronous.
 Synchronous replication requires all writes to

propagate to a quorum before being considered
committed.

 Asynchronous replication only requires a single
node to receive the write to be considered
committed. Updates will eventually be propogate
to all other replcas.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 272

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 137

CockroachDB Architecture
 CockroachDB

is structured
in layers.

 Higher layers
treats lower
layers as
black boxes.

 Lower layers
are unaware
of the higher
ones.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 273

Layered Architecture
 SQL Layer: highest layer with familiar relational

concepts API similar to Postgres.
 Distributed Key-Value Store: a distributed KV store as a

monolithic sorted map.
 Distributed Transactions: implemented on top of other

layers
 Nodes: physical/virtual machines or containers that

contain stores.
 Store: Each node contains one or more stores

managed with RocksDB.
 Range: Every store contains ranges. Each range covers

a contiguous segment of the key space.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 274

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 138

Horizontal Scaling
 CockroachDB starts off with a single, empty range

encompassing the entire key space.
 When data in the rage grows to a threshold size

(64MB), it is split into two ranges.
 Newly split ranges are rebalanced to stores with more

capacity available

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 275

Ranges in Stores
 Ranges are

replicated
using the
Raft
consensus
protocol
(default=re
plicated 3
ways).

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 276

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 139

Distributed Transactions
 Transactions are set of operations satisfying ACID

semantics with strong consistency.
 CockroachDB provides distributed transactions

using multi-version concurrency control (MVCC).
 CockroachDB provides snapshot isolation (SI) and

serializable snapshot isolation (SSI), allowing
externally consistent, lock-free reads and writes,
both from a historical snapshot timestamp and
from the current wall clock time.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 277

SQL Support
 CockroachDB’s SQL can encode, store, and retrieve

the SQL table data and indexes.
 The SQL grammar supported is a derivative of

PostgreSQL.
 The implementation leverages the distributed

transactions and strong consistency provided by
the monolithic sorted key-value map.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 278

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 140

Deployment and
Management
 Support simple deployment that fits well with the

container model.
 Nodes are symmetric and self-organize.
 A single binary (easily put into a container) runs on

each node of the cluster and export the local stores for
accepting new writes and rebalances.

 Self-organizes by using a gossip network.
 The gossip network continually balances itself.
 CockroachDB can run on a laptop, corporate cluster or

private cloud, as well as on any public cloud
infrastructure.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 279

Comparing Distr SQL DBs

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 280

By YogabyteDB

CSIE59830/CSIEM0410/AIIA50050
Big Data Systems

Lecture 07 Structured Big Data 2 –
NoSQL, NewSQL, Distributed SQL

Note 141

Distributed SQL Market
 The distributed SQL is quickly getting ground.

CSIE59830/CSIEM0410/AIIA50050 Big Data Systems Structured Big Data 2 – NoSQL, NewSQL & Distributed SQL 281

