
Big Data System Midterm Exam

November 10, 2013

1 (20%) Term Explanation

1. (5%) What is combiner? How can it help with the performance of MapReduce under the scenario of
big-data?

2. (5%) In Spark, what’s the difference between Transformation and Action?

3. (5%) What is aggregator in Pregel? How can it be utilized? Please give at least 2 examples.

4. (5%) What does ”defined” means in GFS? (Hint: compare with the definition of ”consistent” in GFS)

2 (20%) Map-Reduce

In statistics, logistic regression a type of probabilistic classification model . Given large scale of data point,
the format of each data point is as below. Given the original Logistic Regression and MapReduce Exam-
ple(WordCount). Please rewrite the logistic regression algorithm into MapReduce.

m data point



XN1Y 1
XN2Y 2
...
XNiY i
...
XNmY m


(X N is N-Dimensional Vector)
(Y is Label)

(1)

1 w = Vector.Random(N) // N-dimensional vector

2 for i from 1 to ITERATIONS do{

3 // Compute gradient

4 g =Vector.Zero(N) // N-dimensional zero

vector

5 for every data point (XN , Y) do {

6 //XN is a vector , Y is +1 or 0

7 g += (Y * XN) / (1 + exp(Y * MatrixMulti(w

* XN)))

8 }

9 w -= LEARNING_RATE * g

10 }

Listing 1: Logistic Regression Algorithm

1 main()

2 {

3 runJob ()

4 }

5

6 map(key ,value)

7 {

8 //key:document name

9 // value:document content

10 for each word w in value:

11 EmitIntermediate(w, "1")

12 }

13

14 reduce(key ,value)

15 {

16 // key: a word

17 // values: a list of counts

18 int result = 0;

19 for each v in values:

20 result += ParseInt(v);

21 Emit(AsString(result));

22 }

Listing 2: WordCount in MapReduce

1

3 (20%) Google File System

1. (10%) Please give 2 brief descriptions of the trade-off of chunk size in GFS.

2. (10%) Please give a brief description of how GFS achieve fault tolerance (both high availability and data
integrity).

4 (20%) Spark

Most MapReduce systems are built around an acyclic data flow model that is not suitable for iterative appli-
cations.Therefore, Spark propose an in-memory computing framework that supports these applications while
retaining the scalability and fault tolerance of MapReduce.

1. (5%) Please explain why MapReduce framework is infeasible when it comes to iterative computations.

2. (5%) Does Spark always outperform Hadoop MapReduce framework? If no, please give an example and
briefly explain it.

3. (10%) What’s the advantage of Lineage when it comes to fault tolerance on big data computation. (Hint:
compare with traditional approaches like logging / checkpoint)

5 (20%) Bulk Synchrounous Parallel

1. (6%) Please describe what the Bulk Synchronous Parallel (BSP) model is in detail, i.e. you must give
detail explanation of what each phase is doing.

2. (8%) Describe how graph algorithms can be mapped to the BSP model, including how the computation
terminates.

3. (6%) Single source shortest path is an important problem in graph computing. Given a graph and a
starting vertex, we want to find the shortest path to every node other than the starting node. Please
devise an algorithm using the BSP model that calculates the shortest ”distance” to every node other than
the starting node. The graph has only positive edges and edges might have different values. You have
to describe your algorithm in pseudo code. Note that we only care about the shortest distance so you
don’t have to find the actual path.

6 (20%)(Bonus) K-Means in Spark

In machine learning, the K-means algorithm is very useful for solving unsupervised clustering problem, which
tries to partition a set of data points into K groups where K is a given number. The algorithm is simplified as
following:

1. Given K, the number of groups we’d like to partition the D-dimensional data point set X into.

2. Randomly generate K points, C0∼(K−1), as centroids of the groups.

3. Each point in X take the id of it’s nearest centroid as it’s group label

4. Update Ci as the arithmetic mean of all points taking Ci as it’s centroid

5. Repeat 3 & 4 until iteration limit exceeds or convergence(centroids not changing much)

However, the computation on finding centroid would be a great bottleneck when we have enormous amount
of data points, and the iterative intrinsic is make it infeasible for using MapReduce framework. So in this
section, you’re asked to

2

(a) initialize centroids

(b) cluster by centroid (c) update centroids

Figure 2: PageRank Lineage

1. (5%) Draw out the Lineage, like something in Figure 2.

2. (15%) Write Spark Driver Program psuedo code for K-means here and briefly explain your design.

Again, PSEUDO-CODE is enough, but your answer must be clearly commented and preserve
critical properties of Spark. (Operation granularity, RDD creation, Broadcast variable)

Here are some assumptions:

1. For simplicity, just print out the clustering result as [LABEL POINT CONTENT]. e.g.
1 0.882 0.24 0.25213...
1 0.1238 1.8102 1230.33...
2 3.212 223.1 120.12
...

2. Data is provided as a file: each line, consisting of D fields of real numbers corresponding to the value of
the a coordinate respectively in order, represents a data point.

3. K, D, and ITERATION LIMIT are predefined, meaning that you can use them directly.

4. Use Euclidean distance as your distance measure.

5. euc dist(a, b), avg(point lists), closest(centroids list, p) are built in; use them directly.

6. Mark each cluster with integer IDs.

3

7. Although in Spark you can use ”for” with slightly different syntax to apply operations on an object
parallelly, please use for each(data) ... instead for such case. It’s helpful if you don’t know names
of certain built-in operations, but use it carefully. In fact, you can finish this section without it.

8. Make your own trivial assumptions (ex: file name)

Hints

1. You can invoke operations on RDDs in chain. For example:
var a = read from file("sample.txt") // [1,2,3,4,5]

var b = a.map(i => i*2).map(i => i*4) // [8,16,24,32,40]

2. K is very small, say 5 or 10.

3. In Spark, if you have some information that should be shared among workers, say, a look up table for
example, you should make it a Broadcast variable. e.g.
var lookup table = parse graph from file("graph.txt")

lookup table = spark.braodcast(lookup table)

4. groupByKey() is helpful.

5. Figure 3 is a table of transformations and actions of RDD. Again, pseudo code is fine.

Figure 3: RDD Transformation and Actions

4

