
CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 1

Outline
 Relational Algebra

 Unary Relational Operations 

 Relational Algebra Operations From Set Theory

 Binary Relational Operations

 Additional Relational Operations

 Examples of Queries in Relational Algebra

 Relational Calculus

 Tuple Relational Calculus

 Domain Relational Calculus

 Example Database Application (COMPANY)

 Overview of the QBE language (appendix C)

 (Chapter 8)
CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 2



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 2

Relational Query Languages
 Query languages: Allow manipulation and retrieval of data 

from a database.

 Relational model supports simple, powerful QLs:

 Simple data structure – sets!

 Easy to understand, easy to manipulate

 Strong formal foundation based on logic.

 Allows for much optimization.

 Query Languages != programming languages !

 QLs not expected to be “Turing complete”.

 QLs not intended to be used for complex calculations.

 QLs support easy, efficient access to large data sets.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 3

Formal Relational Query Langs

Two mathematical query languages form 
the basis for “real” languages (e.g., SQL), 
and for implementation:

Relational Algebra: More operational, very 
useful for representing execution plans.

Relational Calculus: Lets users describe 
what they want, rather than how to compute 
it. (Nonoperational, declarative.)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 4



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 3

Basics of Relational Algebra
 An algebra consists of operators and atomic operands

 Expressions can be constructed by applying operators to 

atomic operands and/or other expressions

 Operations can be composed -- algebra is closed

 Parentheses are needed to group operators

 Algebra of arithmetic: operands are variables and constants, 

and operators are the usual arithmetic operators

 E.g., (x+y)*2 or ((x+7)/(y-3)) + x

 Relational algebra: operands are variables that stand for 

relations (sets of tuples), and operations include union, 

intersection, selection, projection, Cartesian product, etc

 E.g., (πc-ownerCheckingAccount) ∩ (πs-ownerSavingsAccount)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 5

Relational Algebra Overview
 Relational algebra is the basic set of operations for the 

relational model

 These operations enable a user to specify basic 
retrieval requests (or queries)

 The result of an operation is a new relation, which 
may have been formed from one or more input 
relations

 This property makes the algebra “closed” (all 
objects in relational algebra are relations)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 6



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 4

Relational Algebra Overview (cont.)

The algebra operations thus produce new 
relations

These can be further manipulated using 
operations of the same algebra

A sequence of relational algebra operations 
forms a relational algebra expression

The result of a relational algebra expression 
is also a relation that represents the result of 
a database query (or retrieval request)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 7

Brief History of Origins of Algebra
 Muhammad ibn Musa al-Khwarizmi (800-847 CE) wrote a 

book titled al-jabr about arithmetic of variables
 Book was translated into Latin.

 Its title (al-jabr) gave Algebra its name.

 Al-Khwarizmi called variables “shay”
 “Shay” is Arabic for “thing”.

 Spanish transliterated “shay” as “xay” (“x” was “sh” in Spain).

 In time this word was abbreviated as x.

 Where does the word Algorithm come from?
 Algorithm originates from “al-Khwarizmi"

 Reference: PBS (http://www.pbs.org/empires/islam/innoalgebra.html)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 8

http://www.pbs.org/empires/islam/innoalgebra.html


CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 5

Relational Algebra Overview
Relational Algebra consists of several groups of 

operations

 Unary Relational Operations

 SELECT (symbol:  (sigma))

 PROJECT (symbol:  (pi))

 RENAME (symbol:  (rho))

 Relational Algebra Operations From Set Theory

 UNION (  ), INTERSECTION (  ), DIFFERENCE (or 
MINUS, – )

 CARTESIAN PRODUCT ( × )

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 9

Relational Algebra Overview
 Binary Relational Operations

 JOIN (several variations of JOIN exist)

 DIVISION

 Additional Relational Operations

 OUTER JOINS, OUTER UNION

 AGGREGATE FUNCTIONS (These compute summary of 
information: for example, SUM, COUNT, AVG, MIN, MAX)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 10



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 6

Database State for COMPANY
 Many examples discussed below refer to the COMPANY 

database shown here.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 11

Example: database state

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 12



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 7

Example: database state

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 13

Select Operation – Example

CSIE30600/CSIEB0290 Database Systems

A B C D

















1

5

12

23

7

7

3

10

A=B ^ D > 5 (r) A B C D









1

23

7

10

Relations r

Relational Algebra and Calculus 14



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 8

Unary Relational Operations: SELECT

 The SELECT operation (denoted by  (sigma)) is 
used to select the tuples from a relation that satisfies a 
selection condition.

 Examples: 

 Select the EMPLOYEE tuples whose department number is 
4:

 DNO = 4 (EMPLOYEE)

 Select the employee tuples whose salary is greater than 
$30,000:

 SALARY > 30,000 (EMPLOYEE)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 15

SELECT
 In general, the select operation is denoted by 

<selection condition>(R)

where
 the symbol  (sigma) is used to denote the select operator
 the selection condition is a Boolean (conditional) expression 

specified on the attributes of relation R
 Selection condition contains clauses of the form 

<attribute name> <comparison op> <constant value>
or

<attribute name> <comparison op> <attribute name>
 Clauses can be combined with AND, OR, and NOT
 tuples that make the condition true are selected
 tuples that make the condition false are filtered out

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 16



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 9

SELECT:  Formal Definition
 Notation:  p(r)

 p is called the selection predicate

 Defined as:

p(r) = {t | t  r and p(t) }

Where p is a formula in propositional calculus 
consisting of terms connected by :  (and),  (or), 
(not)
Each term is one of:

<attribute> op <attribute> or <constant>

where op is one of:  =, , >, , <, 

 Example of selection:
Dname=“Research”(DEPARTMENT)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 17

SELECT:  Properties
 The SELECT operation <selection condition>(R) produces a relation 

S that has the same schema (same attributes) as R

 SELECT  is commutative:

 <c1>(< c2>(R)) = <c2> (< c1>(R))

 Because of commutativity property, a cascade (sequence) of 
SELECT operations may be applied in any order:

 <c1>(<c2>(<c3>(R))) = <c2>(<c3>(<c1>(R)))

 A cascade of SELECT operations may be replaced by a single 
selection with a conjunction of all the conditions:

 <c1>(< c2>(<c3>(R))) = <c1> AND < c2> AND < c3>(R)

 #tuples in the result  #tuples in R

 Fraction of tuples selected by a selection condition is called 
the selectivity.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 18



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 10

Project Operation – Example
Relation r 

CSIE30600/CSIEB0290 Database Systems

A B C









10

20

30

40

1

1

1

2

A C









1

1

1

2

=

A C







1

1

2

πA,C (r)

Relational Algebra and Calculus 19

Unary Operation: PROJECT
 PROJECT Operation is denoted by  (pi)

 This operation keeps certain columns (attributes) 
from a relation and discards the other columns.

 PROJECT creates a vertical partitioning

 The list of specified attributes is kept in each tuple

 The other attributes in each tuple are discarded

 Example: To list each employee’s first and last name 
and salary, the following is used:

LNAME, FNAME, SALARY(EMPLOYEE)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 20



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 11

PROJECT Operations: (cont.)
 The general form of the project operation is:

<attribute list>(R)
  (pi) is used to represent the project operation

 <attribute list> is the desired list of attributes from 
relation R. 

 The project operation removes any duplicate tuples

 This is because the result of the project operation 
must be a set of tuples

 Mathematical sets do not allow duplicate elements.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 21

PROJECT: Formal Definition
 Notation:

where A1, A2 are attribute names and r is a relation 
name.

 The result is defined as the relation of k columns 
obtained by erasing the columns that are not listed

 Duplicate rows removed from result, since relations 
are sets

 Example: To keep only the Pname and Pnumber
attributes of PROJECT

Pname, Pnumber(PROJECT) 

CSIE30600/CSIEB0290 Database Systems

)(
k21 A ,  ,A ,A r

Relational Algebra and Calculus 22



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 12

PROJECT:  Properties
 Degree:  #attributes in <attribute list>

 #tuples in the result  #tuples in R

 If the list of attributes includes a key of R, then the 
#tuples in the result of PROJECT is equal to #tuples 
in R

 PROJECT is not commutative

 <list1>(<list2>(R)) = <list1>(R) as long as <list1> 
<list2> 

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 23

Examples of SELECT and PROJECT

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 24



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 13

Relational Algebra Expressions

We may want to apply several relational algebra 
operations one after the other

Either we can write the operations as a single 
in-line expression by nesting the operations, 
or

We can write a sequence of operations 
through the creation of intermediate result 
relations by assignment().

 In the latter case, we must create intermediate 
results and give names to these relations. 

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 25

Assignment
 The assignment operation (←) provides a convenient way to 

express complex queries.

 Write query as a series of assignments followed by an expression
whose value is displayed as a result of the query.

 Assignment must always be made to a temporary relation variable.

 Example:

temp1 ←R-S (r)

temp2 ←R-S ((temp1 x s) – R-S,S (r))

result ← temp1 – temp2

 The result to the right of the ← is assigned to the relation 
variable on the left of the ←.

 May use variable in subsequent expressions

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 26



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 14

In-line Expression vs Sequence of 
Operations (Examples)
 To retrieve the first name, last name, and salary of all 

employees who work in department number 5, we 
must apply a select and a project operation

 We can write a single in-line expression as follows: 

 FNAME, LNAME, SALARY(DNO=5(EMPLOYEE))

 OR we can explicitly show the sequence of operations, 
giving a name to each intermediate relation:

 DEP5_EMPS  DNO=5(EMPLOYEE)

 RESULT  FNAME, LNAME, SALARY(DEP5_EMPS)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 27

Unary Operations: RENAME

The RENAME operator is denoted by  (rho)

 In some cases, we may want to rename the 
attributes of a relation or the relation name or 
both

Useful when a query requires multiple 
operations

Necessary in some cases (see JOIN operation 
later)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 28



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 15

RENAME Operation

The general RENAME operation  can be 
expressed by any of the following forms:

S(B1, B2, …, Bn)(R) changes both:

 the relation name to S, and 

 the column (attribute) names to B1, B1, …..Bn

S(R) changes:

 the relation name only to S

(B1, B2, …, Bn)(R) changes:

 the column (attribute) names only to B1, B1, …..Bn

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 29

RENAME
 For convenience, we also use a shorthand for 

renaming attributes :

 If we write:
• RESULT  FNAME, LNAME, SALARY(DEP5_EMPS)
• RESULT will have the same attribute names as 

DEP5_EMPS (same attributes as EMPLOYEE)

• If we write:
• RESULT(F, M, L, S, B, A, SX, SAL, SU, DNO)
RESULT (F.M.L.S.B,A,SX,SAL,SU, DNO)(DEP5_EMPS)

• The 10 attributes of DEP5_EMPS are renamed to F, 
M, L, S, B, A, SX, SAL, SU, DNO, respectively

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 30



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 16

Example: multiple operations and 
RENAME

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 31

Union Operation – Example
Relations r, s

CSIE30600/CSIEB0290 Database Systems

A B







1

2

1

A B





2

3

r
s

A B









1

2

1

3

r  s

Relational Algebra and Calculus 32



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 17

Operations from Set Theory: UNION 
 UNION Operation

 Binary operation, denoted by 

 The result of R  S, is a relation that includes all 
tuples that are either in R or in S or in both

 Duplicate tuples are eliminated

 The two operand relations R and S must be “type 
compatible” (or UNION compatible)

 R and S must have same #attributes (degree)

 Each pair of corresponding attributes must be 
type compatible (have same or compatible 
domains)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 33

UNION Operation
 Example: 

 To retrieve the social security numbers of all employees who 
either work in department 5 (RESULT1 below) or directly 
supervise an employee who works in department 5 (RESULT2 
below)

 We can use the UNION operation as follows:

DEP5_EMPS  DNO=5(EMPLOYEE)

RESULT1  SSN(DEP5_EMPS)

RESULT2(SSN)  SUPERSSN(DEP5_EMPS)

RESULT  RESULT1  RESULT2

 The union operation produces the tuples that are in either 
RESULT1 or RESULT2 or both

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 34



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 18

Example of the result of a 
UNION operation

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 35

Union Operation – Formal Definition
 Notation:  r  s

 Defined as: 

r  s = {t | t  r or t  s }

 The result of r  s , is a relation that includes all tuples in 

r or in s or in both r and s

 Duplicate tuples are eliminated

 For r  s to be valid.

1.  r, s must have the same arity (#attributes)

2.  The attribute domains must be compatible

(corresponding columns must have same type of values)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 36



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 19

Operations from Set Theory 
 Type compatibility of operands is required for the 

binary set operation UNION , (also for 
INTERSECTION , and SET DIFFERENCE –, to be 
discussed later)

 R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type 
compatible if:

 they have the same number of attributes, and

 the domains of corresponding attributes are type 
compatible (i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n). 

 The resulting relation for R1R2 (also for R1R2, or 
R1–R2) has the same attribute names as the first
operand relation R1 (by convention)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 37

Operations from Set Theory: 
INTERSECTION

 INTERSECTION is denoted by 

The result of the operation R  S, is a relation 
that includes all tuples that are in both R and S

The attribute names in the result will be the 
same as the attribute names in R

The two operand relations R and S must be 
“type compatible”

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 38



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 20

Set Difference Operation – Example

Relations r, s

CSIE30600/CSIEB0290 Database Systems

A B







1

2

1

A B





2

3

r
s

A B





1

1

r - s

Relational Algebra and Calculus 39

Operations from Set Theory: SET 
DIFFERENCE
 SET DIFFERENCE (also called MINUS or EXCEPT) is 

denoted by –

 The result of R – S, is a relation that includes all tuples 
that are in R but not in S

 The attribute names in the result will be the same 
as the attribute names in R

 The two operand relations R and S must be “type 
compatible”

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 40



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 21

Set Difference – Formal Definition

Notation:  r – s

Defined as:

r – s = {t | t  r and  t  s }

Set differences must be taken between 
compatible relations.

 r and s must have the same arity

attribute domains of r and s must be 
compatible

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 41

Examples: UNION, INTERSECT, 
DIFFERENCE

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 42



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 22

Properties of UNION, INTERSECT, 
DIFFERENCE
 Notice that both union and intersection are commutative

operations; that is

 R  S = S  R, and R  S = S  R

 Both union and intersection can be treated as n-ary operations 

applicable to any number of relations as both are associative

operations; that is

 R  (S  T) = (R  S)  T

 (R  S)  T = R  (S  T)

 The difference operation is not commutative; that is, in general

 R – S ≠ S – R

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 43

Challenge Question
How could you express the intersection

operation if you didn’t have an intersection 
operator in relational algebra? [Hint: Can you 
express Intersection using only the Difference 
operator?]

A ∩ B = ???

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 44



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 23

Cartesian-Product Operation –
Example

CSIE30600/CSIEB0290 Database Systems

A B





1

2

A B

















1

1

1

1

2

2

2

2

C D

















10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

C D









10

10

20

10

E

a

a

b

br

s

Relations r, s

r x s

Relational Algebra and Calculus 45

CARTESIAN PRODUCT
 CARTESIAN (or CROSS) PRODUCT Operation (x)

 used to combine tuples from two relations

 Denoted by R(A1, A2, . . ., An) × S(B1, B2, . . ., Bm)

 Result is a relation Q with degree n + m attributes:

 Q(A1, A2, . . ., An, B1, B2, . . ., Bm)

 Q has one tuple for each combination of tuples—
one from R and one from S. 

 Hence, if R has nR tuples (|R| = nR), and S has nS

tuples, then R x S will have nR * nS tuples.

 R and S do NOT have to be "type compatible”

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 46



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 24

CARTESIAN PRODUCT (cont.)
 Generally, CROSS PRODUCT is not a meaningful 

operation

 Can become meaningful when followed by other operations

 Example (not meaningful):

 FEMALE_EMPS  SEX=’F’(EMPLOYEE)

 EMPNAMES  FNAME, LNAME, SSN(FEMALE_EMPS)

 EMP_DEPENDENTS  EMPNAMES × DEPENDENT

 EMP_DEPENDENTS will contain every combination 
of EMPNAMES and DEPENDENT

 whether or not they are actually related

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 47

CARTESIAN PRODUCT (cont.)
 To keep only combinations where the DEPENDENT is 

related to the EMPLOYEE, we add a SELECT 
operation as follows

 Example (meaningful):

 FEMALE_EMPS  SEX=’F’(EMPLOYEE)

 EMPNAMES  FNAME, LNAME, SSN(FEMALE_EMPS)

 EMP_DEPENDENTS  EMPNAMES × DEPENDENT

 ACTUAL_DEPS  SSN=ESSN(EMP_DEPENDENTS)

 RESULT  FNAME, LNAME, DEPENDENT_NAME(ACTUAL_DEPS)

 RESULT will now contain the name of female 
employees and their dependents.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 48



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 25

Example: CARTESIAN PRODUCT

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 49

Cartesian-Product – Formal 
Definition


CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 50



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 26

Banking Example

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, 
customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 51

Example Queries
Find all loans of over $1200

CSIE30600/CSIEB0290 Database Systems

amount > 1200(loan)

loan_number(amount > 1200(loan))

 Find the loan number for each loan of an 
amount greater than $1200

Relational Algebra and Calculus 52



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 27

Example Queries
Find the names of all customers who have a 

loan, an account, or both, from the bank.

CSIE30600/CSIEB0290 Database Systems

customer_name (borrower) 

customer_name (depositor)

customer_name (borrower) 

customer_name (depositor)

 Find the names of all customers who have 
a loan and an account at the bank.

Relational Algebra and Calculus 53

Example Queries
 Find the names of all customers who have a loan at the 

Perryridge branch.

customer_name (branch_name = “Perryridge” (borrower.loan_number = 

loan.loan_number(borrower x loan)))  – customer_name(depositor)

customer_name (branch_name=“Perryridge”

(borrower.loan_number = loan.loan_number (borrower x loan)))

 Find the names of all customers who have a 
loan at the Perryridge branch but do not have 
an account at any branch of the bank

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 54



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 28

Example Queries
 Find the names of all customers who have a loan at 

the Perryridge branch.

CSIE30600/CSIEB0290 Database Systems

 Query 2

customer_name(loan.loan_number = borrower.loan_number (

(branch_name = “Perryridge” (loan)) x  borrower))

 Query 1

customer_name (branch_name = “Perryridge” (

borrower.loan_number = loan.loan_number (borrower x 

loan)))

Relational Algebra and Calculus 55

Example Queries
 Find the largest account balance

 Strategy:

 Find those balances that are not the largest

 Rename account relation as d so that we can compare 
each account balance with all others

 Use set difference to find those account balances that 
were not found in the earlier step.  

 The query is:

CSIE30600/CSIEB0290 Database Systems

balance(account) - account.balance

(account.balance < d.balance (account x d (account)))

Relational Algebra and Calculus 56



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 29

Formal Definition
 A basic expression in the relational algebra consists of 

either one of the following:
 A relation in the database

 A constant relation

 Let E1 and E2 be relational-algebra expressions; the 
following are all relational-algebra expressions:

 E1  E2

 E1 – E2

 E1 × E2

 p (E1), P is a predicate on attributes in E1

 s (E1), S is a list consisting of some of the attributes in E1

 x (E1), x is the new name for the result of E1

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 57

Completeness

Set of relational algebra operations 

{σ, , ∪, ρ, –, ×} is a complete set

Any relational algebra operation can be 
expressed as a sequence of operations 
from this set

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 58



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 30

Additional Operations
We define additional operations that do not 

add any power to the relational algebra, but 
that simplify common queries.

Set intersection

 Join operation

Division

Assignment

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 59

Set-Intersection Operation –
Example

Relation r, s:

r  s

CSIE30600/CSIEB0290 Database Systems

A     B

 1

 2

 1

A    B

 2

 3

r
s

A     B

 2

Relational Algebra and Calculus 60



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 31

Set-Intersection Operation –
Formal Definition
Notation: r  s

Defined as:

r  s = { t | tr and  ts }

Assume: 

 r, s have the same arity

attributes of r and s are compatible

Note: r  s = r – (r – s)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 61

Binary Relational Operations: JOIN
 JOIN Operation (denoted by⋈)

 The sequence of CARTESIAN PRODECT followed 
by SELECT is used quite commonly to identify and 
select related tuples from two relations

 A special operation, called JOIN combines this 
sequence into a single operation

 This operation is very important for any relational 
database with more than a single relation, because 
it allows us combine related tuples from various 
relations 

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 62



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 32

JOIN (cont.)
The general form of a join operation on two 

relations R(A1, A2, . . ., An) and S(B1, B2, . . ., 
Bm) is:

R ⋈<join condition> S

where R and S can be any relations that result 
from general relational algebra expressions.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 63

JOIN (cont.)
 Example: Suppose that we want to retrieve the name 

of the manager of each department.

 To get the manager’s name, we need to combine each 
DEPARTMENT tuple with the EMPLOYEE tuple whose SSN 
value matches the MGRSSN value in the department tuple. 

 We do this by using the join ⋈ operation.

 DEPT_MGR  DEPARTMENT ⋈MGRSSN=SSN EMPLOYEE

 MGRSSN=SSN is the join condition

 Combines each department record with the employee who 
manages the department

 The join condition can also be specified as 
DEPARTMENT.MGRSSN = EMPLOYEE.SSN

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 64



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 33

Example of applying the JOIN 
operation

CSIE30600/CSIEB0290 Database Systems

DEPT_MGR  DEPARTMENT ⋈MGRSSN=SSNEMPLOYEE

Relational Algebra and Calculus 65

JOIN: More Example

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 66



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 34

JOIN: More Example

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 67

Challenge Question
How could you express the “join” operation if 

you didn’t have a join operator in relational 
algebra? [Hint: are there other operators that 
you could use, in combination?]

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 68



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 35

JOIN using × and σ
Condition Join: R ⋈c S = σc (R × S)

Sometimes called a theta-join.

Result schema same as that of cross-product

Fewer tuples than cross-product, might be able 
to compute more efficiently

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 69

Some properties of JOIN
 Consider the following JOIN operation:

 R(A1, A2, . . ., An) ⋈R.Ai=S.Bj S(B1, B2, . . ., Bm)

 Result is a relation Q with degree n + m attributes:

 Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

 The resulting relation state has one tuple for each 
combination of tuples—r from R and s from S, but 
only if they satisfy the join condition r[Ai]=s[Bj]

 Hence, if R has nR, and S has nS tuples, then the 
result will generally have less than nR * nS tuples.

 Only related tuples (based on the join condition) 
will appear in the result

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 70



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 36

Some properties of JOIN
The general case of JOIN operation is called a 

Theta-join: R ⋈ S

The join condition is called theta

Theta can be any general boolean expression 
on the attributes of R and S; for example:

R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)

Most join conditions involve one or more 
equality conditions “AND”ed together; for 
example:

R.Ai=S.Bj AND R.Ak=S.Bl AND R.Ap=S.Bq

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 71

Binary Relational Operations: 
EQUIJOIN
 EQUIJOIN Operation

 The most common use of join involves join conditions 

with equality comparisons only

 Such a join, where the only comparison operator used is =, 

is called an EQUIJOIN.

 In the result of an EQUIJOIN we always have one or more 

pairs of attributes (whose names need not be  identical) 

that have identical values in every tuple. 

 The JOIN seen in the previous example was an EQUIJOIN.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 72



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 37

NATURAL JOIN Operation
 NATURAL JOIN Operation 

 Another variation of JOIN called NATURAL 

JOIN — denoted by * — was created to get rid of 

the second (superfluous) attribute in an EQUIJOIN 

condition.

 The standard definition of natural join requires 

that the two join attributes, or each pair of 

corresponding join attributes, have the same name

in both relations

 If this is not the case, a renaming operation 

is applied first.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 73

NATURAL JOIN (cont.)
Example: Apply a natural join on the 

DNUMBER attributes of DEPARTMENT and 
DEPT_LOCATIONS, it is sufficient to write:  

 DEPT_LOCS  DEPARTMENT * 
DEPT_LOCATIONS

Only attribute with the same name is 
DNUMBER

An implicit join condition is created based on 
this attribute:
DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 74



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 38

NATURAL JOIN (cont.)
Another example: Q  R(A,B,C,D) * S(C,D,E)

 The implicit join condition includes each pair of 
attributes with the same name, “AND”ed together:

 R.C=S.C AND R.D.=S.D

 Result keeps only one attribute of each such pair:

 Q(A,B,C,D,E)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 75

Example of NATURAL JOIN

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 76



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 39

Challenge Question
How could you express the natural join 

operation if you didn’t have a natural join 
operator in relational algebra? 

Consider you have two relations R(A,B,C) and 
S(B,C,D).

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 77

Division Operation
 Notation: 

 Suited to queries that include “for all”.

 Let r and s be relations on schemas R and S respectively 
where

 R = (A1, …, Am , B1, …, Bn )

 S = (B1, …, Bn)

The result of r  s is a relation on schema

R – S = (A1, …, Am)

r   s = { t |  t  R-S (r)  us ( tur ) } 
where tu means the concatenation of tuples t and u to 
produce a single tuple

CSIE30600/CSIEB0290 Database Systems

r  s

Relational Algebra and Calculus 78



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 40

Division Operation – Example

CSIE30600/CSIEB0290 Database Systems

Relations r, s

r  s A

B





1

2

A B























1

2

3

1

1

1

3

4

6

1

2

r

s

Relational Algebra and Calculus 79

Another Division Example

CSIE30600/CSIEB0290 Database Systems

A B

















a

a

a

a

a

a

a

a

C D

















a

a

b

a

b

a

b

b

E

1

1

1

1

3

1

1

1

Relations r, s

r  s

D

a

b

E

1

1

A B





a

a

C





r

s

Relational Algebra and Calculus 80



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 41

Examples of Division: Suppliers and 
Parts

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 81

Division Operation (Cont.)
 Property 

 Let q = r  s

 Then q is the largest relation satisfying q × s  r

 Definition in terms of the basic algebra operation

Let r(R) and s(S) be relations, and let S  R

r  s = R-S(r) – R-S ( (R-S(r) × s ) – R-S,S(r) )

 To see why

R-S,S (r) simply reorders attributes of r

R-S ( (R-S (r) × s ) –R-S,S(r) ) gives those tuples t in 

R-S (r) such that for some tuple u  s, tu  r.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 82



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 42

CSIE30600/CSIEB0290 Database 
Systems

Introductio

n 83

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 84



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 43

Notation for Query Trees
Query tree

Represents the input relations of query as 
leaf nodes of the tree

Represents the relational algebra operations 
as internal nodes

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 85

Example of a Query Tree

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 86



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 44

Bank Example Queries
Find the name of all customers who have a loan 

at the bank and the loan amount

CSIE30600/CSIEB0290 Database Systems

customer_name(borrower)  customer_name(depositor)

 Find the names of all customers who have a 
loan and an account at bank.

customer_name, loan_number, amount(borrower ⋈ loan)

Relational Algebra and Calculus 87

Bank Example Queries
 Find all customers who have an account from at least the 

“Downtown” and the ”Uptown” branches.

CSIE30600/CSIEB0290 Database Systems

 Query 1

customer_name (branch_name = “Downtown” (depositor ⋈ account )) 

customer_name (branch_name = “Uptown” (depositor ⋈ account))

 Query 2

customer_name, branch_name (depositor ⋈ account)

 temp(branch_name) ({(“Downtown” ), (“Uptown” )})

Note that Query 2 uses a constant relation.

Relational Algebra and Calculus 88



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 45

Example Queries

Find all customers who have an account at all 

branches located in Brooklyn city.

CSIE30600/CSIEB0290 Database Systems

customer_name, branch_name (depositor ⋈ account)

 branch_name (branch_city = “Brooklyn” (branch))

Relational Algebra and Calculus 89

Additional Relational Operations
 Generalized projection

 Allows functions of attributes to be included in the 
projection list

 Aggregate functions and grouping

 Common functions applied to collections of 
numeric values 

 Include SUM, AVERAGE, MAXIMUM, and 
MINIMUM

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 90



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 46

Aggregate Functions and Grouping
 To specify mathematical aggregate functions on 

collections of values from the database. 

 Examples: retrieving the average or total salary of all 
employees or the total number of employee tuples.

 These functions are used in simple statistical queries that 
summarize information from the database tuples.

 Common functions on numeric values include

 SUM, AVERAGE, MAXIMUM, and MINIMUM.

 The COUNT function is used for counting tuples or 
values.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 91

Aggregate Function
 Use of the aggregate functional operation ℱ

 ℱMAX Salary (EMPLOYEE) retrieves the maximum salary value 

from the EMPLOYEE relation

 ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary value 

from the EMPLOYEE relation

 ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary from 

the EMPLOYEE relation

 ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE) computes the count 

(number) of employees and their average salary

 Note: count just counts the number of rows, without removing 

duplicates

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 92Relational Algebra and Calculus 92



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 47

Aggregate Operation – Example
Relation r:

CSIE30600/CSIEB0290 Database Systems

A B

















C

7

7

3

10

ℱsum(c) (r) sum(c )

27

Relational Algebra and Calculus 93

Using Grouping with Aggregation
 The previous examples all summarized one or more attributes 

for a set of tuples
 Maximum Salary or Count (number of) Ssn

 Grouping can be combined with Aggregate Functions

 Example: For each department, retrieve the DNO, COUNT SSN, 
and AVERAGE SALARY

 A variation of aggregate operation ℱ allows this:
 Grouping attribute placed to left of symbol

 Aggregate functions to right of symbol

 DNO ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE)

 Above operation groups employees by DNO (department 
number) and computes the count of employees and average 
salary per department

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 94



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 48

Group Aggregation - Example

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 95

Aggregate Operation – More

Example
Relation account grouped by branch-name:

CSIE30600/CSIEB0290 Database Systems

branch_name ℱsum(balance) (account)

branch_name account_number balance

Perryridge

Perryridge

Brighton

Brighton

Redwood

A-102

A-201

A-217

A-215

A-222

400

900

750

750

700

branch_name sum(balance)

Perryridge

Brighton

Redwood

1300

1500

700

Relational Algebra and Calculus 96



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 49

Recursive Closure Operations
Operation applied to a recursive relationship

between tuples of same type

What is the result of the following sequence of 
queries ?

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 97

OUTER JOIN Operations
 Outer joins

 Keep all tuples in R, or all those in S, or all those in 
both relations regardless of whether or not they 
have matching tuples in the other relation

 Types

 LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL 
OUTER JOIN

 Example:

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 98



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 50

The OUTER UNION Operation

Take union of tuples from two relations that 
have some common attributes

Not union (type) compatible

Partially compatible

All tuples from both relations included in 
the result

Tuples with the same value combination will 
appear only once

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 99

Queries in Relational Algebra

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 100



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 51

Queries in Relational Algebra

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 101

Queries in Relational Algebra

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 102



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 52

Question
Relational Algebra is not Turing complete. 

There are operations that cannot be expressed 
in relational algebra.

What is the advantage of using this language to 
query a database?

CSIE30600/CSIEB0290 Database Systems

 By limiting the scope of the operations, it 
is possible to automatically optimize 
queries.

Relational Algebra and Calculus 103

Relational Calculus
 A relational calculus expression creates a new relation, 

which is specified in terms of variables that range over 
rows of the stored database relations (in tuple 
calculus) or over columns of the stored relations (in 
domain calculus). 

 In a calculus expression, there is no order of 
operations to specify how to retrieve the query 
result—a calculus expression specifies only what
information the result should contain. 

 This is the main distinguishing feature between 
relational algebra and relational calculus.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 104



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 53

Relational Calculus (Cont.)
Relational calculus is considered to be a 

nonprocedural or declarative language. 

This differs from relational algebra, where we 
must write a sequence of operations to specify a 
retrieval request; hence relational algebra can 
be considered as a procedural way of stating a 
query.

Any retrieval that can be specified in basic 
relational algebra can also be specified in 
relational calculus (and vice versa)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 105

Tuple Relational Calculus
 The tuple relational calculus is based on specifying a 

number of tuple variables. 

 Each tuple variable usually ranges over a particular 

database relation, meaning that the variable may take as 

its value any tuple from that relation. 

 A simple tuple relational calculus query is of the form

{t | COND(t)}

 where t is a tuple variable and COND (t) is a conditional 

expression involving t. 

 The result of such a query is the set of all tuples t that satisfy 

COND (t).

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 106



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 54

Tuple Relational Calculus
Tuple variables

Ranges over a particular database relation

Satisfy COND(t):  

Specify:

Range relation R of t

Select particular combinations of tuples

Set of attributes to be retrieved (requested 
attributes)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 107

Tuple Relational Calculus
 General expression of tuple relational calculus is of 

the form:

 Truth value of an atom

 Evaluates to either TRUE or FALSE for a specific 
combination of tuples

 Formula (Boolean condition) 

 Made up of one or more atoms connected via 
logical operators AND, OR, and NOT

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 108



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 55

Tuple Relational Calculus
 Example: Find the first and last names of all 

employees whose salary is above $50,000.

{t.FNAME, t.LNAME | EMPLOYEE(t) AND 
t.SALARY>50000}

 The condition EMPLOYEE(t) specifies that the range 
relation of tuple variable t is EMPLOYEE.

 The first and last name (PROJECTION FNAME, LNAME) 
of each EMPLOYEE tuple t that satisfies the condition 
t.SALARY>50000 (SELECTION SALARY >50000) will be 
retrieved. 

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 109

Conditional Expression
1. Set of attributes and constants

2. Set of comparison operators:  (e.g., , , , , , )

3. Set of connectives:  and (), or ()‚ not ()

4. Implication (): x  y, if x is true, then y is true   

x  y x  y

5. Set of quantifiers:

  t  r (Q (t ))  ”there exists” a tuple in t in 
relation r such that predicate Q (t ) is true

 t r (Q (t )) Q is true “for all” tuples t in 
relation r

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 110Relational Algebra and Calculus 110



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 56

The Existential and Universal 
Quantifiers 

Two special symbols called quantifiers can 
appear in formulas; these are the universal 
quantifier () and the existential quantifier ().

 Informally, a tuple variable t is bound if it is 
quantified, meaning that it appears in an (t)
or (t) clause; otherwise, it is free. 

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 111

The Existential and Universal 
Quantifiers
 If F is a formula, then so are (t)(F) and 

(t)(F), where t is a tuple variable.

 The formula (t)(F) is true if the formula F 
evaluates to true for some (at least one) tuple 
assigned to free occurrences of t in F; otherwise 
(t)(F) is false.

 The formula (t)(F) is true if the formula F 
evaluates to true for every tuple (in the universe) 
assigned to free occurrences of t in F; otherwise 
(t)(F) is false. 

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 112



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 57

The Existential and Universal 
Quantifiers
 is called the universal or “for all” quantifier 

because every tuple in “the universe of” tuples 
must make F true to make the quantified 
formula true.

 is called the existential or “there exists” 
quantifier because any tuple that exists in “the 
universe of” tuples may make F true to make 
the quantified formula true.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 113

Example Query Using Existential 
Quantifier
 The only free tuple variables in a relational calculus 

expression should be those that appear to the left of 
the bar ( | ).

 In above query, t is the only free variable; it is then 
bound successively to each tuple.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 114



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 58

Example Query Using Existential 
Quantifier
 If a tuple satisfies the conditions specified in the 

query, the attributes FNAME, LNAME, and ADDRESS 
are retrieved for each such tuple. 

 The conditions EMPLOYEE (t) and 
DEPARTMENT(d) specify the range relations for t 
and d. 

 The condition d.DNAME = ‘Research’ is a selection 
condition and corresponds to a SELECT operation 
in the relational algebra, whereas the condition 
d.DNUMBER = t.DNO is a JOIN condition.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 115

Example Query Using Universal 
Quantifier
 Find the names of employees who work on all the projects 

controlled by department number 5.

{e.LNAME, e.FNAME | EMPLOYEE(e) and (

(x)(not(PROJECT(x)) or not(x.DNUM=5) OR 

((w)(WORKS_ON(w) and w.ESSN=e.SSN and 

x.PNUMBER=w.PNO))))}

 Exclude from the universal quantification all tuples that we are 

not interested in by making the condition true for all such 

tuples.

 The first tuples to exclude (by making them evaluate 

automatically to true) are those that are not in the relation R of 

interest. 

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 116



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 59

Example Query Using Universal 
Quantifier
 In query above, using the expression not(PROJECT(x))

inside the universally quantified formula evaluates to true 

all tuples x that are not in the PROJECT relation.

 Then we exclude the tuples we are not interested in from R 

itself. The expression not(x.DNUM=5) evaluates to true all 

tuples x that are in the project relation but are not 

controlled by department 5. 

 Finally, we specify a condition that must hold on all the 

remaining tuples in R.

((w)(WORKS_ON(w) and w.ESSN=e.SSN and 

x.PNUMBER=w.PNO)
CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 117

Tuple Calculus – More Example

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 118



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 60

Using the Universal Quantifier in 
Queries

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 119

Banking Example
branch (branch_name, branch_city, assets )

 customer (customer_name, customer_street, 
customer_city )

account (account_number, branch_name, 
balance )

 loan (loan_number, branch_name, amount )

depositor (customer_name, account_number )

borrower (customer_name, loan_number )

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 120



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 61

Example Queries
Find the loan_number, branch_name, and

amount for loans of over $1200

CSIE30600/CSIEB0290 Database Systems

{ t.loan_number | t  loan  t.amount  1200 } or

{ t |  sloan ( t[loan_number] = s[loan_number] 

 s[amount]  1200) }

Notice that a relation on schema [loan_number ] is 
implicitly defined by the query

{ t | t  loan  t[amount ]  1200 }

 Find the loan number for each loan of an 
amount greater than $1200

Relational Algebra and Calculus 121

Example Queries
Find the names of all customers having a loan, 

an account, or both at the bank

CSIE30600/CSIEB0290 Database Systems

{ t | s  borrower ( t[customer_name] = s[customer_name])

 u  depositor ( t[customer_name] = u[customer_name]) }

{ t | s  borrower ( t[customer_name] = s[customer_name])

 u  depositor ( t[customer_name] = u[customer_name]) }

 Find the names of all customers who have 
a loan and an account at the bank

Relational Algebra and Calculus 122



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 62

Example Queries
 Find the names of all customers having a loan at the 

Perryridge branch

CSIE30600/CSIEB0290 Database Systems

{ t | s  borrower (t[customer_name] = s[customer_name]

 u  loan (u[branch_name] = “Perryridge”

 u[loan_number] = s[loan_number]))

 v  depositor (v[customer_name] = 

t[customer_name]) }

{ t | s  borrower (t[customer_name] = s[customer_name] 

 u  loan (u[branch_name] = “Perryridge”

 u[loan_number] = s[loan_number])) }

 Find the names of all customers who have a loan at the 
Perryridge branch, but no account at any branch of the 
bank

Relational Algebra and Calculus 123

Example Queries
Find the names of all customers having a loan 

from the Perryridge branch, and the cities in 
which they live

CSIE30600/CSIEB0290 Database Systems

{ t | s  loan (s[branch_name] = “Perryridge”

 u  borrower (u[loan_number] = s[loan_numbe]

 t[customer_name] = u[customer_name])

 v  customer (u[customer_name] = v[customer_name]

 t[customer_city] = v[customer_city]))) }

Notice that a relation on schema [customer_name, 
customer_city] is implicitly defined by the query.

Relational Algebra and Calculus 124



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 63

Example Queries
Find the names of all customers who have an 

account at all branches located in Brooklyn.

CSIE30600/CSIEB0290 Database Systems

{ t |  rcustomer (t[customer_name] = r[customer_name]) 

 ( ubranch (u[branch_city] = “Brooklyn” 

 sdepositor (t[customer_name] = s[customer_name]

  waccount (w[account_number] = s[account_number]

 (w[branch_name] = u[branch_name])))) }

Relational Algebra and Calculus 125

Safe Expressions
Guaranteed to yield a finite number of tuples 

as its result

 Otherwise expression is called unsafe

Expression is safe

 If all values in its result are from the domain of the 
expression

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 126



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 64

Domain Relational Calculus 
 Another variation of relational calculus called the domain 

relational calculus, or simply, domain calculus is equivalent to 
tuple calculus and to relational algebra.

 The language QBE (Query-By-Example) related to domain 
calculus was developed almost concurrently to SQL at IBM 
Research, Yorktown Heights, New York. 
 Domain calculus was thought of as a way to explain what QBE does.

 Domain calculus differs from tuple calculus in the type of 
variables used in formulas:
 Rather than having variables range over tuples, the variables range over 

single values from domains of attributes.

 To form a relation of degree n for a query result, we must have 
n of these domain variables— one for each attribute.

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 127

Domain Relational Calculus (cont.)
 An expression of the domain calculus is of the form

{ x1, x2, . . ., xn | 

COND(x1, . . ., xn, xn+1, xn+2, . . ., xn+m)}

 where x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m are domain 
variables that range over domains (of attributes)

 and COND is a condition or formula of the domain 
relational calculus. 

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 128



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 65

Example Query Using Domain 
Calculus
 Retrieve the birthdate and address of the employee whose 

name is ‘John B. Smith’.

 Query : 

{uv | ( q) ( r) ( s) ( t) ( w) ( x) ( y) ( z)

(EMPLOYEE(qrstuvwxyz) and q=’John’ and r=’B’ and 
s=’Smith’)}

 Abbreviated notation EMPLOYEE(qrstuvwxyz) uses the 
variables without the separating commas: 
EMPLOYEE(q,r,s,t,u,v,w,x,y,z)

 Ten variables for the employee relation are needed, one to 
range over the domain of each attribute in order. 

 Of the ten variables q, r, s, . . ., z, only u and v are free. 

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 129Relational Algebra and Calculus 129

Example Query Using Domain 
Calculus
 Specify the requested attributes, BDATE and ADDRESS, 

by the free domain variables u for BDATE and v for 

ADDRESS. 

 Specify the condition for selecting a tuple following the 

bar ( | )

 namely, that the sequence of values assigned to the 

variables qrstuvwxyz be a tuple of the employee 

relation and that the values for q (FNAME), r (MINIT), 

and s (LNAME) be ‘John’, ‘B’, and ‘Smith’, respectively. 

{uv | ( q) ( r) ( s) (EMPLOYEE(qrstuvwxyz) and q=’John’ 

and r=’B’ and s=’Smith’)}

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 130



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 66

Example Query Using Domain 
Calculus

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 131

More Examples on Bank
Find the loan_number, branch_name, and 

amount for loans of over $1200

CSIE30600/CSIEB0290 Database Systems

{ c |  l, b, a (c, l  borrower  l, b, a  loan

 a > 1200) }

 Find the names of all customers who have 
a loan of over $1200

{ l b a | l, b, a  loan  a > 1200 }

Relational Algebra and Calculus 132



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 67

More Examples on Bank
Find the names of all customers who have a 

loan from the Perryridge branch and the loan 
amount:

{ c a |  l (c, l  borrower  b (l, b, a 

loan  b = “Perryridge”)) }

{ c a |  l (c, l  borrower  l, 

“Perryridge”, a  loan) }

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 133

More Examples on Bank
Find the names of all customers having a loan, 

an account, or both at the Perryridge branch:

CSIE30600/CSIEB0290 Database Systems

{ c |  s,n ( c, s, n   customer) 

 x,y,z ( x, y, z   branch  y = “Brooklyn”) 

 a,b ( a, x, b   account   c,a   depositor)} 

 Find the names of all customers who have an 
account at all branches located in Brooklyn:

{ c |  l (  c, l   borrower 

  b,a ( l, b, a   loan  b = “Perryridge”))

  a ( c, a   depositor

  b,n ( a, b, n   account  b = “Perryridge”))}

Relational Algebra and Calculus 134



CSIE30600/CSIEB0290 Database Systems Lecture 5 Relational Algebra and Calculus

Note 68

Summary
 Relational Algebra

 Unary Relational Operations 

 Relational Algebra Operations From Set Theory

 Binary Relational Operations

 Additional Relational Operations

 Examples of Queries in Relational Algebra

 Relational Calculus

 Tuple Relational Calculus

 Domain Relational Calculus

 Overview of the QBE language (appendix C)

CSIE30600/CSIEB0290 Database Systems Relational Algebra and Calculus 135


