
CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 1

CSIE30600/CSIEB0290
Database Systems

Lecture 6: More SQL

Outline
• More Complex SQL Retrieval Queries
• Specifying Constraints as Assertions and

Actions as Triggers
• Views (Virtual Tables) in SQL
• Schema Change Statements in SQL
• …

More SQL 2CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 2

More Complex SQL Retrieval
Queries
• Additional features allow users to specify

more complex retrievals from database:
– Nested queries
– Joined tables
– Outer joins
– Aggregate functions
– Grouping

More SQL 3CSIE30600/CSIEB0290 Database Systems

Comparisons Involving NULL
and Three-Valued Logic
• Meanings of NULL

– Unknown value
– Unavailable or withheld value
– Not applicable attribute

• Each individual NULL value considered to be
different from every other NULL value

• SQL uses a three-valued logic:
– TRUE, FALSE, and UNKNOWN

More SQL 4CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 3

Comparisons Involving NULL
and Three-Valued Logic (cont.)

More SQL 5CSIE30600/CSIEB0290 Database Systems

Three Valued Logic
• Trick: TRUE = 1; FALSE = 0; UNKNOWN=1/2

– X and Y = min(X,Y)
– X or Y = max(X,Y)
– not X = 1 – X

• The result of any arithmetic expression
involving null is null
– Example: 5 + null returns null

• Tuples for which the condition evaluates to
UNKNOWN are not included in the result

More SQL 6CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 4

Comparisons Involving NULL
and Three-Valued Logic (cont.)
• SQL allows queries that check whether an

attribute value is NULL
–IS or IS NOT NULL

More SQL 7CSIE30600/CSIEB0290 Database Systems

Nested Queries, Tuples,
and Set/Multiset Comparisons
• Nested queries

– Complete select-from-where blocks (the nested
query) within WHERE clause of another query (the
outer query).

• Comparison operator IN
– Compares value v with a set (or multiset) of values

V
– Evaluates to TRUE if v is one of the elements in V

More SQL 8CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 5

Nesting of Queries
• Query: Retrieve the name and address of all

employees who work for the 'Research' or ‘Sales’
department.

Q: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE
WHERE DNO IN

(SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research' OR

DNAME=‘Sales’);
More SQL 9CSIE30600/CSIEB0290 Database Systems

Nesting of Queries(cont.)
• The nested query selects the number of the 'Research'

department
• The outer query select an EMPLOYEE tuple if its DNO value is

in the result of the nested query
• The comparison operator IN compares a value v with a set

(or multi-set) of values V, and evaluates to TRUE if v is one of
the elements in V

• In general, we can have several levels of nesting
• A reference to an unqualified attribute refers to the relation

declared in the innermost nested query
• In this example, the nested query is not correlated with the

outer query

More SQL 10CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 6

IN and NOT IN
SELECT C1.Number, C1.Name
FROM Customer C1
WHERE C1.CRating IN

(SELECT C2.CRating
FROM Customer C2
WHERE Ccity=‘Hualien’);

• <attribute-name A> IN (subquery S): tests set
membership
– A is equal to one of the values in S

• <attribute-name A> NOT IN (subquery S)
– A is equal to no value in S

More SQL 11CSIE30600/CSIEB0290 Database Systems

Nested Queries (cont.)

More SQL 12CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 7

Nested Queries (cont.)
• Use tuples of values in comparisons

– Place them within parentheses

More SQL 13CSIE30600/CSIEB0290 Database Systems

Correlated Nested Queries
• If a condition in the WHERE-clause of a nested query references an

attribute of a relation declared in the outer query, the two queries are
said to be correlated
– The result of a correlated nested query is different for each tuple (or

combination of tuples) of the relation(s) of the outer query

• Query 12: Retrieve the name of each employee who has a dependent
with the same first name as the employee.

Q12: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN

(SELECT ESSN
FROM DEPENDENT
WHEREESSN=E.SSN AND
E.FNAME=DEPENDENT_NAME);

More SQL 14CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 8

Correlated Nested Queries (cont.)

• In Q12, the nested query has a different result in the
outer query

• A query written with nested SELECT... FROM...
WHERE... blocks and using the = or IN comparison
operators can always be expressed as a single block
query. For example, Q12 may be written as in Q12A

Q12A: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE E, DEPENDENT D
WHERE E.SSN=D.ESSN AND

E.FNAME=D.DEPENDENT_NAME;

More SQL 15CSIE30600/CSIEB0290 Database Systems

Correlated Subqueries: Scoping

• An attribute in a subquery belongs to one
of the tuple variables corresponding to the
closest relation
– In general, an attribute in a subquery belongs

to one of the tuple variables in that
subquery’s FROM clause

– If not, look at the immediately surrounding
subquery, then to the one surrounding that,
and so on.

More SQL 16CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 9

Nested Queries
• The FROM clause takes a relation, but results

from SQL queries are themselves relations, so
we can use them in the FROM clause, too!
SELECT (N.CRating+1) AS CIncrRating
FROM (SELECT * FROM Customer

WHERE CRating = 0) AS N
WHERE N.CBalance = 0;

• This can often be a more elegant way to write a
query, but will be slower. Why?

More SQL 17CSIE30600/CSIEB0290 Database Systems

The EXISTS and UNIQUE
Functions in SQL
• EXISTS function

– Check whether the result of a correlated nested
query is empty or not

• EXISTS and NOT EXISTS
– Typically used in conjunction with a correlated

nested query
• SQL function UNIQUE(Q)

– Returns TRUE if there are no duplicate tuples in the
result of query Q

More SQL 18CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 10

The EXISTS Function
• EXISTS is used to check whether the result of a

correlated nested query is empty (contains no
tuples) or not

• We can formulate Query 12 in an alternative
form that uses EXISTS as Q12B (next slide)

More SQL 19CSIE30600/CSIEB0290 Database Systems

The EXISTS Function(cont.)

• Query 12: Retrieve the name of each employee who
has a dependent with the same first name as the
employee.

Q12B: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE EXISTS

(SELECT *
FROM DEPENDENT
WHERE SSN=ESSN AND

FNAME=DEPENDENT_NAME);

More SQL 20CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 11

NOT EXISTS

• Query 6: Retrieve the names of employees who
have no dependents.

Q6: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS

(SELECT *
FROM DEPENDENT
WHERE SSN=ESSN);

• In Q6, the correlated nested query retrieves all
DEPENDENT tuples related to an EMPLOYEE tuple.
If none exist, the EMPLOYEE tuple is selected
– EXISTS is necessary for the expressive power of SQL

More SQL 21CSIE30600/CSIEB0290 Database Systems

Explicit Sets

• It is also possible to use an explicit (enumerated)
set of values in the WHERE-clause rather than a
nested query

• Query 13: Retrieve the social security numbers
of all employees who work on project number 1,
2, or 3.
Q13: SELECT DISTINCT ESSN

FROM WORKS_ON
WHERE PNO IN (1, 2, 3);

More SQL 22CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 12

Set Comparison
• Find all branches that have greater assets than

some branch located in Brooklyn.

select branch_name
from branch
where assets > SOME

(select assets
from branch
where branch_city = ‘Brooklyn’);

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and

S.branch_city = ‘Brooklyn’;

 Same query using > SOME (ANY) clause.

More SQL 23CSIE30600/CSIEB0290 Database Systems

Definition of SOME Clause
• F <comp> SOME r t r such that (F <comp> t) where

<comp> can be:
0
5
6

(5 < some) = true

0
5

0

) = false

5

0
5(5 some) = true (since 0 5)

(read: 5 < some tuple in
the relation)

(5 < some

) = true(5 = some

(= some) in
However, (some) not in

More SQL 24CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 13

Query with ALL

• Find the names of all branches that have greater
assets than all branches located in Brooklyn.

select branch_name
from branch
where assets > ALL

(select assets
from branch
where branch_city = ‘Brooklyn’);

More SQL 25CSIE30600/CSIEB0290 Database Systems

Definition of ALL Clause
• F <comp> ALL r t r (F <comp> t)

0
5
6

(5 < all) = false

6
10

4

) = true

5

4
6(5 all) = true (since 5 4 and 5 6)

(5 < all

) = false(5 = all

(all) not in
However, (= all) in

More SQL 26CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 14

Joined Relations
• Can specify a "joined relation" in the FROM-clause

– Looks like any other relation but is the result of a
join

– Allows the user to specify different types of joins
(regular "theta" JOIN, NATURAL JOIN, LEFT OUTER
JOIN, RIGHT OUTER JOIN, CROSS JOIN, etc)

More SQL 27CSIE30600/CSIEB0290 Database Systems

Inner JOIN
• Default type of join in a joined table
• Tuple is included in the result only if a

matching tuple exists in the other relation
• If we want to keep those tuples that do

not match the condition, we need to use
outer join.

More SQL 28CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 15

Why Outer JOIN?
• Consider the following tables and query

Student(sid, name, address)
Spouse(sid, name), sid references Student.sid
List the names of ALL students and their spouses, if they
have one.
SELECT Student.name, Spouse.name
FROM Student, Spouse
WHERE Student.sid=Spouse.sid

• Does this SQL query do the job?

 No! Students without spouses will *not* be
listed.

More SQL 29CSIE30600/CSIEB0290 Database Systems

Outer JOIN

• An extension of the join operation that avoids
loss of information.

• Computes the join and then adds tuples from
one relation that do not match tuples in the
other relation to the result of the join.

• Uses null values to pad dangling tuples

More SQL 30CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 16

LEFT OUTER JOIN
• INNER JOIN on C.SalespersonNum = S.Number gives us:

“smith” with “johnson” and “jones” with “johnson”
• LEFT OUTER JOIN on C.SalespersonNum = S.Number gives us:

INNER JOIN plus “wei” with “<null>” salesperson

– Lists all customers, and their salesperson if any

More SQL 31CSIE30600/CSIEB0290 Database Systems

LEFT OUTER JOIN: Example
• Examples:

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE E S
WHERE E.SUPERSSN=S.SSN

• Compare the result with the following query:
Q8a: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME

FROM (EMPLOYEE E LEFT OUTER JOIN
EMPLOYEE S ON E.SUPERSSN=S.SSN)

More SQL 32CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 17

RIGHT OUTER JOIN
• INNER JOIN on C.SalespersonNum = S.Number gives us:

“smith” with “johnson” and “jones” with “johnson”

• RIGHT OUTER JOIN on C.SalespersonNum = S.Number gives:

INNER JOIN plus “<null>” customer with “miller”
– Lists customers that have a salesperson, and salespersons that do not

have a customer

More SQL 33CSIE30600/CSIEB0290 Database Systems

FULL OUTER JOIN

• FULL OUTER JOIN = LEFT OUTER JOIN ∪ RIGHT OUTER JOIN
FULL OUTER JOIN on C.SalespersonNum = S.Number gives us:
INNER JOIN

plus “wei” with “<null>” salesperson
plus “<null>” customer with “miller”

– Lists all customer-salesperson pairs, and customers that do not
have a salesperson, and salespersons that do not have a customer

• NOTE: You could also have NATURAL <left, right, full> OUTER
JOIN

More SQL 34CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 18

CROSS JOIN

• A “CROSS JOIN” is simply a cross product
SELECT *
FROM Customer CROSS JOIN Salesperson;

• How would you write this query without the
“CROSS JOIN” operator?
SELECT *
FROM Customer, Salesperson;

More SQL 35CSIE30600/CSIEB0290 Database Systems

More JOIN Examples
• Examples:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND DNUMBER=DNO

• could be written as:
Q1: SELECT FNAME, LNAME, ADDRESS

FROM (EMPLOYEE JOIN DEPARTMENT
ON DNUMBER=DNO)

WHERE DNAME='Research’

• or as:
Q1: SELECT FNAME, LNAME, ADDRESS

FROM (EMPLOYEE NATURAL JOIN DEPARTMENT
AS DEPT(DNAME, DNO, MSSN, MSDATE)

WHERE DNAME='Research’

More SQL 36CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 19

Multiple JOINs
• Another Example: Q2 could be written as follows; this

illustrates multiple joins in the joined tables

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE,

ADDRESS
FROM ((PROJECT JOIN DEPARTMENT

ON DNUM=DNUMBER)

JOIN EMPLOYEE ON

MGRSSN=SSN)
WHERE PLOCATION='Stafford’

More SQL 37CSIE30600/CSIEB0290 Database Systems

Aggregate Functions
• Used to summarize information from multiple

tuples into a single-tuple summary
• Include COUNT, SUM, MAX, MIN, and AVG
• Query: Find the maximum salary, the minimum

salary, and the average salary among all employees.
Q: SELECT MAX(SALARY), MIN(SALARY),

AVG(SALARY)
FROM EMPLOYEE;

• Some SQL implementations may not allow more
than one function in the SELECT-clause

More SQL 38CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 20

Aggregate Functions(contd.)

More SQL 39CSIE30600/CSIEB0290 Database Systems

Challenge Questions
• What is the implication of using DISTINCT when

computing the SUM or AVG of an attribute?
SUM(DISTINCT Balance) or AVG(DISTINCT
Balance)

• What is the implication of using DISTINCT when
computing the MIN or MAX of an attribute?
MIN(DISTINCT Balance) or MAX(DISTINCT
Balance)

More SQL 40CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 21

Aggregates and NULLs
• General rule: aggregates ignore NULL

values
– Avg(1,2,3,NULL,4) = Avg(1,2,3,4)
– Count(1,2,3,NULL,4) = Count(1,2,3,4)

• But…
– Count(*) returns the total number of tuples,

regardless whether they contain NULLs or not

More SQL 41CSIE30600/CSIEB0290 Database Systems

Grouping
• In many cases, we want to apply the aggregate

functions to subgroups of tuples in a relation

• Each subgroup of tuples consists of the set of tuples
that have the same value for the grouping attribute(s)

• The function is applied to each subgroup
independently

• SQL has a GROUP BY-clause for specifying the grouping
attributes, which must also appear in the SELECT-
clause

More SQL 42CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 22

Grouping (cont.)
• Query: For each department, retrieve the department

number, the number of employees in the department,
and their average salary.
Q: SELECT DNO, COUNT(*), AVG(SALARY)

FROM EMPLOYEE
GROUP BY DNO;

– In here, the EMPLOYEE tuples are divided into groups-
• Each group having the same value for the grouping attribute DNO

– The COUNT and AVG functions are applied to each such
group of tuples separately

– The SELECT-clause includes only the grouping attribute and
the functions to be applied on each group of tuples

– A join condition can be used in conjunction with grouping

More SQL 43CSIE30600/CSIEB0290 Database Systems

Grouping (cont.)

• Query: For each project, retrieve the project number,
project name, and the number of employees who work
on that project.

Q: SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME;

• In this case, the grouping and functions are applied
after the joining of the two relations

More SQL 44CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 23

The HAVING-Clause

• Sometimes we want to retrieve the values of
these functions for only those groups that
satisfy certain conditions

• The HAVING-clause is used for specifying a
selection condition on groups (rather than on
individual tuples)

More SQL 45CSIE30600/CSIEB0290 Database Systems

The HAVING-Clause (contd.)
• Query: For each project on which more than two

employees work, retrieve the project number, project
name, and the number of employees who work on
that project.

Q: SELECT PNUMBER, PNAME, COUNT(*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT(*) > 2;

More SQL 46CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 24

The HAVING-Clause (contd.)

Dnumber IN

More SQL 47CSIE30600/CSIEB0290 Database Systems

GROUP BY and NULLS (1)
• Aggregates ignore NULLs
• On the other hand, NULL is treated as an ordinary

value in a grouped attribute
• If there are NULLs in the Salesperson column (below),

a group will be returned for the NULL value (next slide)

More SQL 48CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 25

GROUP BY and NULLS (2)
SELECT SalespersonNum, Count(*) AS T
FROM Customer
GROUP BY SalespersonNum;

More SQL 49CSIE30600/CSIEB0290 Database Systems

GROUP BY, HAVING: Note
• The only attributes that can appear in a “grouped”

query answer are aggregate operators (that are
applied to the group) or the grouping attribute(s).

SELECT SalespersonNum, COUNT(*)
FROM Customer
GROUP BY SalespersonNum;

SELECT SalespersonNum
FROM Customer
GROUP BY SalespersonNum
HAVING Count(*) > 10;

SELECT C.Name,
SalespersonNum,
COUNT(*)

FROM Customer C
GROUP BY

SalespersonNum;

Incorrect! Why?

More SQL 50CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 26

Summary of SQL Queries
• A query in SQL can consist of up to six clauses,

but only the first two, SELECT and FROM, are
mandatory. The clauses are specified in the
following order:

SELECT <attribute and function list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>];

More SQL 51CSIE30600/CSIEB0290 Database Systems

Summary of SQL Queries (cont.)
• The SELECT-clause lists the attributes or functions to

be retrieved
• The FROM-clause specifies all relations (or aliases)

needed in the query but not those needed in nested
queries

• The WHERE-clause specifies the conditions for
selection and join of tuples from the relations specified
in the FROM-clause

• GROUP BY specifies grouping attributes

More SQL 52CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 27

Summary of SQL Queries (cont.)
• HAVING specifies a condition for selection of

groups
• ORDER BY specifies an order for displaying the

result of a query
• A query is evaluated by first applying the

WHERE-clause, then GROUP BY and HAVING,
and finally the SELECT-clause

More SQL 53CSIE30600/CSIEB0290 Database Systems

Specifying Complex Update
• Example: Give all employees in the 'Research' department a

10% raise in salary.
U6: UPDATE EMPLOYEE

SET SALARY = SALARY *1.1
WHERE DNO IN

(SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research');

• In this request, the modified SALARY value depends on the
original SALARY value in each tuple
– The reference to the SALARY attribute on the right of = refers to

the old SALARY value before modification
– The reference to the SALARY attribute on the left of = refers to the

new SALARY value after modification

More SQL 54CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 28

CASE Statement for Conditional
Updates
• Increase all accounts with balances over $10,000

by 6%, all other accounts receive 5%.
update account
set balance = case

when balance<=10000 then balance *1.05
when balance>=20000 then balance *1.07
else balance * 1.06

end;

More SQL 55CSIE30600/CSIEB0290 Database Systems

Derived Relations
• SQL allows a subquery expression to be used in from clause
• Find the average account balance of those branches where the

average account balance is greater than $1200.
select branch_name, avg_balance
from (select branch_name, avg (balance)

from account
group by branch_name)
as branch_avg (branch_name, avg_balance)

where avg_balance > 1200;
Note that we do not need to use the having clause, since we
compute the temporary (view) relation branch_avg in the from
clause, and the attributes of branch_avg can be used directly in
the where clause.

More SQL 56CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 29

WITH Clause
• The with clause provides a way of defining a

temporary view whose definition is available only to
the query in which the with clause occurs.

• Find all accounts with the maximum balance
with max_balance (value) as

select max (balance)
from account

select account_number
from account, max_balance
where account.balance = max_balance.value;

More SQL 57CSIE30600/CSIEB0290 Database Systems

Complex Query using WITH Clause
• Find all branches where the total account deposit is

greater than the average of the total account deposits
at all branches.

with branch_total (branch_name, value) as
select branch_name, sum (balance)
from account
group by branch_name

with branch_total_avg (value) as
select avg (value)
from branch_total

select branch_name
from branch_total, branch_total_avg
where branch_total.value >= branch_total_avg.value;

More SQL 58CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 30

Specifying Constraints as
Assertions and Actions as Triggers
• CREATE ASSERTION

– Specify additional types of constraints outside scope
of built-in relational model constraints

• CREATE TRIGGER

– Specify automatic actions that database system will
perform when certain events and conditions occur

More SQL 59CSIE30600/CSIEB0290 Database Systems

Assertions in SQL
• CREATE ASSERTION

– Specify a query that selects any tuples that violate
the desired condition

– Use only in cases where it is not possible to use
CHECK on attributes and domains

More SQL 60CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 31

Triggers in SQL
• CREATE TRIGGER statement

– Used to monitor the database

• Typical trigger has three components:
– Event(s)
– Condition
– Action

More SQL 61CSIE30600/CSIEB0290 Database Systems

Views (Virtual Tables)
• In some cases, it is not desirable for all users to see the

entire logical model (ie, all the actual relations.)
• Consider a person who needs to know a customer’s

loan number but has no need to see the loan amount.
This person should see a relation described, in SQL, by
(select customer_name, loan_number

from borrower, loan
where borrower.loan_number = loan.loan_number)

• A view provides a mechanism to hide certain data
from the view of certain users.

• Any relation that is not of the conceptual model but is
made visible to a user as a “virtual relation” is called a
view.

More SQL 62CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 32

View Definition
• A view is defined using the CREATE VIEW statement

which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression.
The view name is represented by v.

• Once a view is defined, the view name can be used to
refer to the virtual relation that the view generates.

• View definition is not the same as creating a new
relation by evaluating the query expression. Rather, a
view definition causes the saving of an expression; the
expression is substituted into queries using the view.

More SQL 63CSIE30600/CSIEB0290 Database Systems

CREATE VIEW
• View always up-to-date

– Responsibility of the DBMS and not the user
• DROP VIEW command

– Dispose of a view

More SQL 64CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 33

More View Examples
• A view consisting of branches and their customers

create view all_customer as
(select branch_name, customer_name
from depositor, account
where depositor.account_number =

account.account_number)
union
(select branch_name, customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number);

select customer_name
from all_customer
where branch_name = ‘Perryridge’;

• Find all customers of the Perryridge branch

More SQL 65CSIE30600/CSIEB0290 Database Systems

Views Defined Using Other
Views
• One view may be used in the expression defining

another view
• A view v1 is said to depend directly on a view v2 if v2 is

used in the expression defining v1

• A view v1 is said to depend on view v2 if either v1

depends directly to v2 or there is a path of
dependencies from v1 to v2

• A view v is said to be recursive if it depends on itself.

More SQL 66CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 34

View Expansion
• A way to define the meaning of views defined in terms

of other views.
• Let view v1 be defined by an expression e1 that may

itself contain uses of view relations.
• View expansion of an expression repeats the following

replacement step:
repeat
Find any view vi in e1
Replace the view vi by the expression defining vi

until no more views are present in e1

• As long as the view definitions are not recursive, this
loop will terminate

More SQL 67CSIE30600/CSIEB0290 Database Systems

View Implementation, View
Update, and Inline Views
• Complex problem of efficiently implementing a

view for querying
• Query modification approach

– Modify view query into a query on underlying base
tables

– Disadvantage: inefficient for views defined via
complex queries that are time-consuming to
execute

More SQL 68CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 35

View Implementation
• View materialization approach

– Physically create a temporary view table when the
view is first queried

– Keep that table on the assumption that other
queries on the view will follow

– Requires efficient strategy for automatically
updating the view table when the base tables are
updated

More SQL 69CSIE30600/CSIEB0290 Database Systems

View Implementation (cont’d.)
• Incremental update strategies

– DBMS determines what new tuples must be
inserted, deleted, or modified in a materialized
view table

More SQL 70CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 36

View Update and Inline Views
• Update on a view defined on a single table

without any aggregate functions
– Can be mapped to an update on underlying base

table

• View involving joins
– Often not possible for DBMS to determine which of

the updates is intended

More SQL 71CSIE30600/CSIEB0290 Database Systems

Schema Change Statements
• Schema evolution commands

– Can be done while the database is operational
– Does not require recompilation of the database

schema

More SQL 72CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 37

The DROP Command
• DROP command

– Used to drop named schema elements, such
as tables, domains, or constraint

• Drop behavior options:
–CASCADE and RESTRICT

• Example:
–DROP SCHEMA COMPANY CASCADE;

More SQL 73CSIE30600/CSIEB0290 Database Systems

The ALTER Command
• Alter table actions include:

– Adding or dropping a column (attribute)
– Changing a column definition
– Adding or dropping table constraints

• Example:
– ALTER TABLE COMPANY.EMPLOYEE ADD
COLUMN Job VARCHAR(12);

• To drop a column
– Choose either CASCADE or RESTRICT

More SQL 74CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 38

The ALTER Command (cont’d.)
• Change constraints specified on a table

– Add or drop a named constraint

More SQL 75CSIE30600/CSIEB0290 Database Systems

SQL Benefits
• Declarative languages: program is a prescription for

what data is to be retrieved, rather than a procedure
describing how to retrieve the data

• When we write an SQL select query, we do not make
any assumptions about the order of evaluation

• Can be automatically optimized!

– Decision about order and evaluation plan is left to
the optimizer

– Optimizer has the resources to make sophisticated
decisions

More SQL 76CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 39

SQL Limitations
• Not flexible enough for some applications

– Some queries cannot be expressed in SQL
– Non-declarative actions can’t be done from SQL, e.g.,

printing a report, interacting with user/GUI
– SQL queries may be just one small component of

complex applications
• Hard to program for performance!
• Trade-off: automatic optimization of queries expressed

in powerful languages is hard

More SQL 77CSIE30600/CSIEB0290 Database Systems

Limitations: Missing Aggregate
Functions
• Set functions: sum, avg, max, min and count
• What about median

– Given a sequence of numbers a1,…, an

– Median is the value ak s.t. k = FLOOR((n+1)/2)
• Can’t write

– SELECT median(amount) FROM Account

More SQL 78CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

Note 40

Limitations: Transitive Closure
• Employee manages Employee
• Find all employees managed by Mary

Manager Emp
Null Mary
Mary John
Mary Jane
John Mark
Mark Susan

• SQL:1999 added a WITH RECURSIVE construct to
compute transitive closure. (not yet supported by
many DBMS)

More SQL 79CSIE30600/CSIEB0290 Database Systems

Assignment 4
• Textbook exercises:

– Exercises: 4.14, 4.16, 4.17, 4.18, 4.20
• Due date: Dec 15, 2022

More SQL 80CSIE30600/CSIEB0290 Database Systems

