
CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 1

CSIE30600/CSIEB0290
Database Systems

Lecture 10: Relational
Database Design I

Outline
• Informal Design Guidelines for Relational

Databases
– Semantics of the Relation Attributes
– Redundant Information in Tuples and Update

Anomalies
– Null Values in Tuples
– Spurious Tuples

• Functional Dependencies (FDs)
– Definition of FD
– Inference Rules for FDs
– Equivalence of Sets of FDs
– Minimal Sets of FDs

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 2

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 2

Outline
• Normal Forms Based on Primary Keys

– Normalization of Relations
– Practical Use of Normal Forms
– Definitions of Keys and Attributes Participating in

Keys
– First Normal Form
– Second Normal Form
– Third Normal Form

• General Normal Form Definitions (For Multiple
Keys)

• BCNF (Boyce-Codd Normal Form)
CSIE30600/CSIEB0290 Database Systems Relational DB Design I 3

Relational Database Design
• Relational database design requires that we find a

“good” collection of relation schemas
• A bad design may lead to

– Repetition of Information
– Inability to represent certain information

• Design Goals:

– Avoid redundant data
– Ensure that relationships among attributes are

represented
– Facilitate the checking of updates for violation of

database integrity constraints
CSIE30600/CSIEB0290 Database Systems Relational DB Design I 4

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 3

Informal Design Guidelines (1)
• What is relational database design?

– The grouping of attributes to form "good" relation
schemas

• Two levels of relation schemas
– The logical "user view" level
– The storage "base relation" level

• Design is concerned mainly with base relations
• What are the criteria for "good" base

relations?

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 5

Informal Design Guidelines (2)
• We first discuss informal guidelines for good

relational design
• Then we discuss formal concepts of functional

dependencies and normal forms
– 1NF (First Normal Form)
– 2NF (Second Normal Form)
– 3NF (Third Normal Form)
– BCNF (Boyce-Codd Normal Form)

• Additional types of dependencies, further normal
forms, relational design algorithms by synthesis
are discussed in next lecture.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 6

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 4

Measures of Quality

• Making sure attribute semantics are clear
• Reducing redundant information in tuples
• Reducing NULL values in tuples
• Disallowing possibility of generating

spurious tuples

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 7

Guideline 1
• Design relation schema so that it is easy to explain its

meaning
• Each tuple in a relation should represent one entity or

relationship instance.
• Do not combine attributes from multiple entity types and

relationship types into a single relation
• Only foreign keys should be used to refer to other entities
• Entity and relationship attributes should be kept apart as

much as possible.
• Bottom Line: Design a schema that can be explained

easily relation by relation. The semantics of attributes
should be easy to interpret.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 8

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 5

Guideline 1 (cont’d.)
• Example of violating Guideline 1: Figure 14.3

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 9

Example States for
EMP_DEPT and EMP_PROJ

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 10

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 6

Design Choices: Small vs.
Large Schemas
• Which design do you like better? Why?

• An employee can be assigned to at most one
project, many employees participate in a project

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 11

What’s wrong?
EMP(ENAME, SSN, ADDRESS, PNUM, PNAME,

PMGRSSN)
• The description of the project (the name and

the manager of the project) is repeated for
every employee that works in that department.

• Redundancy!
• The project is described redundantly.
• This leads to update anomalies.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 12

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 7

Redundant Information in Tuples
and Update Anomalies
• If information is stored redundantly

– Wastes storage
– Causes problems with update anomalies

• Types of update anomalies:
– Insertion anomalies
– Deletion anomalies
– Modification anomalies

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 13

Example of an Update Anomaly
• Consider the relation:

– EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

• Update Anomaly:
– Changing the name of project number P1 from

“Billing” to “Customer-Accounting” may cause this
update to be made for all 100 employees working
on project P1.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 14

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 8

Example of an Insert Anomaly
• Consider the relation:

– EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

• Insert Anomaly:
– Cannot insert a project unless an employee is

assigned to it.

• Conversely
– Cannot insert an employee unless an he/she is

assigned to a project.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 15

Example of an Delete Anomaly
• Consider the relation:

– EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

• Delete Anomaly:
– When a project is deleted, it will result in deleting

all the employees who work on that project.
– Alternately, if an employee is the sole employee on

a project, deleting that employee would result in
deleting the corresponding project.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 16

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 9

Guideline 2
• Design base relation schemas so that no

update anomalies are present in the
relations

• If any anomalies are present:
– Note them clearly
– Make sure that the programs that update

the database will operate correctly

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 17

NULL Values in Tuples
• Some designers may group many attributes

together into a “fat” relation
– Can end up with many NULLs

• Problems with NULLs
– Wasted storage space
– Problems understanding meaning

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 18

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 10

Guideline 3
• Relations should be designed such that their

tuples will have as few NULL values as possible
– Attributes that are NULL frequently could be placed in

separate relations
• If NULLs are unavoidable:

– Make sure that they apply in exceptional cases only,
not to a majority of tuples

• Reasons for NULL s:
– Attribute not applicable or invalid
– Attribute value unknown (may exist)
– Value known to exist, but unavailable

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 19

Spurious(偽、假) Tuples
• Bad schema designs may result in erroneous results

for certain JOIN operations
• Figure 14.5(a)

– Relation schemas EMP_LOCS and EMP_PROJ1
• NATURAL JOIN

– Result produces many more tuples than the
original set of tuples in EMP_PROJ

– Called spurious tuples
– Represent spurious information that is not valid

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 20

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 11

Examples of Surious Tuples
• The information in EMP_PROJ

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 21

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 22

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 12

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 23

Guideline 4
• Design relation schemas to be joined with

equality conditions on attributes that are
appropriately related
– Guarantees that no spurious tuples are generated

• The "lossless join" property is used to
guarantee meaningful results for join
operations (more about this later)

• Avoid relations that contain matching
attributes that are NOT (foreign key, primary
key) combinations

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 24

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 13

Summary of Design Guidelines

• Anomalies cause redundant work to be done
• Waste of storage space due to NULLs
• Difficulty of performing operations and joins

due to NULL values
• Generation of invalid and spurious data during

joins

• A good design should avoid all problems above.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 25

Functional Dependencies (FDs)

• Formal tool for analysis of relational schemas
• Enables us to detect and describe some of the

above-mentioned problems in precise terms
• Theory of functional dependency

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 26

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 14

FDs are Properties of Data
• There are usually a variety of constraints (rules) on

the data in the real world.
• For example, some of the constraints that are

expected to hold in a university database are:
– Students and instructors are uniquely identified by

their ID.
– Each student and instructor has only one name.
– Each instructor and student is (primarily)

associated with only one department.
– Each department has only one value for its budget,

and only one associated building.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 27

FD is Generalization of Key
• An instance of a relation that satisfies all such real-

world constraints is called a legal instance of the
relation;

• A legal instance of a database is one where all the
relation instances are legal instances.

• FDs are constraints on the set of legal relations.
• Require that the value for a certain set of attributes

determines uniquely the value for another set of
attributes.

• A functional dependency is a generalization of the
notion of a key.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 28

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 15

Definition of FDs
• Constraint between two sets of attributes from

the database
– A set of attributes X functionally determines a set

of attributes Y if the value of X determines a
unique value for Y

• Functional dependencies (FDs)
– Are used to specify formal measures of the

"goodness" of relational designs
– Are used to define normal forms for relations
– Are constraints that are derived from the meaning

and interrelationships of the data attributes

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 29

Definition of FDs (2)
• X → Y holds if whenever two tuples have the same

value for X, they must have the same value for Y

– For any two tuples t1 and t2 in any relation
instance r(R): t1[X]=t2[X]  t1[Y]=t2[Y]

• X → Y in R specifies a constraint on all relation
instances r(R)

• WriƩen as X → Y; can be displayed graphically on a
relation schema. (denoted by arrow).

• FDs are derived from the real-world constraints on
the attributes

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 30

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 16

Examples of FD Constraints (1)

• Social security number determines employee name
– SSN → ENAME

• Project number determines project name and
location
– PNUMBER → {PNAME, PLOCATION}

• Employee SSN and project number determines the
hours per week that the employee works on the
project
– {SSN, PNUMBER} → HOURS

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 31

Examples of FD Constraints (2)
• Examples of functional dependencies:

employee-number → employee-name
course-number → course-title
movieTitle, movieYear → length, filmType, studioName

• Examples that are NOT functional dependencies
employee-name → employee-number ×
two distinct employees can have the same name
course-number → book ×
a course may use multiple books
course-number → car-color ×
????

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 32

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 17

What is functional in a FD?
• A1,…,An → B
• A FD is a function that takes a list of values (A1,…,An)

and produces a unique value B or no value at all (this
value can be the NULL value)

• We are looking for functional relationships (that must
occur in a relation) among attribute values

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 33

More on FD Constraints
• An FD is a property of the attributes in the

schema R
• The constraint must hold on every relation

instance r(R)
• If K is a key of R, then K functionally

determines all attributes in R (why?)
– (since we never have two distinct tuples

with t1[K]=t2[K])

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 34

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 18

Keys and FDs
• K is a superkey for relation schema R if and only if K  R
• K is a candidate key for R if and only if

– K  R, and
– There is no   K such that  R

• Functional dependencies allow us to express constraints that
cannot be expressed using superkeys. Consider the schema:

emp_dep (ID, name, salary, dept_name, building, budget).
We expect these functional dependencies to hold:

dept_name building
ID  building

but would not expect the following to hold:
dept_name salary

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 35

Use of FDs
• We use functional dependencies to:

– To test relations to see if they are legal under a
given set of FDs.

• If a relation r is legal under a set F of FDs, we say that r
satisfies F.

– To specify constraints on the set of legal relations
• We say that F holds on R if all legal relations on R satisfy

the set of functional dependencies F.
• Note: A specific instance of a relation schema may satisfy a

functional dependency even if the functional dependency
does not hold on all legal instances.
– For example, a specific instance of instructor may,

by chance, satisfy the FD name  ID.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 36

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 19

Inference Rules for FDs (1)
• Given a set of FDs F, we can infer additional FDs

that hold whenever the FDs in F hold
• Armstrong's inference rules:

– IR1. (Reflexive) If Y subset-of X, then X → Y
– IR2. (Augmentation) If X → Y, then XZ → YZ

• (Notation: XZ stands for X U Z)
– IR3. (Transitive) If X → Y and Y → Z, then X → Z

• IR1, IR2, IR3 form a sound and complete set of
inference rules
– These rules are correct
– All other rules that hold can be deduced from these

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 37

Inference Rules for FDs (2)
• Some additional inference rules that are useful:

– Decomposition: If X → YZ, then X → Y and X → Z
– Union: If X → Y and X → Z, then X → YZ
– Psuedotransitivity: If X → Y and WY → Z, then WX

→ Z
• The three inference rules above, as well as any

other inference rules, can be deduced from IR1,
IR2, and IR3. (completeness property)

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 38

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 20

Example: Using Inference Rules
• Prove that if X→Y and Z→W, then XZ→YW
1. X→Y (given)
2. XZ→YZ (1 and AugmentaƟon)
3. Z→W (given)
4. YZ→YW (3 and AugmentaƟon)
5. XZ→YW (2, 4, and TransiƟvity)

• Try to prove the three additional rules
introduced earlier.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 39

Closure
• Closure of a set F of FDs is the set F+ of all FDs

that can be inferred from F
• Closure of a set of attributes X with respect to F is

the set X+ of all attributes that are functionally
determined by X

• X+ can be calculated by repeatedly applying IR1,
IR2, IR3 using the FDs in F

• If we know how to compute the closure of any set
of attributes, we can test if any given FD
A1,…,An→B follows from a set of FDs F
– Compute {A1,…,An}+
– If B ∈ {A1,…,An}+ , then A1,…,An → B

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 40

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 21

Equivalence of Sets of FDs
• Two sets of FDs F and G are equivalent if:

– Every FD in F can be inferred from G, and
– Every FD in G can be inferred from F
– Hence, F and G are equivalent if F+ = G+

• Definition (Covers):
– F covers G if every FD in G can be inferred from F

• (i.e., if G+ subset-of F+)

• F and G are equivalent if F covers G and G covers F
• There is an algorithm for checking equivalence of sets

of FDs

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 41

Minimal Sets of FDs (1)
• A set of FDs is minimal if it satisfies the following

conditions:
1. Every dependency in F has a single attribute for

its RHS.
2. We cannot remove any dependency from F and

have a set of dependencies that is equivalent to F.
3. We cannot replace any dependency X → A in F

with a dependency Y → A, where Y is a proper-
subset-of X (Y subset-of X) and still have a set of
dependencies that is equivalent to F.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 42

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 22

Minimal Sets of FDs (2)
• Every set of FDs has an equivalent minimal set
• There can be several equivalent minimal sets
• There is no simple algorithm for computing a

minimal set of FDs that is equivalent to a set F
of FDs

• To synthesize a set of relations, we assume
that we start with a set of dependencies that is
a minimal set

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 43

Normal Forms Based on
Primary Keys
• Normalization of relations
• Approaches for relational schema design

– Perform a conceptual schema design using a
conceptual model then map conceptual design
into a set of relations

– Design relations based on external knowledge
derived from existing implementation of files or
forms or reports

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 44

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 23

Normalization of Relations (1)
• Normalization:

– Takes a schema through a series of tests
– Certify whether it satisfies a certain normal

form
– Decompose unsatisfactory “bad” relations

into smaller “good” relations
• Normal form:

– Conditions that must be satisfied for a
relation schema to be in a particular “good”
form

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 45

Normalization of Relations (2)
• 2NF, 3NF, BCNF

– based on keys and FDs of a relation schema

• 4NF
– based on keys, multi-valued dependencies(MVDs)

• 5NF
– based on keys, join dependencies(JDs)

• Additional properties may be needed to
ensure a good relational design

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 46

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 24

Desirable Properties of
Relational Schemas
• Nonadditive join property (lossless join)

• Extremely critical

• Dependency preservation property
• Desirable but sometimes sacrificed for other

factors

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 47

Practical Use of Normal Forms

• Normalization is carried out in practice so that the resulting
designs are of high quality and meet the desirable
properties

• The practical utility of these normal forms becomes
questionable when the constraints on which they are based
are hard to understand or to detect

• The database designers need not normalize to the highest
possible normal form
– (usually up to 3NF, BCNF. 4NF and further are rarely used)

• Denormalization:
– The process of storing the join of higher normal form relations as

a base relation—which is in a lower normal form

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 48

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 25

Problems with Decompositions
• There are three potential problems to consider:

– Some queries become more expensive.
• e.g., In which project does John work? (EMP2 JOIN X)

– Given instances of the decomposed relations, we
may not be able to reconstruct the corresponding
instance of the original relation!

– Checking some dependencies may require joining
the instances of the decomposed relations.

• Tradeoff: Must consider these issues vs.
redundancy.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 49

Keys and Attributes (1)
• A superkey of a relation schema R = {A1,

A2,, An} is a set of attributes S  R with the
property that no two tuples t1 and t2 in any
legal relation state r of R will have t1[S] = t2[S]

• A key K is a superkey with the additional
property that removal of any attribute from K
will cause K not to be a superkey any more.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 50

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 26

Keys and Attributes(2)
• If a relation schema has more than one key,

each is called a candidate key.
– One of the candidate keys is arbitrarily designated

to be the primary key, and the others are called
secondary keys.

• A prime attribute must be a member of some
candidate key

• A nonprime attribute is not a prime
attribute—that is, it is not a member of any
candidate key.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 51

First Normal Form
• Disallows

– composite attributes
– multivalued attributes
– nested relations; attributes whose values for an

individual tuple are non-atomic

• Considered to be part of the definition of the
basic (flat) relational model

• Most RDBMSs allow only those relations to be
defined that are in First Normal Form

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 52

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 27

Normalizing into 1NF

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 53

Normalizing Nested Relations
into 1NF

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 54

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 28

Second Normal Form (1)
• Uses the concepts of FDs, primary key
• Definitions

– Prime attribute: An attribute that is member of any
candidate key K

– Full functional dependency: a FD Y → Z where
removal of any attribute from Y means the FD does
not hold any more

• Examples:
– {SSN, PNUMBER} → HOURS is a full FD since neither

SSN → HOURS nor PNUMBER → HOURS hold
– {SSN, PNUMBER} → ENAME is not a full FD (it is called

a partial dependency) since SSN → ENAME also holds
CSIE30600/CSIEB0290 Database Systems Relational DB Design I 55

Second Normal Form (2)

• A relation schema R is in second normal form
(2NF) if every non-prime attribute A in R is
fully functionally dependent on the primary
key.

• If R is not in 2NF, it can be decomposed into
2NF relations via the process of 2NF
normalization.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 56

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 29

Normalizing into 2NF

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 57

Third Normal Form (1)
• Transitive dependency :

– a FD X → Z that can be derived from two FDs X →
Y and Y → Z

• Examples:
– SSN → DMGRSSN is a transitive FD

• Since SSN → DNUMBER and DNUMBER → DMGRSSN
hold

– SSN → ENAME is non-transitive
• Since there is no set of aƩributes X where SSN → X and

X → ENAME

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 58

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 30

Third Normal Form (2)
• A relation schema R is in third normal form (3NF)

if it is in 2NF and no non-prime attribute A in R is
transitively dependent on the primary key.

• R can be decomposed into 3NF relations via the
process of 3NF normalization

• NOTE:
– In X → Y and Y → Z, with X as the primary key, we

consider this a problem only if Y is not a candidate key.
– When Y is a candidate key, there is no problem with

the transitive dependency .
– E.g., Consider EMP (SSN, Emp#, Salary).

• Here, SSN → Emp# → Salary and Emp# is a candidate key.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 59

Normalizing into 3NF

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 60

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 31

Normalization into 2NF and 3NF

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 61

Normalization into 2NF and 3NF

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 62

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 32

Normal Forms Defined
Informally
• 1st normal form

– All attributes depend on the key

• 2nd normal form
– All attributes depend on the whole key

• 3rd normal form
– All attributes depend on nothing but the key

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 63

General Definition of Second
Normal Form
• The above definitions consider the primary key

only.

• The following more general definitions take
into account relations with multiple candidate
keys.

• A relation schema R is in second normal form
(2NF) if every non-prime attribute A in R is not
partially dependent on any key of R.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 64

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 33

General Definition of Third
Normal Form
• Definition:

– Superkey of relation schema R - a set of attributes
S of R that contains a key of R

– A relation schema R is in third normal form (3NF)
if whenever a FD X → A holds in R, then either:

• (a) X is a superkey of R, or (the main point)
• (b) A is a prime attribute of R (not a problem)

• NOTE: Boyce-Codd normal form disallows
condition (b) above (slide 67)

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 65

Alternative Definition of 3NF
• A relation schema R is in 3NF if every

nonprime attribute of R meets both of
the following conditions:
– It is fully functionally dependent on every

key of R.
– It is nontransitively dependent on every key

of R.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 66

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 34

BCNF (Boyce-Codd Normal Form)
• A relation schema R is in Boyce-Codd Normal Form

(BCNF) if whenever an FD X → A holds in R, then X is
a superkey of R

• Each normal form is strictly stronger than the
previous one

– Every 2NF relation is in 1NF

– Every 3NF relation is in 2NF

– Every BCNF relation is in 3NF

• There exist relations that are in 3NF but not in BCNF

• The goal is to have each relation in BCNF (or 3NF)
CSIE30600/CSIEB0290 Database Systems Relational DB Design I 67

Boyce-Codd Normal Form

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 68

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 35

A relation in 3NF but not in
BCNF

CSIE30600/CSIEB0290 Database Systems

• A student can take
several courses. But
cannot take the same
course twice.

• A course can be taught
by several instructors.

• An instructor teaches
only one course.

Relational DB Design I 69

BCNF by Decomposition(1)

• Two FDs exist in the relation TEACH:
– fd1: { student, course} → instructor

– fd2: instructor → course

• {student, course} is a candidate key for this
relation and that the dependencies shown
follow the pattern in Figure 14.13 (b).
– So this relation is in 3NF but not in BCNF

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 70

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 36

BCNF by Decomposition (2)
• A relation NOT in BCNF should be decomposed

so as to meet this property, while possibly
forgoing the preservation of all functional
dependencies in the decomposed relations.

• Three possible decompositions for relation
TEACH
– {student, instructor} and {student, course}
– {course, instructor } and {course, student}
– {instructor, course } and {instructor, student}

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 71

BCNF by Decomposition (3)
• All three decompositions will lose fd1.

– We have to settle for sacrificing the functional
dependency preservation. But we cannot sacrifice
the non-additivity property after decomposition.

• Only the 3rd decomposition will not generate
spurious tuples after join (and hence has the
non-additive property).

• A test to determine whether a binary
decomposition (decomposition into two
relations) is non-additive (lossless) will be
discussed in the next lecture.

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 72

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 37

Modeling Temporal Data
• Temporal data have an association time interval during which the

data are valid.
• A snapshot is the value of the data at a particular point in time.
• Several proposals to extend ER model by adding valid time to

– attributes, e.g., address of an instructor at different
points in time

– entities, e.g., time duration when a student entity
exists

– relationships, e.g., time during which an instructor was
associated with a student as an advisor.

• But no accepted standard.
• Adding a temporal component results in FDs like

ID  street, city
not holding, because the address varies over time

• A temporal functional dependency X  Y holds on schema R if the
functional dependency X  Y holds on all snapshots for all legal
instances r(R).

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 73

Modeling Temporal Data (Cont.)
• In practice, database designers may add start and end

time attributes to relations
– E.g., course(course_id, course_title) is replaced by

course(course_id, course_title, start, end)
• Constraint: no two tuples can have overlapping

valid times
–Hard to enforce efficiently

• Foreign key references may be to current version of
data, or to data at a point in time.
– E.g., student transcript should refer to course

information at the time the course was taken
CSIE30600/CSIEB0290 Database Systems Relational DB Design I 74

CSIE30600/CSIEB0290 Database Systems Lecture 10: Relational DB Design I

Note 38

Lecture Summary
• Informal Design Guidelines for Relational

Databases
• Functional Dependencies (FDs)

– Definition, Inference Rules, Equivalence of Sets of
FDs, Minimal Sets of FDs

• Normal Forms Based on Primary Keys
• General Normal Form Definitions (For Multiple

Keys)
• BCNF (Boyce-Codd Normal Form)
• Modeling temporal data

CSIE30600/CSIEB0290 Database Systems Relational DB Design I 75

