
CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 1

CSIE30600/CSIEB0290
Database Systems

Lecture 11: Relational
Database Design II

Outline
• Designing a Set of Relations
• Properties of Relational Decompositions
• Algorithms for Schema Design
• Multivalued Dependencies and Fourth Normal

Form
• Join Dependencies and Fifth Normal Form
• Inclusion Dependencies
• Other Dependencies and Normal Forms

CSIE30600/CSIEB0290 Database Systems RDB Design-II 2

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 2

Relational Synthesis
• Designing database using relational synthesis

(Bottom-up Design):
– Assumes that all possible functional dependencies

are known.
– First constructs a minimal set of FDs
– Then applies algorithms that construct a target set

of 3NF or BCNF relations.
– Additional criteria may be needed to ensure the

set of relations in a relational database are
satisfactory.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 3

Design Goals
• Lossless join property (a must)

– Algorithm 15.3 tests for general losslessness.

• Dependency preservation property
– Algorithm 15.5 decomposes a relation into BCNF

components by sacrificing the dependency
preservation.

• Additional normal forms
– 4NF (based on multi-valued dependencies)
– 5NF (based on join dependencies)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 4

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 3

Relational Decompositions (1)
• Universal Relation Schema:

– A relation schema R = {A1, A2, …, An} that includes
all the attributes of the database.

• Universal relation assumption:
– Every attribute name is unique.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 5

Relational Decompositions (2)
• Relational Decomposition:

– The process of decomposing the universal relation
schema R into a set of relation schemas D = {R1,
R2, …, Rm} that will become the relational database
schema by using the functional dependencies.

• Attribute preservation condition:
– Each attribute in R will appear in at least one

relation schema Ri in the decomposition so that no
attributes are “lost”.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 6

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 4

Relational Decompositions (3)
• Another goal of decomposition is to have each

individual relation Ri in the decomposition D
be in BCNF or 3NF.

• Additional properties of decomposition are
needed to prevent from generating spurious
tuples

CSIE30600/CSIEB0290 Database Systems RDB Design-II 7

Dependency Preservation (1)
• Definition: Given a set of dependencies F on R,

the projection of F on Ri, denoted by Ri(F)
where Ri is a subset of R, is the set of
dependencies X  Y in F+ such that the
attributes in X ∪ Y are all contained in Ri.

• Hence, the projection of F on each relation
schema Ri is the set of functional
dependencies in F+(the closure of F) such that
all their left- and right-hand-side attributes are
in Ri.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 8

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 5

Dependency Preservation (2)
• Dependency Preservation Property:

– A decomposition D = {R1, R2, …, Rm} of R is
dependency-preserving with respect to F if the
union of the projections of F on each Ri in D is
equivalent to F; that is

((R1(F)) ∪ . . . ∪ (Rm(F)))+ = F+

• Claim 1:
– It is always possible to find a dependency-

preserving decomposition D with respect to F such
that each relation Ri in D is in 3NF.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 9

Testing for Dependency
Preservation
• To check if a dependency   is preserved

in a decomposition of R into R1, R2, …, Rm we
apply the following test (with attribute closure
done with respect to F)
– result = 

while (changes to result) do
for each Ri in the decomposition

t = (result  Ri)+  Ri
result = result  t

– If result contains all attributes in , then the
functional dependency   is preserved.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 10

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 6

Testing for Dependency
Preservation
• We apply the test on all dependencies in F to

check if a decomposition is dependency
preserving

• This procedure takes polynomial time, instead
of the exponential time required to compute
F+ and (F1  F2 …  Fn)+

CSIE30600/CSIEB0290 Database Systems RDB Design-II 11

Example
• R = (A, B, C)

F = {A  B, B  C }
Key = {A}

• R is not in BCNF
• Decomposition R1 = (A, B), R2 = (B, C)

– R1 and R2 in BCNF
– Dependency preserving
– Lossless-join decomposition (next slide)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 12

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 7

Lossless (Non-additive) Join
• Definition: Lossless join property: a decomposition D

= {R1, R2, …, Rm} of R has the lossless (nonadditive)
join property with respect to the set of dependencies
F on R if, for every relation state r of R that satisfies F,
the following holds, where * is the natural join of all
the relations in D:

* ( R1(r), ..., Rm(r)) = r
• Note: The word loss in lossless refers to loss of

information, not to loss of tuples. In fact, for “loss of
information” a better term is “addition of spurious
information”

CSIE30600/CSIEB0290 Database Systems RDB Design-II 13

Testing Lossless Join (1)
• Algorithm 15.3: Testing for Lossless Join Property

– Input: A universal relation R, a decomposition D =
{R1, R2, …, Rm} of R, and a set F of functional
dependencies.

1. Create an initial matrix S with one row i for each relation Ri in
D, and one column j for each attribute Aj in R.

2. Set S(i, j):=bij for all matrix entries. (* each bij is a distinct
symbol associated with indices (i, j) *).

3. For each row i representing relation schema Ri

{for each column j representing attribute Aj

{if (relation Ri includes attribute Aj) then
set S(i, j):= aj; }; }; (* each aj is a distinct symbol

associated with index (j) *)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 14

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 8

Testing Lossless Join (2)
4. Repeat the following loop until no changes to S

{for each functional dependency X Y in F
{for all rows in S which have the same symbols in the columns corresponding to

attributes in X
{ make the symbols in each column that correspond to an attribute in Y be

the same in all these rows as follows:
If any of the rows has an “a” symbol for the column, set the other rows to

that same “a” symbol in the column.
If no “a” symbol exists for the attribute in any of the rows, choose one of

the “b” symbols that appear in one of the rows for the attribute and set the other
rows to that same “b” symbol in the column ;

};
};

};
5. If a row is made up entirely of “a” symbols, then the decomposition has the

lossless join property; otherwise it does not.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 15

Testing Lossless Join Example (1)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 16

Lossless (nonadditive) join test for n-ary decompositions.
(a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1 and
EMP_LOCS fails test.
(b) A decomposition of EMP_PROJ that has the lossless join property.

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 9

Testing Lossless Join Example (2)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 17

Lossless (nonadditive) join test for n-ary decompositions.
(c) Case 2: Decomposition of EMP_PROJ into EMP, PROJECT, and
WORKS_ON satisfies test.

Testing Lossless Join on Binary D

• Testing binary decompositions for lossless join
property
– Binary decomposition: Decomposition of a

relation R into two relations.
– PROPERTY LJ1 (lossless join test for binary

decompositions): A decomposition D = {R1, R2} of
R has the lossless join property with respect to a
set of functional dependencies F on R if and only if
either

• The FD ((R1 ∩ R2)  (R1 - R2)) is in F+, or
• The FD ((R1 ∩ R2)  (R2 - R1)) is in F+.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 18

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 10

Example
• R = (A, B, C) F = {A  B, B  C}

– Can be decomposed in two different ways
• R1 = (A, B), R2 = (B, C)

– Lossless-join decomposition:
R1  R2 = {B} and B  C (R2 - R1)

– Dependency preserving
• R1 = (A, B), R2 = (A, C)

– Lossless-join decomposition:
R1  R2 = {A} and A  B (R1 – R2)

– Not dependency preserving
(cannot check B  C w/o computing R1 ⋈ R2)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 19

Successive Lossless Join
• Successive Lossless Join Decomposition:

– Claim 2 (Preservation of non-additivity in
successive decompositions):

• If a decomposition D = {R1, R2, …, Rm} of R has the
lossless (non-additive) join property with respect to a
set of functional dependencies F on R,

• and if a decomposition Di = {Q1, Q2, ..., Qk} of Ri has the
lossless (non-additive) join property with respect to the
projection of F on Ri,

– then the decomposition D2 = {R1, R2, ..., Ri-1, Q1,
Q2, ..., Qk, Ri+1, ..., Rm} of R has the non-additive join
property with respect to F.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 20

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 11

Algorithms for RDB Design - Finding
Minimal Cover
• Algorithm 15.2: Find a minimal cover F for a set of FDs E
1. F := E
2. Replace each FD X{A1, A2, …, An} in F by XA1, XA2, …,

XAn (* convert F so that all RHS has only one attribute *)
3. For each XA in F (* remove extraneous attributes in LHS

*)
For each attribute BX

if {F – {XA}}∪{(X-{B})A} ≡ F
replace XA with (X-{B})A in F

1. For each XA in F (* remove extraneous FD *)
if F – {XA} is equivalent to F

remove XA from F
CSIE30600/CSIEB0290 Database Systems RDB Design-II 21

Computing a Minimal Cover
• R = (A, B, C)

F = { A  BC, B  C, A  B, AB  C }
• Replace A  BC by A  B and A  C

– Set is now {A  B, A  C, B  C, AB  C}

• A is extraneous in AB  C
– Set is now {A  B, A  C, B  C}

• A  C is extraneous since it can be inferred
from A  B and B  C

• The minal cover is: { A  B, B  C }

CSIE30600/CSIEB0290 Database Systems RDB Design-II 22

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 12

Algorithms for RDB Design - Key
Determination
• Algorithm 15.2(a) Finding a Key K for R Given

a set F of Functional Dependencies
– Input: A universal relation R and a set of FDs F

1. Set K := R;
2. For each attribute A in K {

Compute (K - A)+ with respect to F;
If (K - A)+ contains all attributes in R,

then set K := K - {A};
}

CSIE30600/CSIEB0290 Database Systems RDB Design-II 23

Relational Synthesis into 3NF
• Algorithm 15.4: Relational Synthesis into 3NF with

Dependency Preservation and Lossless (Non-Additive) Join
Property
– Input: A universal relation R and a set of FDs F

1. Find a minimal cover G for F (Algorithm 15.2)
2. For each LHS X of a FD in G, create a schema in D with

attributes {X ∪ {A1} ∪ {A2} ... ∪ {Ak}}, where X  A1, X 
A2, ..., X –> Ak are the only dependencies in G with X as LHS (X
is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then
create one more relation schema in D that contains attributes
that form a key of R. (Use Algorithm 15.2(a) to find the key of R)

4. Eliminate redundant relations (subsumed by others)
• Claim 3: Every relation schema created by Algorithm 15.4 is

in 3NF.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 24

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 13

Relational Decomposition into
BCNF
• Algorithm 15.5: Relational Decomposition into BCNF with

Lossless (non-additive) join property
– Input: A universal relation R and a set of FDs F

1. Set D := {R};
2. While (there is a schema Q in D that is not in BCNF) do {

choose a schema Q in D that is not in BCNF;
find a FD X  Y in Q that violates BCNF;
replace Q in D by two schemas (Q - Y) and (X ∪ Y);

};

Assumption: No null values are allowed for the join attributes.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 25

Example of BCNF Decomposition
• R = (A, B, C)

F = {A  B, B  C}
Key = {A}

• R is not in BCNF (B  C but B is not a superkey)
• Decomposition

– R1 = (B, C)
– R2 = (A, B)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 26

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 14

Example of BCNF Decomposition
• Original relation R and FD F

R = (branch_name, branch_city, assets,
customer_name, loan_number, amount)

F = {branch_name  assets branch_city
loan_number  amount branch_name }

Key = {loan_number, customer_name}
• Decomposition

– R1 = (branch_name, branch_city, assets)
– R2 = (branch_name, customer_name, loan_number,

amount)
– R3 = (branch_name, loan_number, amount)
– R4 = (customer_name, loan_number)

• Final decomposition: R1, R3, R4

CSIE30600/CSIEB0290 Database Systems RDB Design-II 27

BCNF and Dependency
Preservation
• It is not always possible to get a BCNF decomposition

that is dependency preserving
• R = (J, K, L)

F = {JK  L, L  K }
Two candidate keys = JK and JL

• R is not in BCNF
• Any decomposition of R will fail to preserve

JK  L
This implies that testing for JK  L requires a join

CSIE30600/CSIEB0290 Database Systems RDB Design-II 28

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 15

Example
• Relation schema:

cust_banker_branch = (customer_id, employee_id, branch_name,
type)

• The functional dependencies for this relation schema are:
customer_id, employee_id  branch_name, type
employee_id  branch_name

• The for loop generates:
(customer_id, employee_id, branch_name, type)

It then generates
(employee_id, branch_name)

but does not include it in the decomposition because it is a
subset of the first schema.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 29

Comparison of BCNF and 3NF
• It is always possible to decompose a relation into a

set of relations that are in 3NF st:
– the decomposition is lossless
– the dependencies are preserved

• It is always possible to decompose a relation into a
set of relations that are in BCNF st:
– the decomposition is lossless
– it may not be possible to preserve dependencies.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 30

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 16

Discussion of Normalization
Algorithms
• Problems:

– The database designer must first specify all the
relevant functional dependencies among the
database attributes.

– These algorithms are not deterministic in general.
– It is not always possible to find a decomposition

into relation schemas that preserves dependencies
and allows each relation schema in the
decomposition to be in BCNF (instead of 3NF as in
Algorithm 15.4).

CSIE30600/CSIEB0290 Database Systems RDB Design-II 31

Summary of Algorithms

CSIE30600/CSIEB0290 Database Systems RDB Design-II 32

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 17

Design Goals
• Goals for a relational database design is:

– BCNF.
– Lossless join.
– Dependency preservation.

• If we cannot achieve all, we accept one of
– Lack of dependency preservation
– Redundancy due to use of 3NF

• Interestingly, SQL does not provide a direct way of specifying
functional dependencies other than superkeys. (Can specify
FDs using assertions, but they are expensive to test)

• Even if we had a dependency preserving decomposition, using
SQL we would not be able to efficiently test a functional
dependency whose left hand side is not a key.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 33

Multivalued Dependencies (MVDs)

• Let R be a relation schema and let   R and   R.
The multivalued dependency


holds on R if in any legal relation r(R), for all pairs for
tuples t1 and t2 in r such that t1[] = t2 [], there exist
tuples t3 and t4 in r s.t.:

t1[] = t2 [] = t3 [] = t4 []
t3[] = t1 [] t3[R–] = t2[R–]
t4 [] = t2[] t4[R–] = t1[R–]

CSIE30600/CSIEB0290 Database Systems RDB Design-II 34

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 18

MVD (Cont.)
• Tabular representation of   

CSIE30600/CSIEB0290 Database Systems RDB Design-II 35

Another View of MVD
• Let R be a relation schema with a set of attributes

that are partitioned into 3 nonempty subsets.
Y, Z, W

• We say that Y  Z (Y multidetermines Z)
if and only if for all possible relations r (R)

< y1, z1, w1 >  r and < y1, z2, w2 >  r
then

< y1, z1, w2 >  r and < y1, z2, w1 >  r
• Note that since the behavior of Z and W are identical

it follows that Y  Z if Y  W

CSIE30600/CSIEB0290 Database Systems RDB Design-II 36

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 19

Example
• In our (course, teacher, book) example:

course  teacher course  book
• The above formal definition is supposed to

formalize the notion that given a particular
value of Y (course) it has associated with it a
set of values of Z (teacher) and a set of values
of W (book), and these two sets are in some
sense independent of each other. (next slide)

• Note: If Y  Z then Y  Z
– Indeed we have (in above notation) Z1 = Z2

The claim follows.
CSIE30600/CSIEB0290 Database Systems RDB Design-II 37

Example of MVD

CSIE30600/CSIEB0290 Database Systems RDB Design-II 38

course teacher book

database
database
database
database
database
database
operating systems
operating systems
operating systems
operating systems

Avi
Avi
Hank
Hank
Sudarshan
Sudarshan
Avi
Avi
Pete
Pete

DB Concepts
Ullman
DB Concepts
Ullman
DB Concepts
Ullman
OS Concepts
Stallings
OS Concepts
Stallings

t3
t1
t2
t4

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 20

Use of Multivalued Dependencies

• We use MVDsin two ways:
1. To test relations to determine whether they are

legal under a given set of functional and
multivalued dependencies

2. To specify constraints on the set of legal relations.
We shall thus concern ourselves only with
relations that satisfy a given set of functional and
multivalued dependencies.

• If a relation r fails to satisfy a given multivalued
dependency, we can construct a relations r that
does satisfy the multivalued dependency by adding
tuples to r.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 39

Theory of MVDs
• From the definition of multivalued dependency, we can derive

the following rule:
– If  , then  

That is, every functional dependency is also a multivalued
dependency

• The closure D+ of D is the set of all functional and multivalued
dependencies logically implied by D.
– We can compute D+ from D, using the formal definitions of functional

dependencies and multivalued dependencies.
– We can manage with such reasoning for very simple MVDs, which

seem to be most common in practice
– For complex dependencies, it is better to reason about sets of

dependencies using a system of inference rules.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 40

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 21

Inference Rules for FD's and
MVD's
• The following set of rules is sound and

complete.
• For FD's:

IR1 (Reflexive rule):
{X  Y} |= X  Y

IR2 (Augmentation rule):
{X  Y} |= XZ  Y Z

IR3 (Transitive rule):
{X  Y, Y  Z} |= X  Z

CSIE30600/CSIEB0290 Database Systems RDB Design-II 41

Inference Rules for MVD's
IR4 (Complementation rule):

{X  Y} |= {X  (R - (X  Y))}
IR5 (Multivalued augmentation rule):

if X  Y and W  Z then WX  YZ
IR6 (Multivalued transitive rule):

{X  Y, Y  Z} |= X  (Z - Y)
IR7 (Replication rule):

{X  Y} |= X  Y
IR8 (Coalescence rule):

if X  Y and W such that WY= and WZ
and YZ, then X  Z

• Note that an FD is a special case of MVD.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 42

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 22

Fourth Normal Form (4NF)

• A relation schema R is in 4NF with respect to a set D
of functional and multivalued dependencies if for all
multivalued dependencies in D+ of the form   ,
where   R and   R, at least one of the following
hold:
–    is trivial (i.e.,    or    = R)
–  is a superkey for schema R

• If a relation is in 4NF it is in BCNF
(Proof: Exercise)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 43

Example of 4NF

CSIE30600/CSIEB0290 Database Systems RDB Design - II 44

(a) The EMP relation with two MVDs: ENAME —>> PNAME and ENAME —
>> DNAME.

(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS
and EMP_DEPENDENTS.

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 23

Restriction of Multivalued
Dependencies
• The restriction of D to Ri is the set Di

consisting of
– All functional dependencies in D+ that

include only attributes of Ri
– All multivalued dependencies of the form

  (  Ri)
where   Ri and    is in D+

CSIE30600/CSIEB0290 Database Systems RDB Design-II 45

4NF Decomposition Algorithm
result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri
while (not done)

if (there is a schema Ri in result that is not in 4NF) then
begin
let    be a nontrivial MVD that holds on Ri s.t.
 Ri is not in Di, and     ;

result := (result - Ri)  (Ri - )  (, );
end

else done:= true;
(Note: each Ri is in 4NF, and decomposition is lossless-join)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 46

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 24

Lossless (Non-additive) Join Decomposition
into 4NF Relations

• The relation schemas R1 and R2 form a lossless (non-
additive) join decomposition of R with respect to a
set F of functional and multivalued dependencies if
and only if
– (R1 ∩ R2)  (R1 - R2)

• or by symmetry, if and only if
– (R1 ∩ R2)  (R2 - R1)

• Proof: Exercise.

CSIE30600/CSIEB0290 Database Systems RDB Design - II 47

Checking for Lossless Join
Decomposition
• Theorem: R1 and R2 is a lossless join

decomposition of R if and only if
– R1  R2  R1, or
– R1  R2  R2

• Proof: Exercise.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 48

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 25

Decomposition into 4NF relations with
non-additive join property
• Algorithm 15.7: Input: A universal relation R and a set of

functional and multivalued dependencies F.

1. Set D := { R };
2. While there is a relation schema Q in D that is not in 4NF

do {
choose a relation schema Q in D that is not in 4NF;
find a nontrivial MVD X  Y in Q that violates 4NF;
replace Q in D by two relation schemas (Q - Y) and (X 
Y);

};

CSIE30600/CSIEB0290 Database Systems RDB Design - II 49

Example
• R =(A, B, C, G, H, I)

F ={ A  B, B  HI, CG  H }
• R is not in 4NF since A  B and A is not a superkey for R
• Decomposition

a) R1 = (A, B) (R1 is in 4NF)
b) R2 = (A, C, G, H, I) (R2 is not in 4NF)
c) R3 = (C, G, H) (R3 is in 4NF)
d) R4 = (A, C, G, I) (R4 is not in 4NF)

• Since A  B and B  HI, A  HI, A  I
e) R5 = (A, I) (R5 is in 4NF)
f) R6 = (A, C, G) (R6 is in 4NF)

CSIE30600/CSIEB0290 Database Systems RDB Design-II 50

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 26

Another Example
• R = (course, teacher, book)

course  teacher course  book
R is not in 4NF

• R can be decomposed into
R1 = (course, teacher)
R2 = (course, book)
Both R1 and R2 are now in 4NF.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 51

Join Dependencies and Fifth
Normal Form (1)
• A join dependency (JD), denoted by JD(R1, R2, ..., Rn), specified

on relation schema R, specifies a constraint on the states r of R.
– The constraint states that every legal state r of R should have a

non-additive join decomposition into R1, R2, ..., Rn; that is, for
every such r we have

* (R1(r), R2(r), ..., Rn(r)) = r

Note: an MVD is a special case of a JD where n = 2.
• A join dependency JD(R1, R2, ..., Rn), specified on relation

schema R, is a trivial JD if one of the relation schemas Ri in
JD(R1, R2, ..., Rn) is equal to R.

CSIE30600/CSIEB0290 Database Systems RDB Design - II 52

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 27

Join Dependencies
• A join dependency (JD), denoted by JD(R1, R2, ..., Rn),

specified on relation schema R, specifies a constraint
on the states r of R.
– The constraint states that every legal state r of R

should have a non-additive join decomposition
into R1, R2, ..., Rn; that is, for every such r we have

– * (R1(r), R2(r), ..., Rn(r)) = r
Note: an MVD is a special case of a JD where n = 2.

• A join dependency JD(R1, R2, ..., Rn), specified on
relation schema R, is a trivial JD if one of the relation
schemas Ri in JD(R1, R2, ..., Rn) is equal to R.

CSIE30600/CSIEB0290 Database Systems RDB Design - II 53

JD and Fifth Normal Form

• A relation schema R is in fifth normal form
(5NF)(or Project-Join Normal Form (PJNF))
with respect to a set F of functional,
multivalued, and join dependencies if,
– for every nontrivial join dependency JD(R1,

R2, ..., Rn) in F+ (that is, implied by F), every
Ri is a superkey of R.

CSIE30600/CSIEB0290 Database Systems RDB Design - II 54

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 28

Example of 5NF Normalization

CSIE30600/CSIEB0290 Database Systems RDB Design - II 55

Inclusion Dependencies (1)
• An inclusion dependency R.X < S.Y between two sets

of attributes(X of relation schema R, and Y of relation
schema S)specifies the constraint that, at any specific
time when r is a relation state of R and s a relation
state of S, we must have

X(r(R))  Y(s(S))
• Note:

– The  (subset) relationship does not necessarily
have to be a proper subset.

– The sets of attributes on which the inclusion
dependency is specified—X of R and Y of S—must
have the same number of attributes.

– In addition, the domains for each pair of
corresponding attributes should be compatible.

CSIE30600/CSIEB0290 Database Systems RDB Design - II 56

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 29

Inclusion Dependencies (2)
• Objective of Inclusion Dependencies:

– To formalize two types of interrelational constraints
which cannot be expressed using F.D.s or MVDs:
• Referential integrity constraints
• Class/subclass relationships

• Inclusion dependency inference rules
– IDIR1 (reflexivity): R.X < R.X.
– IDIR2 (attribute correspondence): If R.X < S.Y

• where X = {A1, A2 ,..., An} and Y = {B1,
B2, ..., Bn} and Ai Corresponds-to Bi, then R.Ai < S.Bi for 1
≤ i ≤ n.

– IDIR3 (transitivity): If R.X < S.Y and S.Y < T.Z, then
R.X < T.Z

CSIE30600/CSIEB0290 Database Systems RDB Design - II 57

Other Dependencies and Normal
Forms (1)
Template Dependencies:
• Template dependencies provide a technique for representing

constraints in relations that typically have no easy and formal
definitions.

• The idea is to specify a template—or example—that defines
each constraint or dependency.

• There are two types of templates:
– tuple-generating templates
– constraint-generating templates.

• A template consists of a number of hypothesis tuples that are
meant to show an example of the tuples that may appear in
one or more relations. The other part of the template is the
template conclusion.

CSIE30600/CSIEB0290 Database Systems RDB Design - II 58

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 30

Other Dependencies and Normal
Forms (2)

CSIE30600/CSIEB0290 Database Systems RDB Design - II 59

Other Dependencies and Normal
Forms (3)

CSIE30600/CSIEB0290 Database Systems RDB Design - II 60

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 31

Domain-Key Normal Form(DKNF)
• Definition:

– A relation schema is said to be in DKNF if all constraints
and dependencies that should hold on the valid relation
states can be enforced simply by enforcing the domain
constraints and key constraints on the relation.

• The idea is to specify (theoretically, at least) the “ultimate normal
form” that takes into account all possible types of dependencies and
constraints. .

• For a relation in DKNF, it becomes very straightforward to enforce all
database constraints by simply checking that each attribute value in
a tuple is of the appropriate domain and that every key constraint is
enforced.

• The practical utility of DKNF is limited

CSIE30600/CSIEB0290 Database Systems RDB Design - II 61

Note on Higher Normal Forms
• 5NF and DKNF are rarely used
• Problem with these generalized constraints:

are hard to reason with, and no set of sound
and complete set of inference rules exists.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 62

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 32

Levels of Normalization
• The relationship between various normal

forms:

CSIE30600/CSIEB0290 Database Systems RDB Design-II 63

1 NF
2 NF

3 NF
BCNF

4 NF
PJNF

Overall Database Design Process
• We have assumed schema R is given

– R could have been generated when converting ER-
diagram to a set of tables.

– R could have been a single relation containing all
attributes that are of interest (called universal
relation).

– Normalization breaks R into smaller relations.
– R could have been the result of some ad hoc

design of relations, which we then test/convert to
normal form.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 64

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 33

ER Model and Normalization
• When an E-R diagram is carefully designed, identifying all

entities correctly, the tables generated from the E-R
diagram should not need further normalization.

• However, in a real (imperfect) design, there can be FDs
from non-key attributes of an entity to other attributes of
the entity
– Example: an employee entity with attributes

department_number and department_address, and a
functional dependency department_number 
department_address

– Good design would have made department an entity
• Functional dependencies from non-key attributes of a

relationship set possible, but rare --- most relationships
are binary

CSIE30600/CSIEB0290 Database Systems RDB Design-II 65

Denormalization for Performance
• May want to use non-normalized schema for

performance
• Eg, displaying customer_name along with

account_number and balance requires join of account
with depositor

• Alternative 1: Use denormalized relation containing all
above attributes
– faster lookup
– extra space and extra execution time for updates
– extra coding work and possibility of error in extra code

• Alternative 2: use a materialized view defined as
account⋈ depositor

– Benefits and drawbacks same as above, except no
extra coding work for programmer and avoids possible
errors

CSIE30600/CSIEB0290 Database Systems RDB Design-II 66

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 34

Other Design Issues
• Some aspects of database design are not

caught by normalization
• Examples of bad database design, to be

avoided:
Instead of earnings(company_id, year,
amount), use
earnings_2013, earnings_2014, earnings_2015,
etc., all on the schema (company_id, earnings).

• Above are in BCNF, but make querying across
years difficult and needs new table each year

CSIE30600/CSIEB0290 Database Systems RDB Design-II 67

Other Design Issues (cont.)
• company_year(company_id, earnings_2013,

earnings_2014, earnings_2015)
– Also in BCNF, but also makes querying

across years difficult and requires new
attribute each year.

– Is an example of a crosstab, where values
for one attribute become column names

– Used in spreadsheets, and in data analysis
tools

CSIE30600/CSIEB0290 Database Systems RDB Design-II 68

CSIE30600/CSIEB0290 Database Systems Lecture 11: Relational DB Design II

Note 35

Recap
• Designing a Set of Relations
• Properties of Relational Decompositions
• Algorithms for Relational Database Schema
• Multivalued Dependencies and Fourth Normal

Form
• Join Dependencies and Fifth Normal Form
• Other Dependencies and Normal Forms

CSIE30600/CSIEB0290 Database Systems RDB Design-II 69

Assignment 6 (optional)

• Textbook exercises: 7.21, 7.22, 7.29, 7.30, 7.31
• Due date: Jan 12, 2023

• **: Chance to get extra credits.

CSIE30600/CSIEB0290 Database Systems RDB Design-II 70

