2.3 Keys 45

generate their own unique identifiers. An alternative is to use some unique combination
of other attributes as a key.

The primary key should be chosen such that its attribute values are never, or are
very rarely, changed. For instance, the address field of a person should not be part of
the primary key, since it is likely to change. Social security numbers, on the other hand,
are guaranteed never to change. Unique identifiers generated by enterprises generally
do not change, except if two enterprises merge; in such a case the same identifier may
have been issued by both enterprises, and a reallocation of identifiers may be required
to make sure they are unique.

Figure 2.8 shows the complete set of relations that we use in our sample university
schema, with primary-key attributes underlined.

Next, we consider another type of constraint on the contents of relations, called
foreign-key constraints. Consider the attribute dept_name of the instructor relation. It
would not make sense for a tuple in instructor to have a value for dept_name that does not
correspond to a department in the department relation. Thus, in any database instance,
given any tuple, say 7,, from the instructor relation, there must be some tuple, say #,, in
the department relation such that the value of the dept_name attribute of 7, is the same
as the value of the primary key, dept_name, of t,.

A foreign-key constraint from attribute(s) 4 of relation r| to the primary-key B of
relation r, states that on any database instance, the value of 4 for each tuple in r; must
also be the value of B for some tuple in r,. Attribute set 4 is called a foreign key from r,,
referencing r,. The relation r; is also called the referencing relation of the foreign-key
constraint, and r, is called the referenced relation.

For example, the attribute dept_name in instructor is a foreign key from instructor,
referencing department; note that dept_name is the primary key of department. Similarly,

classroom(building, room_number, capacity)
department(dept_name, building, budget)

course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(course_id, sec_id, semester, year, building, room_number, time_slot_id)

teaches(ID, course_id, sec_id, semester, year)

student(ID, name, dept_name, fot_cred)

takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID)

time_slot(time_slot_id, day, start_time, end_time)

prereq(course_id, prereq_id)

Figure 2.8 Schema of the university database.



