
CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

1

CSIE30600/CSIEB0290
Database Systems

Lecture : More SQL

Outline
◎ More Complex SQL Retrieval Queries
◎ Specifying Constraints as Assertions and Actions

as Triggers
◎ Views (Virtual Tables) in SQL
◎ Schema Change Statements in SQL
◎ …

More SQL 2CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

2

More Complex SQL
Retrieval Queries

◎ Additional features allow users to specify
more complex retrievals from database:
◉ Nested queries
◉ Joined tables
◉ Outer joins
◉ Aggregate functions
◉ Grouping

More SQL 3CSIE30600/CSIEB0290 Database Systems

NULL and
Three-Valued Logic

◎ Meanings of NULL
◉ Unknown value
◉ Unavailable or withheld value
◉ Not applicable attribute

◎ Each individual NULL value considered to be
different from every other NULL value

◎ SQL uses a three-valued logic:
◉ TRUE, FALSE, and UNKNOWN

More SQL 4CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

3

NULL and Three-Valued
Logic (cont.)

More SQL 5CSIE30600/CSIEB0290 Database Systems

Three Valued Logic
◎ Trick: TRUE = 1; FALSE = 0; UNKNOWN=1/2
◉ X and Y = min(X,Y)
◉ X or Y = max(X,Y)
◉ not X = 1 – X

◎ The result of any arithmetic expression involving
null is null
◉ Example: 5 + null returns null

◎ Tuples for which the condition evaluates to
UNKNOWN are not included in the result

More SQL 6CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

4

Comparisons Involving NULL
and Three-Valued Logic

◎ SQL allows queries that check whether an
attribute value is NULL
◉ IS or IS NOT NULL

More SQL 7CSIE30600/CSIEB0290 Database Systems

Nested Queries and IN
◎ Nested queries
◉ Complete select-from-where blocks (the nested query)

within WHERE clause of another query (the outer query).
◎ Comparison operator IN
◉ Compares value v with a set (or multiset) of values V
◉ Evaluates to TRUE if v is one of the elements in V

More SQL 8CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

5

Nesting of Queries
◎ Query: Retrieve the name and address of all employees

who work for the 'Research' or ‘Sales’ department.
Q: SELECT FNAME, LNAME, ADDRESS

FROM EMPLOYEE
WHERE DNO IN

(SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research' OR

DNAME=‘Sales’);

More SQL 9CSIE30600/CSIEB0290 Database Systems

Nesting of Queries(cont.)
◎ The nested query selects the numbers of the ‘Research’ and ‘Sale’

departments.

◎ The outer query select an EMPLOYEE tuple if its DNO value is in the
result of the nested query.

◎ The comparison operator IN compares a value v with a set (or multi-set)
of values V, and evaluates to TRUE if v is one of the elements in V.

◎ In general, we can have several levels of nesting.

◎ A reference to an unqualified attribute refers to the relation declared in
the innermost nested query.

◎ In this example, the nested query is not correlated with the outer query.

More SQL 10CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

6

IN and NOT IN
SELECT C1.Number, C1.Name
FROM Customer C1
WHERE C1.CRating IN

(SELECT C2.CRating
FROM Customer C2
WHERE Ccity=‘Hualien’);

◎ <attribute-name A> IN (subquery S): tests set
membership
◉ A is equal to one of the values in S

◎ <attribute-name A> NOT IN (subquery S)
◉ A is equal to no value in S

More SQL 11CSIE30600/CSIEB0290 Database Systems

Nested Queries (cont.)

More SQL 12CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

7

Nested Queries (cont.)
◎ Use tuples of values in comparisons
◉ Place them within parentheses

More SQL 13CSIE30600/CSIEB0290 Database Systems

Correlated Nested Queries
◎ If a condition in the WHERE of a nested query references an attribute of

a relation in the outer query, the two queries are said to be correlated
◉ The result of a correlated query is different for each tuple (or combination of tuples) of

the relation(s) of the outer query

◎ Query 12: Retrieve the name of each employee who has a dependent
with the same first name as the employee.

Q12: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN

(SELECT ESSN
FROM DEPENDENT
WHERE ESSN=E.SSN AND

E.FNAME=DEPENDENT_NAME);

More SQL 14CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

8

Correlated Nested Queries
◎ In Q12, the nested query has a different result in the

outer query
◎ A query written with nested SELECT-FROM-WHERE

blocks and using the = or IN operators can always be
expressed as a single block query.

◎ For example, Q12 may be written as in Q12A
Q12A: SELECT E.FNAME, E.LNAME

FROM EMPLOYEE E, DEPENDENT D
WHERE E.SSN=D.ESSN AND

E.FNAME=D.DEPENDENT_NAME;

More SQL 15CSIE30600/CSIEB0290 Database Systems

Correlated Subqueries:
Scoping

◎ An attribute in a subquery belongs to one of
the tuple variables of the closest relation
◉ In general, an attribute in a subquery belongs to

one of the tuple variables in that subquery’s
FROM clause

◉ If not, look at the immediately surrounding
subquery, then to the one surrounding that, and
so on.

More SQL 16CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

9

Nested Queries
◎ The FROM clause takes a relation, but results of

SQL queries are themselves relations, so we can
use them in the FROM clause, too!
SELECT (N.CRating+1) AS CIncrRating
FROM (SELECT * FROM Customer

WHERE CRating = 0) AS N
WHERE N.CBalance = 0;

◎ This can often be a more elegant way to write a
query, but will be slower. Why?

More SQL 17CSIE30600/CSIEB0290 Database Systems

EXISTS and UNIQUE
Functions

◎ EXISTS function
◉ Check whether the result of a correlated nested query is

empty or not
◎ EXISTS and NOT EXISTS
◉ Typically used in conjunction with a correlated nested

query
◎ UNIQUE(Q) function
◉ Returns TRUE if there are no duplicate tuples in the result

of query Q

More SQL 18CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

10

EXISTS Function
◎ EXISTS is used to check whether the result of a

correlated nested query is empty (contains no
tuples) or not

◎ We can formulate Query 12 in an alternative form
that uses EXISTS as Q12B (next slide)

More SQL 19CSIE30600/CSIEB0290 Database Systems

EXISTS Function(cont.)
◎ Query 12: Retrieve the name of each employee who has

a dependent with the same first name as the employee.

Q12B: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE EXISTS

(SELECT *
FROM DEPENDENT
WHERE SSN=ESSN AND

FNAME=DEPENDENT_NAME);

More SQL 20CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

11

NOT EXISTS
◎ Query 6: Retrieve the names of employees who have

no dependents.

Q6: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS

(SELECT *
FROM DEPENDENT
WHERE SSN=ESSN);

◎ In Q6, the correlated nested query retrieves all
DEPENDENT tuples related to an EMPLOYEE tuple. If
none exist, the EMPLOYEE tuple is selected
◉ EXISTS is necessary for the expressive power of SQL

More SQL 21CSIE30600/CSIEB0290 Database Systems

Explicit Sets
◎ It is also possible to use an explicit

(enumerated) set of values in the WHERE-
clause rather than a nested query

◎ Query 13: Retrieve the SSNs of all employees who
work on project number 1, 2, or 3.
Q13: SELECT DISTINCT ESSN

FROM WORKS_ON
WHERE PNO IN (1, 2, 3);

More SQL 22CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

12

Set Comparison
◎ Find all branches that have greater assets than some

branch located in Brooklyn.

◎ Same query using > SOME (ANY) clause.
select branch_name
from branch
where assets > SOME

(select assets
from branch
where branch_city = ‘Brooklyn’);

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and

S.branch_city = ‘Brooklyn’;

More SQL 23CSIE30600/CSIEB0290 Database Systems

Definition of SOME
◎ F <comp> SOME r t r such that (F <comp> t) where

<comp> can be:     
0
5
6

(5 < some) = true

0
5

0

) = false

5

0
5

(5  some) = true (since 0  5)

(read: 5 < some tuple in
the relation)

(5 < some

) = true(5 = some

(= some)  in However, ( some)  not in

More SQL 24CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

13

Query with ALL
◎ Find the names of all branches that have greater

assets than all branches located in Brooklyn.

select branch_name
from branch
where assets > ALL

(select assets
from branch
where branch_city = ‘Brooklyn’);

More SQL 25CSIE30600/CSIEB0290 Database Systems

Definition of ALL
◎ F <comp> ALL r t r (F <comp> t)

0
5
6

(5 < all) = false

6
10) = true

4
5

4
6

(5  all) = true (since 5  4 and 5  6)

(5 < all

) = false(5 = all

( all)  not in However, (= all)  in

More SQL 26CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

14

Joined Relations
◎ Can specify a "joined relation" in the FROM-clause
◉ Looks like any other relation but is the result of a join
◉ Allows the user to specify different types of joins (regular

"theta" JOIN, NATURAL JOIN, LEFT OUTER JOIN, RIGHT
OUTER JOIN, CROSS JOIN, etc)

More SQL 27CSIE30600/CSIEB0290 Database Systems

Inner/Outer JOIN
◎ Default type of JOIN in a joined table is

inner JOIN.
◎ Tuple is included in the result only if a

matching tuple exists in the other relation.
◎ If we want to keep those tuples that do not

match the condition, we need to use outer
JOIN.

More SQL 28CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

15

Why Outer JOIN?
◎ Consider the following tables and query

Student(sid, name, address)
Spouse(sid, name), sid references Student.sid
List the names of ALL students and their spouses, if they
have one.

SELECT Student.name, Spouse.name
FROM Student, Spouse
WHERE Student.sid=Spouse.sid;

◎ Does this SQL query do the job?

No! Students without spouses will *not* be
listed.

More SQL 29CSIE30600/CSIEB0290 Database Systems

Outer JOIN
◎ An extension of the JOIN operation that avoids

loss of information.
◎ Computes the join and then adds tuples from one

relation that do not match tuples in the other
relation to the result of the join.

◎ Uses null values to pad dangling tuples.

More SQL 30CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

16

More SQL 31

LEFT OUTER JOIN
◎ INNER JOIN on C.SalespersonNum = S.Number gives us:

“smith” with “johnson” and “jones” with “johnson”
◎ LEFT OUTER JOIN on C.SalespersonNum = S.Number gives us:

INNER JOIN plus “wei” with “<null>” salesperson
◉ Lists all customers, and their salesperson if any

CSIE30600/CSIEB0290 Database Systems

More SQL 32

LEFT OUTER JOIN: Example
◎ Examples:

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE E S
WHERE E.SUPERSSN=S.SSN;

◎ Compare the result with the following query:
Q8a: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME

FROM (EMPLOYEE E LEFT OUTER JOIN
EMPLOYEE S ON E.SUPERSSN=S.SSN);

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

17

RIGHT OUTER JOIN

More SQL 33

◎ INNER JOIN on C.SalespersonNum = S.Number gives us:
“smith” with “johnson” and “jones” with “johnson”

◎ RIGHT OUTER JOIN on C.SalespersonNum = S.Number gives:
INNER JOIN plus “<null>” customer with “miller”
◉ Lists customers that have a salesperson, and salespersons that do not have a

customer

CSIE30600/CSIEB0290 Database Systems

FULL OUTER JOIN
◎ FULL OUTER JOIN = LEFT OUTER JOIN ∪ RIGHT OUTER JOIN

FULL OUTER JOIN on C.SalespersonNum = S.Number gives
us:
INNER JOIN

plus “wei” with “<null>” salesperson
plus “<null>” customer with “miller”

◉ Lists all customer-salesperson pairs, and customers that do
not have a salesperson, and salespersons that do not have a
customer

◎ NOTE: You could also have NATURAL <left, right, full>
OUTER JOIN

More SQL 34CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

18

More SQL 35

CROSS JOIN
◎ A “CROSS JOIN” is simply a cross product

SELECT *
FROM Customer CROSS JOIN Salesperson;

◎ How would you write this query without the
“CROSS JOIN” operator?
SELECT *
FROM Customer, Salesperson;

CSIE30600/CSIEB0290 Database Systems

More SQL 36

More JOIN Examples
◎ Examples:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND DNUMBER=DNO;

◎ could be written as:
Q1: SELECT FNAME, LNAME, ADDRESS

FROM (EMPLOYEE JOIN DEPARTMENT
ON DNUMBER=DNO)

WHERE DNAME='Research’;
◎ or as:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE NATURAL JOIN DEPARTMENT

AS DEPT(DNAME, DNO, MSSN, MSDATE)
WHERE DNAME='Research’;

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

19

Multiple JOINs

More SQL 37

◎ Another Example: Q2 could be written as follows; this
illustrates multiple joins in the joined tables
Q2: SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS

FROM ((PROJECT JOIN DEPARTMENT
ON DNUM=DNUMBER)

JOIN EMPLOYEE
ON MGRSSN=SSN)

WHERE PLOCATION='Stafford’;

CSIE30600/CSIEB0290 Database Systems

Aggregate Functions
◎ Used to summarize information from multiple tuples

into a single-tuple summary

◎ Include COUNT, SUM, MAX, MIN, and AVG

◎ Query: Find the maximum salary, the minimum salary,
and the average salary among all employees.
Q: SELECT MAX(SALARY), MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE;

◎ Some SQL implementations may not allow more than
one function in the SELECT-clause

More SQL 38CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

20

More SQL 39

Aggregate Functions

CSIE30600/CSIEB0290 Database Systems

More SQL 40

Challenge Questions
◎ What is the implication of using DISTINCT when

computing the SUM or AVG of an attribute?
SUM(DISTINCT Balance) or AVG(DISTINCT
Balance)

◎ What is the implication of using DISTINCT when
computing the MIN or MAX of an attribute?
MIN(DISTINCT Balance) or MAX(DISTINCT
Balance)

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

21

Aggregates and NULLs

More SQL 41

◎ General rule: aggregates ignore NULL values
◉ Avg(1,2,3,NULL,4) = Avg(1,2,3,4)
◉ Count(1,2,3,NULL,4) = Count(1,2,3,4)

◎ But…
◉ Count(*) returns the total number of tuples,

regardless whether they contain NULLs or not

CSIE30600/CSIEB0290 Database Systems

Grouping
◎ In many cases, we want to apply the aggregate functions

to subgroups of tuples in a relation

◎ Each subgroup of tuples consists of the set of tuples that
have the same value on the grouping attribute(s)

◎ The function is applied to each subgroup independently

◎ SQL has a GROUP BY-clause for specifying the grouping
attributes, which must also appear in the SELECT-clause

More SQL 42CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

22

More SQL 43

Grouping (cont.)
◎ Query: For each department, find the department number, the

No. of employees in the department, and their average salary.
Q: SELECT DNO, COUNT(*), AVG(SALARY)

FROM EMPLOYEE
GROUP BY DNO;

◉ In here, the EMPLOYEE tuples are divided into groups. Each
group having the same value for the grouping attribute DNO

◉ The COUNT and AVG functions are applied to each such group
of tuples separately

◉ The SELECT-clause includes only the grouping attribute and
the functions to be applied on each group of tuples

◉ A join condition can be used in conjunction with grouping

CSIE30600/CSIEB0290 Database Systems

More SQL 44

Grouping (cont.)
◎ Query: For each project, retrieve the project number,

project name, and the number of employees who work
on that project.

Q: SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME;

◎ In this case, the grouping and functions are applied after
the joining of the two relations

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

23

HAVING-Clause

More SQL 45

◎ Sometimes we want to retrieve the values of these
functions for only those groups that satisfy certain
conditions

◎ The HAVING-clause is used for specifying a
selection condition on groups (rather than on
individual tuples)

CSIE30600/CSIEB0290 Database Systems

HAVING-Clause (contd.)
◎ Query: For each project on which more than two

employees work, retrieve the project number,
project name, and the number of employees who
work on that project.
Q: SELECT PNUMBER, PNAME, COUNT(*)

FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT(*) > 2;

More SQL 46CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

24

More SQL 47

HAVING-Clause (contd.)

Dnumber IN

CSIE30600/CSIEB0290 Database Systems

More SQL 48

GROUP BY and NULLS (1)
◎ Aggregates ignore NULLs
◎ On the other hand, NULL is treated as an

ordinary value in a grouped attribute
◎ If there are NULLs in the Salesperson column

(below), a group will be returned for the NULL
value (next slide)

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

25

GROUP BY and NULLS (2)

More SQL 49

SELECT SalespersonNum, Count(*) AS T
FROM Customer
GROUP BY SalespersonNum;

CSIE30600/CSIEB0290 Database Systems

GROUP BY, HAVING: Note
◎ The only attributes that can appear in a “grouped” query

answer are aggregate operators (that are applied to the
group) or the grouping attribute(s).

SELECT SalespersonNum, COUNT(*)
FROM Customer
GROUP BY SalespersonNum;

SELECT SalespersonNum
FROM Customer
GROUP BY SalespersonNum
HAVING Count(*) > 10;

SELECT C.Name,
SalespersonNum,
COUNT(*)

FROM Customer C
GROUP BY SalespersonNum;

Incorrect! Why?

More SQL 50CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

26

More SQL 51

Summary of SQL Queries
◎ A query in SQL can consist of up to six clauses, but

only the first two, SELECT and FROM, are mandatory.
The clauses are specified in the following order:

SELECT <attribute and function list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>];

CSIE30600/CSIEB0290 Database Systems

More SQL 52

Summary of SQL Queries
(cont.)

◎ The SELECT-clause lists the attributes or
functions to be retrieved

◎ The FROM-clause specifies all relations (or aliases)
needed in the query but not those needed in
nested queries

◎ The WHERE-clause specifies the conditions for
selection and join of tuples from the relations
specified in the FROM-clause

◎ GROUP BY specifies grouping attributes
CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

27

Summary of SQL Queries
(cont.)

More SQL 53

◎ HAVING specifies a condition for selection of
groups

◎ ORDER BY specifies an order for displaying the
result of a query

◎ A query is evaluated by first applying the WHERE-
clause, then GROUP BY and HAVING, and finally
the SELECT-clause

CSIE30600/CSIEB0290 Database Systems

Complex Update
◎ Example: Give all employees in the 'Research' department a 10% raise

in salary.
U6: UPDATE EMPLOYEE

SET SALARY = SALARY *1.1
WHERE DNO IN

(SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research');

◎ In this request, the modified SALARY value depends on the original
SALARY value in each tuple
◉ The reference to the SALARY attribute on the right of = refers to the old

SALARY value before modification
◉ The reference to the SALARY attribute on the left of = refers to the new

SALARY value after modification

More SQL 54CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

28

More SQL 55

CASE Statement for
Conditional Updates

◎ Increase all accounts with balances over $20,000
by 7%, over $10,000 by 6%, all other accounts
receive 5% as bonus.
update account
set balance = case

when balance<10000 then balance * 1.05
when balance>=20000 then balance * 1.07
else balance * 1.06

end;

CSIE30600/CSIEB0290 Database Systems

More SQL 56

Derived Relations
◎ SQL allows a subquery expression to be used in from clause
◎ Find the average account balance of those branches where the

average account balance is greater than $1200.
select branch_name, avg_balance
from (select branch_name, avg (balance)

from account
group by branch_name)
as branch_avg (branch_name, avg_balance)

where avg_balance > 1200;
Note that we do not need to use the having clause, since we
compute the temporary (view) relation branch_avg in the from
clause, and the attributes of branch_avg can be used directly in
the where clause.

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

29

WITH Clause

More SQL 57

◎ The with clause provides a way of defining a
temporary view whose definition is available only
to the query in which the with clause occurs.

◎ Find all accounts with the maximum balance
with max_balance (value) as

select max (balance)
from account

select account_number
from account, max_balance
where account.balance = max_balance.value;

CSIE30600/CSIEB0290 Database Systems

Complex Query using WITH
◎ Find all branches where the total account deposit is greater

than the average of the total account deposits at all
branches.

with branch_total (branch_name, value) as
select branch_name, sum (balance)
from account
group by branch_name

with branch_total_avg (value) as
select avg (value)
from branch_total

select branch_name
from branch_total, branch_total_avg
where branch_total.value >= branch_total_avg.value;

More SQL 58CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

30

More SQL 59

Specifying Constraints as
Assertions and Actions as

Triggers
◎ CREATE ASSERTION
◉ Specify additional types of constraints outside scope of

built-in relational model constraints
◎ CREATE TRIGGER
◉ Specify automatic actions that database system will

perform when certain events and conditions occur

CSIE30600/CSIEB0290 Database Systems

More SQL 60

Assertions in SQL
◎ CREATE ASSERTION
◉ Specify a query that selects any tuples that violate the

desired condition.
◉ Then CHECK with NOT EXISTS.
◉ Use only in cases where it is not possible to use CHECK on

attributes and domains

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

31

Triggers in SQL

More SQL 61

◎ CREATE TRIGGER statement
◉ Used to monitor the database

◎ Typical trigger has three components:
◉ Event(s)
◉ Condition
◉ Action

◎ Check the textbook(s) or online doc for more info.

CSIE30600/CSIEB0290 Database Systems

Views (Virtual Tables)
◎ In some cases, it is not desirable for all users to see the entire

logical model (ie. all the actual relations.)
◎ Consider a person who needs to know a customer’s loan number

but has no need to see the loan amount. This person should
see a relation described, in SQL, by
(select customer_name, loan_number

from borrower, loan
where borrower.loan_number = loan.loan_number)

◎ A view provides a mechanism to hide certain data from the
view of certain users.

◎ Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

More SQL 62CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

32

More SQL 63

View Definition
◎ A view is defined using the CREATE VIEW statement

which has the form
create view v as < query expression >
where <query expression> is any legal SQL expression.
The view name is represented by v.

◎ Once a view is defined, the view name can be used to
refer to the virtual relation that the view generates.

◎ View definition is not the same as creating a new
relation by evaluating the query expression. Rather, a
view definition causes the saving of an expression; the
expression is substituted into queries using the view.

CSIE30600/CSIEB0290 Database Systems

More SQL 64

CREATE/DROP VIEW
◎ Views are always up-to-date
◉ Responsibility of the DBMS and not the user

◎ DROP VIEW command
◉ Dispose of a view

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

33

More View Examples

More SQL 65

◎ A view consisting of branches and their customers

◎ Find all customers of the Perryridge branch

create view all_customer as
(select branch_name, customer_name

from depositor, account
where depositor.account_number =

account.account_number)
union
(select branch_name, customer_name

from borrower, loan
where borrower.loan_number = loan.loan_number);

select customer_name
from all_customer
where branch_name = ‘Perryridge’;

CSIE30600/CSIEB0290 Database Systems

Views Defined Using Other
Views

◎ One view may be used in defining another view
◎ A view v1 is said to depend directly on a view v2 if v2 is

used in the expression defining v1

◎ A view v1 is said to depend on view v2 if either v1

depends directly to v2 or there is a path of
dependencies from v1 to v2

◎ A view v is said to be recursive if it depends on itself.

More SQL 66CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

34

More SQL 67

View Expansion
◎ A way to define the meaning of views defined in terms of

other views.
◎ Let view v1 be defined by an expression e1 that may

itself contain uses of view relations.
◎ View expansion of an expression repeats the following

replacement step:
repeat
Find any view vi in e1
Replace the view vi by the expression defining vi

until no more views are present in e1

◎ As long as the view definitions are not recursive, this
loop will terminate.

CSIE30600/CSIEB0290 Database Systems

More SQL 68

View Implementation, View
Update, and Inline Views

◎ Complex problem of efficiently implementing a
view for querying

◎ Query modification approach
◉ Modify view query into a query on underlying base tables
◉ Disadvantage: inefficient for views defined via complex

queries that are time-consuming to execute

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

35

View Implementation

More SQL 69

◎ View materialization approach
◉ Physically create a temporary view table when the

view is first queried
◉ Keep that table on the assumption that other

queries on the view will follow
◉ Requires efficient strategy for automatically

updating the view table when the base tables are
updated

CSIE30600/CSIEB0290 Database Systems

View Implementation
(cont’d.)

◎ Incremental update strategies
◉ DBMS determines what new tuples must be

inserted, deleted, or modified in a materialized
view table

More SQL 70CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

36

More SQL 71

View Update and Inline
Views

◎ Update on a view defined on a single table
without any aggregate functions
◉ Can be mapped to an update on underlying base table

◎ View involving joins
◉ Often not possible for DBMS to determine which of the

updates is intended

CSIE30600/CSIEB0290 Database Systems

More SQL 72

Schema Change Statements
◎ Schema evolution commands
◉ Can be done while the database is operational
◉ Does not require recompilation of the database

schema

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

37

DROP Command

More SQL 73

◎ DROP command
◉ Used to drop named schema elements, such as

tables, domains, or constraint
◎ Drop behavior options:
◉ CASCADE and RESTRICT

◎ Example:
◉ DROP SCHEMA COMPANY CASCADE;

CSIE30600/CSIEB0290 Database Systems

ALTER Command
◎ Alter table actions include:
◉ Adding or dropping a column (attribute)
◉ Changing a column definition
◉ Adding or dropping table constraints

◎ Example:
◉ ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN

Job VARCHAR(12);

◎ To drop a column
◉ Choose either CASCADE or RESTRICT

More SQL 74CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

38

More SQL 75

ALTER Command (cont’d.)
◎ Change constraints specified on a table
◉ Add or drop a named constraint

CSIE30600/CSIEB0290 Database Systems

More SQL 76

SQL Benefits
◎ Declarative languages: program is a prescription for

what data is to be retrieved, rather than a procedure
describing how to retrieve the data

◎ When we write an SQL select query, we do not make
any assumptions about the order of evaluation

◎ Can be automatically optimized!
◉ Decision about order and evaluation plan is left to the

optimizer
◉ Optimizer has the resources to make sophisticated

decisions

CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

39

SQL Limitations

More SQL 77

◎ Not flexible enough for some applications
◉ Some queries cannot be expressed in SQL
◉ Non-declarative actions can’t be done from SQL,

e.g., printing a report, interacting with user/GUI
◉ SQL queries may be just one small component of

complex applications
◎ Hard to program for performance!
◎ Trade-off: automatic optimization of queries

expressed in powerful languages is hard

CSIE30600/CSIEB0290 Database Systems

Limitations: Missing
Aggregate Functions

◎ Set functions: sum, avg, max, min and count
◎ What about median
◉ Given a sequence of numbers a1,…, an
◉ Median is the value ak s.t. k = FLOOR((n+1)/2)

◎ Can’t write
◉ SELECT median(amount) FROM Account

More SQL 78CSIE30600/CSIEB0290 Database Systems

CSIE30600/CSIEB0290 Database Systems Lecture 06: More SQL

40

More SQL 79

Limitations: Transitive
Closure

◎ Employee manages Employee
◎ Find all employees managed by Mary

Manager Emp
Null Mary
Mary John
Mary Jane
John Mark
Mark Susan

◎ SQL:1999 added a WITH RECURSIVE construct to
compute transitive closure. (not necessarily supported
by all DBMS)

CSIE30600/CSIEB0290 Database Systems

More SQL 80

Assignment 4
◎ Textbook(DBSC7) exercises: 4.16, 4.17, 4.18,

4.20, 5.16

◎ Due date: May 30, 2024

CSIE30600/CSIEB0290 Database Systems

