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◎ Informal Design Guidelines for Relational DBs
◉ Semantics of the Relation Attributes
◉ Redundant Information in Tuples and Update Anomalies
◉ Null Values in Tuples
◉ Spurious Tuples

◎ Functional Dependencies (FDs)
◉ Definition of FD
◉ FD and DB design
◉ Inference Rules for FDs
◉ Equivalence of Sets of FDs
◉ Minimal Sets of FDs
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Outline
◎ Normal Forms Based on Primary Keys
◉ Normalization of Relations 
◉ Practical Use of Normal Forms 
◉ Definitions of Keys and Attributes Participating in Keys 
◉ First Normal Form
◉ Second Normal Form
◉ Third Normal Form

◎ General Normal Form Definitions (For Multiple 
Keys)

◎ BCNF (Boyce-Codd Normal Form)
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Relational DB Design
◎ Relational DB design requires that we find a “good” 

collection of relation schemas
◎ A bad design may lead to
◉ Repetition of Information
◉ Inability to represent certain information

◎ Design Goals:
◉ Avoid redundant data
◉ Ensure that relationships among attributes are 

represented
◉ Facilitate the checking of updates for violation of 

database integrity constraints
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Informal Guidelines (1)
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◎ What is relational database design?
◉ The grouping of attributes to form "good" relation 

schemas
◎ Two levels of relation schemas
◉ The logical "user view" level
◉ The storage "base relation" level

◎ Design is concerned mainly with base relations
◎ What are the criteria for "good" base relations?

Informal Guidelines (2)

Relational DB Design I 6

◎ We first discuss informal guidelines for good design
◎ Then we discuss formal concepts of functional 

dependencies and normal forms
◉ 1NF (First Normal Form)
◉ 2NF (Second Normal Form)
◉ 3NF (Third Normal Form)
◉ BCNF (Boyce-Codd Normal Form)

◎ Additional types of dependencies, further normal forms, 
relational design algorithms by synthesis are discussed 
in next lecture. 
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Measures of Quality
◎ Making sure attribute semantics are clear
◎ Reducing redundant information in tuples
◎ Reducing NULL values in tuples
◎ Disallowing possibility of generating 

spurious tuples

Relational DB Design I 8

Guideline 1
◎ Design relation schema so that it is easy to explain its 

meaning
◎ Each tuple in a relation should represent one entity or 

relationship instance.
◎ Do not combine attributes from multiple entity types and 

relationship types into a single relation
◎ Only foreign keys should be used to refer to other entities
◎ Entity and relationship attributes should be kept apart as much 

as possible.
◎ Bottom Line: Design a schema that can be explained easily 

relation by relation. The semantics of attributes should be easy 
to interpret. 
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Guideline 1 (cont’d.)

Relational DB Design I 9

◎ Example of violating Guideline 1: Why is it bad?

Example EMP_DEPT and EMP_PROJ

Relational DB Design I 10
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Design Choices: Small vs. 
Large Schemas

◎ Which design is better? Why?

◎ An employee can be assigned to at most one 
project, many employees participate in a project

Relational DB Design I 12

What’s wrong?
EMP(ENAME, SSN, ADDRESS, PNUM, PNAME, 

PMGRSSN)
◎ The description of the project (the name and the 

manager of the project) is repeated for every 
employee that works in that department.

◎ Redundancy!
◎ The project is described redundantly.
◎ This leads to update anomalies.
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Redundant Information and 
Update Anomalies 

Relational DB Design I 13

◎ If information is stored redundantly
◉ Wastes storage
◉ Causes problems with update anomalies

◎ Types of update anomalies:
◉ Insertion anomalies
◉ Deletion anomalies
◉ Modification anomalies 

Example of an Update 
Anomaly

Relational DB Design I 14

◎ Consider the relation:
◉ EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

◎ Update Anomaly:
◉ Changing the name of  project number P1 from “Billing” to 

“Customer-Accounting” may cause this update to be 
made for all 100 employees working on project P1. 

◉ Failed to update anyone of them would leave the DB in 
inconsistent state.
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Example of an Insert 
Anomaly

◎ Consider the relation:
◉ EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

◎ Insert Anomaly:
◉ Cannot insert a project unless an employee is assigned to 

it.
◎ Conversely
◉ Cannot insert an employee unless an he/she is assigned 

to a project. 

Relational DB Design I 16

Example of an Delete 
Anomaly

◎ Consider the relation:
◉ EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

◎ Delete Anomaly:
◉ When a project is deleted, it will result in deleting all the 

employees who work on that project.
◉ Alternately, if an employee is the sole employee on a 

project, deleting that employee would result in deleting 
the corresponding project.
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Guideline 2

Relational DB Design I 17

◎ Design base relation schemas so that no 
update anomalies are present in the relations

◎ If any anomalies are present:
◉ Note them clearly
◉ Make sure that the programs that update the 

database will operate correctly

NULL Values in Tuples

Relational DB Design I 18

◎ Some designers may group many attributes 
together into a “fat” relation
◉ Can end up with many NULLs

◎ Problems with NULLs
◉ Wasted storage space
◉ Problems in understanding meaning
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Guideline 3
◎ Relations should be designed such that their 

tuples will have as few NULL values as possible
◉ Attributes that are NULL frequently could be placed in 

separate relations
◎ If NULLs are unavoidable:
◉ Make sure that they apply in exceptional cases only, not 

to a majority of tuples
◎ Reasons for NULL s: 
◉ Attribute not applicable or invalid
◉ Attribute value unknown (may exist) 
◉ Value known to exist, but unavailable

Relational DB Design I 20

Spurious(偽、假) Tuples 
◎ Bad schema designs may result in erroneous results for 

certain JOIN operations
◎ Figure 14.5(a)
◉ Relation schemas EMP_LOCS and EMP_PROJ1

◎ NATURAL JOIN 
◉ Join result contains many more tuples than the 

original set of tuples in EMP_PROJ
◉ Called spurious tuples
◉ Represent spurious information that is not valid
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Examples of Spurious 
Tuples

Relational DB Design I 21

◎ The 
information in 
EMP_PROJ

Relational DB Design I 22
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Guideline 4
◎ Design relation schemas to be joined with 

equality conditions on attributes that are 
appropriately related 
◉ Guarantees that no spurious tuples are generated

◎ The "lossless join" property is used to guarantee 
meaningful results for join operations (more 
about this later)

◎ Avoid relations that contain matching attributes 
that are NOT (foreign key, primary key) 
combinations
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Summary of Design 
Guidelines

Relational DB Design I 25

◎ Anomalies cause redundant work to be done
◎ Waste of storage space due to NULLs 
◎ Difficulty of performing operations and joins due to 

NULL values
◎ Generation of invalid and spurious data during 

joins
◎ A good design should avoid all problems above.

Functional Dependencies 
(FDs)

Relational DB Design I 26

◎ Formal tool for analysis of relational schemas 
◎ Enables us to detect and describe some of the 

above-mentioned problems in precise terms
◎ Theory of functional dependency
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FDs are Properties of Data
◎ There are usually a variety of constraints (rules) on the 

data in the real world.
◎ For example, some of the constraints that are expected 

to hold in a university database are:
◉ Students and instructors are uniquely identified by IDs.
◉ Each student and instructor has only one name.
◉ Each instructor and student is (primarily) associated with 

only one department.
◉ Each department has only one value for its budget, and 

only one associated building.

Relational DB Design I 28

FD is Generalization of Key
◎ An instance of a relation that satisfies all such real-world 

constraints is called a legal instance of the relation;
◎ A legal instance of a database is one where all the 

relation instances are legal instances.
◎ FDs are constraints on the set of legal relations.
◎ Require that the value for a certain set of attributes 

determines uniquely the value for another set of 
attributes.

◎ A functional dependency is a generalization of the notion 
of a key.
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Definition of FDs

Relational DB Design I 29

◎ Constraint between two sets of attributes from the 
database
◉ An attribute set X functionally determines another set Y if

the value of X determines a unique value for Y
◎ Functional dependencies (FDs)
◉ Are used to specify formal measures of the "goodness" of 

relational designs
◉ Are used to define normal forms for relations
◉ Are constraints that are derived from the meaning and 

interrelationships of the data attributes
◉ Use in the normalization process of schema design.

Definition of FDs (2)

Relational DB Design I 30

◎ X → Y holds if whenever two tuples have the same value 
for X, they must have the same value for Y
◉ For any two tuples t1 and t2 in any relation 

instance r(R):  t1[X]=t2[X]  t1[Y]=t2[Y]
◎ X → Y in R specifies a constraint on all relation instances 

r(R)
◎ Written as X → Y; can be displayed graphically on a 

relation schema.  (denoted by arrow).
◎ FDs are derived from the real-world constraints on the 

attributes 
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Examples of FD Constraints (1) 
◎ Social security number determines employee name
◉ SSN → ENAME

◎ Project number determines project name and location
◉ PNUMBER → {PNAME, PLOCATION}

◎ Employee SSN and project number determines the hours 
per week that the employee works on the project
◉ {SSN, PNUMBER} → HOURS

◎ Any other example(s) that you can think of?

Relational DB Design I 32

Examples of FD Constraints (2) 
◎ Examples of functional dependencies:

employee-number → employee-name
course-number → course-title
movieTitle, movieYear → length, filmType, studioName

◎ Examples that are NOT functional dependencies
employee-name → employee-number ×
two distinct employees can have the same name
course-number → book ×
a course may use multiple books
course-number → car-color ×
????
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What is functional in a FD?

Relational DB Design I 33

◎ A1,…,An → B
◎ A FD is a function that takes a list of values (A1,…,An) and 

produces a unique value B or no value at all (this value 
can be the NULL value)

◎ We are looking for functional relationships (that must
occur in a relation) among attribute values.

More on FD Constraints

Relational DB Design I 34

◎ An FD is an intrinsic property of the attributes in 
the schema R

◎ The constraint must hold on every relation instance 
r(R)

◎ If K is a key of R, then K functionally determines all
attributes in R (why?)
◉ (since we never have two distinct tuples with 

t1[K]=t2[K]) 
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Keys and FDs
◎ K is a superkey for relation schema R if and only if K  R
◎ K is a candidate key for R if and only if 
◉ K  R, and
◉ There is no   K such that   R

◎ Functional dependencies allow us to express constraints that 
cannot be expressed using superkeys.  Consider the schema:

emp_dep ( ID, name, salary, dept_name, building, budget 
).
We expect these functional dependencies to hold:

dept_name building
ID  building

but would not expect the following to hold: 
dept_name  salary

Relational DB Design I 36

Use of FDs
◎ We use functional dependencies to:
◉ To test relations to see if they are legal under a given 

set of FDs. 
￮ If a relation r is legal under a set F of FDs, we say that r satisfies F.

◉ To specify constraints on the set of legal relations
￮ We say that F holds on R if all legal relations on R satisfy the set 

of functional dependencies F.
◎ Note:  A specific instance of a relation schema 

may satisfy an FD even if the FD does not hold 
on all legal instances.  
◉ For example, a specific instance of instructor may, by 

chance, satisfy the FD name  ID.
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Inference Rules for FDs (1) 

Relational DB Design I 37

◎ Given a set of FDs F, we can infer additional FDs that 
hold whenever the FDs in F hold

◎ Armstrong's inference rules:
◉ IR1. (Reflexive) If Y subset-of X, then X → Y
◉ IR2. (Augmentation) If X → Y, then XZ → YZ

￮ (Notation: XZ stands for X U Z)
◉ IR3. (Transitive) If X → Y and Y → Z, then X → Z

◎ IR1, IR2, IR3 form a sound and complete set of 
inference rules
◉ These rules are correct
◉ All other rules that hold can be deduced from these

Inference Rules for FDs (2)

Relational DB Design I 38

◎ Some additional inference rules that are useful:
◉ Decomposition: If X → YZ, then X → Y and X → Z
◉ Union: If X → Y and X → Z, then X → YZ
◉ Psuedotransitivity: If X → Y and WY → Z, then WX → Z

◎ The three inference rules above, as well as any 
other inference rules, can be deduced from IR1, 
IR2, and IR3. (completeness property) 
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Example: Using Inference 
Rules

◎ Prove that if X→Y and Z→W, then XZ→YW
1. X→Y (given)
2. XZ→YZ (1 and Augmentation)
3. Z→W (given)
4. YZ→YW (3 and Augmentation)
5. XZ→YW (2, 4, and Transitivity)

◎Try to prove the three additional rules introduced 
earlier.

Relational DB Design I 40

Closure
◎ Closure of a set F of FDs is the set F+ of all FDs that 

can be inferred from F
◎ Closure of a set of attributes X with respect to F is 

the set X+ of all attributes that are functionally 
determined by X

◎ X+ can be calculated by repeatedly applying IR1, IR2, 
IR3 using the FDs in F 

◎ If we know how to compute the closure of any set of 
attributes, we can test if any given FD A1,…,An→B
follows from a set of FDs F
◉ Compute {A1,…,An}+
◉ If B ∈ {A1,…,An}+ , then A1,…,An → B
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Equivalence of Sets of FDs 

Relational DB Design I 41

◎ Two sets of FDs F and G are equivalent if:
◉ Every FD in F can be inferred from G, and
◉ Every FD in G can be inferred from F
◉ Hence, F and G are equivalent if F+ = G+

◎ Definition (Covers):
◉ F covers G if every FD in G can be inferred from F

￮ (i.e., if G+ subset-of F+)
◎ F and G are equivalent if F covers G and G covers F
◎ There is an algorithm for checking equivalence of sets of 

FDs 

Minimal Sets of FDs (1)

Relational DB Design I 42

◎A set of FDs is minimal if it satisfies the following 
conditions:
1. Every dependency in F has a single attribute for its RHS.
2. We cannot remove any dependency from F and have a set 

of dependencies that is equivalent to F.
3. We cannot replace any dependency X → A in F with a 

dependency Y → A, where Y is a proper-subset-of X ( Y 
subset-of X) and still have a set of dependencies that is 
equivalent to F.
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Minimal Sets of FDs (2)
◎ Every set of FDs has an equivalent minimal set
◎ There can be several equivalent minimal sets
◎ There is no simple algorithm for computing a 

minimal set of FDs that is equivalent to a set F of 
FDs

◎ To synthesize a set of relations, we assume that 
we start with a set of dependencies that is a 
minimal set 

Relational DB Design I 44

Normal Forms Based on 
Primary Keys 

◎ Normalization of relations 
◎ Approaches for relational schema design
◉ Perform a conceptual schema design using a conceptual 

model then map conceptual design into a set of relations
◉ Design relations based on external knowledge derived 

from existing implementation of files or forms or reports
◎ Normalization is then applied on the schema to 

transform the schema into a proper (‘good’) one.
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Normalization (1)

Relational DB Design I 45

◎ Normalization:
◉ Takes a schema through a series of tests
◉ Certify whether it satisfies a certain normal form
◉ Decompose unsatisfactory “bad” relations into 

smaller “good” relations
◎ Normal form:
◉ Conditions that must be satisfied for a relation 

schema to be in a particular “good” form 

Normalization (2)

Relational DB Design I 46

◎ 2NF, 3NF, BCNF 
◉ based on keys and FDs of a relation schema

◎ 4NF
◉ based on keys, multi-valued dependencies(MVDs) 

◎ 5NF 
◉ based on keys, join dependencies(JDs)

◎ Additional properties may be needed to ensure a 
good relational design
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Desirable Properties of 
Relational Schemas

◎ Nonadditive join property (lossless join)
• Extremely critical

◎ Dependency preservation property
• Desirable but sometimes sacrificed for other factors

Relational DB Design I 48

Practical Use of Normal 
Forms

◎ Normalization is carried out in practice so that the resulting 
designs are of high quality and meet the desirable properties 

◎ The practical utility of these normal forms becomes 
questionable when the constraints on which they are based are 
hard to understand or to detect

◎ The database designers need not normalize to the highest 
possible normal form
◉ (usually up to 3NF, BCNF.  4NF and further are rarely used)

◎ Denormalization:
◉ The process of storing the join of higher normal form relations 

as a base relation—which is in a lower normal form    
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Problems with 
Decompositions

Relational DB Design I 49

◎ There are three potential problems to consider:
◉ Some queries become more expensive.

￮ e.g., In which project does John work? (EMP2 JOIN X)
◉ Given instances of the decomposed relations, we may not 

be able to reconstruct the corresponding instance of the 
original relation!

◉ Checking some dependencies may require joining the 
instances of the decomposed relations.

◎ Tradeoff: Must consider these issues vs. 
redundancy.

Keys and Attributes (1)

Relational DB Design I 50

◎ A superkey of a relation schema R = {A1, A2, ...., 
An} is a set of attributes S  R with the property 
that no two tuples t1 and t2 in any legal relation 
state r of R will have t1[S] = t2[S] 

◎ A key K is a superkey with the additional 
property that removal of any attribute from K will 
cause K not to be a superkey any more. 
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Keys and Attributes(2)
◎ If a relation schema has more than one key, each 

is called a candidate key.
◉ One of the candidate keys is arbitrarily designated to be 

the primary key, and the others are called secondary keys.
◎ A prime attribute must be a member of some

candidate key
◎ A nonprime attribute is not a prime attribute—

that is, it is not a member of any candidate key. 

Relational DB Design I 52

First Normal Form 
◎ Disallows
◉ composite attributes
◉ multivalued attributes
◉ nested relations; attributes whose values for an 

individual tuple are non-atomic
◎ Considered to be part of the definition of the 

basic (flat) relational model
◎ Most RDBMSs allow only those relations to be 

defined that are in First Normal Form 
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Normalizing into 1NF

Relational DB Design I 53

Normalizing Nested 
Relations into 1NF

Relational DB Design I 54
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Second Normal Form (1) 
◎ Uses the concepts of FDs, primary key
◎ Definitions
◉ Prime attribute: An attribute that is member of any 

candidate key K
◉ Full functional dependency: a FD  Y → Z where removal of 

any attribute from Y means the FD does not hold any more
◎ Examples:
◉ {SSN, PNUMBER} → HOURS is a full FD since neither SSN 
→ HOURS nor PNUMBER → HOURS hold 

◉ {SSN, PNUMBER} → ENAME is not  a full FD (it is called a 
partial dependency ) since SSN → ENAME also holds 

Relational DB Design I 56

Second Normal Form (2)
◎ A relation schema R is in second normal form

(2NF) if every non-prime attribute A in R is fully
functionally dependent on the primary key.

◎ If R is not in 2NF, it can be decomposed into 2NF 
relations via the process of 2NF normalization.
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Normalizing into 2NF

Relational DB Design I 57

Third Normal Form (1)

Relational DB Design I 58

◎ Transitive dependency :
◉ a FD  X → Z that can be derived from two FDs   X → Y and 

Y → Z 

◎ Examples:
◉ SSN → DMGRSSN is a transitive FD 

￮ Since SSN → DNUMBER and DNUMBER → DMGRSSN hold 
◉ SSN → ENAME is non-transitive

￮ Since there is no set of attributes X where SSN → X and X →
ENAME 
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Third Normal Form (2)
◎ A relation schema R is in third normal form (3NF) if it is 

in 2NF and no non-prime attribute A in R is transitively
dependent on the primary key.

◎ R can be decomposed into 3NF relations via the process of 
3NF normalization

◎ NOTE:
◉ In X → Y and Y → Z, with X as the primary key, we consider 

this a problem only if Y is not a candidate key.
◉ When Y is a candidate key, there is no problem with the 

transitive dependency .
◉ E.g., Consider EMP ( SSN, Emp#, Salary ). 

￮ Here, SSN → Emp# → Salary and Emp# is a candidate 
key. 

Relational DB Design I 60

Normalizing into 3NF
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Normalization into 2NF and 
3NF

Relational DB Design I 61

2NF and 3NF Normalization

Relational DB Design I 62
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Normal Forms Defined 
Informally

◎ 1st normal form
◉ All attributes depend on the key

◎ 2nd normal form
◉ All attributes depend on the whole key

◎ 3rd normal form
◉ All attributes depend on nothing but the key

Relational DB Design I 64

General Definition of 
Second Normal Form

◎ The above definitions consider the primary key 
only.

◎ The following more general definitions take into 
account relations with multiple candidate keys.

◎ A relation schema R is in second normal form 
(2NF) if every non-prime attribute A in R is not 
partially dependent on any key of R.
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General Definition of Third 
Normal Form

Relational DB Design I 65

◎ Definition:
◉ Superkey of relation schema R - a set of attributes S of R 

that contains a key of R
◉ A relation schema R is in third normal form (3NF) if 

whenever a FD X → A holds in R, then either: 
￮ (a) X is a superkey of R, or        (the main point)
￮ (b) A is a prime attribute of R   (not a problem)

◎ NOTE: Boyce-Codd normal form disallows 
condition (b) above    (slide 67)

Alternative Definition of 
3NF

Relational DB Design I 66

◎ A relation schema R is in 3NF if every 
nonprime attribute of R meets both of the 
following conditions:
◉ It is fully functionally dependent on every key of R.
◉ It is nontransitively dependent on every key of R.
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BCNF (Boyce-Codd Normal 
Form) 

◎ A relation schema R is in Boyce-Codd Normal Form (BCNF)
if whenever an FD X → A holds in R, then X is a superkey of 
R

◎ Each normal form is strictly stronger than the previous one
◉ Every 2NF relation is in 1NF
◉ Every 3NF relation is in 2NF
◉ Every BCNF relation is in 3NF

◎ There exist relations that are in 3NF but not in BCNF
◎ The goal is to have each relation in BCNF (or 3NF)

Relational DB Design I 68

Boyce-Codd Normal Form
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A relation in 3NF but not in 
BCNF

Relational DB Design I 69

• A student can take 
several courses. But 
cannot take the same 
course twice.

• A course can be 
taught by several 
instructors.

• An instructor teaches 
only one course.

BCNF by Decomposition(1)

Relational DB Design I 70

◎ Two FDs exist in the relation TEACH:
◉ fd1: { student, course} → instructor
◉ fd2: instructor → course 

◎ {student, course} is a candidate key for this 
relation and that the dependencies shown follow 
the pattern in Figure 14.13 (b).
◉ So this relation is in 3NF but not in BCNF 



CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

36

Relational DB Design I 71

BCNF by Decomposition (2)
◎ A relation NOT in BCNF should be decomposed so 

as to meet this property, while possibly forgoing 
the preservation of all functional dependencies in 
the decomposed relations.

◎ Three possible decompositions for relation TEACH
◉ {student, instructor} and {student, course}
◉ {course, instructor } and {course, student}
◉ {instructor, course } and {instructor, student}

Relational DB Design I 72

BCNF by Decomposition (3)
◎ All three decompositions will lose fd1. 
◉ We have to settle for sacrificing the functional 

dependency preservation. But we cannot sacrifice the 
non-additivity property after decomposition.

◎ Only the 3rd decomposition will not generate spurious 
tuples after join (and hence has the non-additive 
property).

◎ A test to determine whether a binary decomposition 
(decomposition into two relations) is non-additive 
(lossless) will be discussed in the next lecture.
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Modeling Temporal Data

Relational DB Design I 73

◎ Temporal data have an association time interval 
during which the data are valid.

◎ A snapshot is the value of the data at a particular 
point in time.

◎ Several proposals to extend ER model by adding 
valid time to
◉ attributes, e.g., address of an instructor at different 

points in time
◉ entities, e.g., time duration when a student entity 

exists
◉ relationships, e.g., time during which an instructor 

was associated with a student as an advisor.

Modeling Temporal Data

RDB Design I 74

◎ But no accepted standard. (yet)
◎ Adding a temporal component results in FDs like

ID  street, city
not holding, because the address varies over time

◎ A temporal functional dependency X  Y 
holds on schema R if the functional dependency X 
 Y holds on all snapshots for all legal instances
r(R).
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Modeling Temporal Data
◎ In practice, database designers may add start and end

time attributes to relations
◉ E.g., course(course_id, course_title) is replaced by

course(course_id, course_title, start, end)
￮ Constraint: no two tuples can have overlapping valid 

times
● Hard to enforce efficiently

◎ Foreign key references may be to current version of 
data, or to data at a point in time.
◉ E.g., student transcript should refer to course 

information at the time the course was taken
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Lecture Summary
◎ Informal Design Guidelines for Relational DBs
◎ Functional Dependencies (FDs)
◉ Definition, Inference Rules, Equivalence of Sets of FDs, 

Minimal Sets of FDs
◎ Normal Forms Based on Primary Keys
◎ General Normal Form Definitions (For Multiple 

Keys)
◎ BCNF (Boyce-Codd Normal Form)
◎ Modeling temporal data


