
CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

1

CSIE30600/CSIEB0290
Database Systems

Lecture 10: Relational
Database Design I

Outline

Relational DB Design I 2

◎ Informal Design Guidelines for Relational DBs
◉ Semantics of the Relation Attributes
◉ Redundant Information in Tuples and Update Anomalies
◉ Null Values in Tuples
◉ Spurious Tuples

◎ Functional Dependencies (FDs)
◉ Definition of FD
◉ FD and DB design
◉ Inference Rules for FDs
◉ Equivalence of Sets of FDs
◉ Minimal Sets of FDs

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

2

Relational DB Design I 3

Outline
◎ Normal Forms Based on Primary Keys
◉ Normalization of Relations
◉ Practical Use of Normal Forms
◉ Definitions of Keys and Attributes Participating in Keys
◉ First Normal Form
◉ Second Normal Form
◉ Third Normal Form

◎ General Normal Form Definitions (For Multiple
Keys)

◎ BCNF (Boyce-Codd Normal Form)

Relational DB Design I 4

Relational DB Design
◎ Relational DB design requires that we find a “good”

collection of relation schemas
◎ A bad design may lead to
◉ Repetition of Information
◉ Inability to represent certain information

◎ Design Goals:
◉ Avoid redundant data
◉ Ensure that relationships among attributes are

represented
◉ Facilitate the checking of updates for violation of

database integrity constraints

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

3

Informal Guidelines (1)

Relational DB Design I 5

◎ What is relational database design?
◉ The grouping of attributes to form "good" relation

schemas
◎ Two levels of relation schemas
◉ The logical "user view" level
◉ The storage "base relation" level

◎ Design is concerned mainly with base relations
◎ What are the criteria for "good" base relations?

Informal Guidelines (2)

Relational DB Design I 6

◎ We first discuss informal guidelines for good design
◎ Then we discuss formal concepts of functional

dependencies and normal forms
◉ 1NF (First Normal Form)
◉ 2NF (Second Normal Form)
◉ 3NF (Third Normal Form)
◉ BCNF (Boyce-Codd Normal Form)

◎ Additional types of dependencies, further normal forms,
relational design algorithms by synthesis are discussed
in next lecture.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

4

Relational DB Design I 7

Measures of Quality
◎ Making sure attribute semantics are clear
◎ Reducing redundant information in tuples
◎ Reducing NULL values in tuples
◎ Disallowing possibility of generating

spurious tuples

Relational DB Design I 8

Guideline 1
◎ Design relation schema so that it is easy to explain its

meaning
◎ Each tuple in a relation should represent one entity or

relationship instance.
◎ Do not combine attributes from multiple entity types and

relationship types into a single relation
◎ Only foreign keys should be used to refer to other entities
◎ Entity and relationship attributes should be kept apart as much

as possible.
◎ Bottom Line: Design a schema that can be explained easily

relation by relation. The semantics of attributes should be easy
to interpret.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

5

Guideline 1 (cont’d.)

Relational DB Design I 9

◎ Example of violating Guideline 1: Why is it bad?

Example EMP_DEPT and EMP_PROJ

Relational DB Design I 10

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

6

Relational DB Design I 11

Design Choices: Small vs.
Large Schemas

◎ Which design is better? Why?

◎ An employee can be assigned to at most one
project, many employees participate in a project

Relational DB Design I 12

What’s wrong?
EMP(ENAME, SSN, ADDRESS, PNUM, PNAME,

PMGRSSN)
◎ The description of the project (the name and the

manager of the project) is repeated for every
employee that works in that department.

◎ Redundancy!
◎ The project is described redundantly.
◎ This leads to update anomalies.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

7

Redundant Information and
Update Anomalies

Relational DB Design I 13

◎ If information is stored redundantly
◉ Wastes storage
◉ Causes problems with update anomalies

◎ Types of update anomalies:
◉ Insertion anomalies
◉ Deletion anomalies
◉ Modification anomalies

Example of an Update
Anomaly

Relational DB Design I 14

◎ Consider the relation:
◉ EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

◎ Update Anomaly:
◉ Changing the name of project number P1 from “Billing” to

“Customer-Accounting” may cause this update to be
made for all 100 employees working on project P1.

◉ Failed to update anyone of them would leave the DB in
inconsistent state.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

8

Relational DB Design I 15

Example of an Insert
Anomaly

◎ Consider the relation:
◉ EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

◎ Insert Anomaly:
◉ Cannot insert a project unless an employee is assigned to

it.
◎ Conversely
◉ Cannot insert an employee unless an he/she is assigned

to a project.

Relational DB Design I 16

Example of an Delete
Anomaly

◎ Consider the relation:
◉ EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

◎ Delete Anomaly:
◉ When a project is deleted, it will result in deleting all the

employees who work on that project.
◉ Alternately, if an employee is the sole employee on a

project, deleting that employee would result in deleting
the corresponding project.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

9

Guideline 2

Relational DB Design I 17

◎ Design base relation schemas so that no
update anomalies are present in the relations

◎ If any anomalies are present:
◉ Note them clearly
◉ Make sure that the programs that update the

database will operate correctly

NULL Values in Tuples

Relational DB Design I 18

◎ Some designers may group many attributes
together into a “fat” relation
◉ Can end up with many NULLs

◎ Problems with NULLs
◉ Wasted storage space
◉ Problems in understanding meaning

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

10

Relational DB Design I 19

Guideline 3
◎ Relations should be designed such that their

tuples will have as few NULL values as possible
◉ Attributes that are NULL frequently could be placed in

separate relations
◎ If NULLs are unavoidable:
◉ Make sure that they apply in exceptional cases only, not

to a majority of tuples
◎ Reasons for NULL s:
◉ Attribute not applicable or invalid
◉ Attribute value unknown (may exist)
◉ Value known to exist, but unavailable

Relational DB Design I 20

Spurious(偽、假) Tuples
◎ Bad schema designs may result in erroneous results for

certain JOIN operations
◎ Figure 14.5(a)
◉ Relation schemas EMP_LOCS and EMP_PROJ1

◎ NATURAL JOIN
◉ Join result contains many more tuples than the

original set of tuples in EMP_PROJ
◉ Called spurious tuples
◉ Represent spurious information that is not valid

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

11

Examples of Spurious
Tuples

Relational DB Design I 21

◎ The
information in
EMP_PROJ

Relational DB Design I 22

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

12

Relational DB Design I 23

Relational DB Design I 24

Guideline 4
◎ Design relation schemas to be joined with

equality conditions on attributes that are
appropriately related
◉ Guarantees that no spurious tuples are generated

◎ The "lossless join" property is used to guarantee
meaningful results for join operations (more
about this later)

◎ Avoid relations that contain matching attributes
that are NOT (foreign key, primary key)
combinations

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

13

Summary of Design
Guidelines

Relational DB Design I 25

◎ Anomalies cause redundant work to be done
◎ Waste of storage space due to NULLs
◎ Difficulty of performing operations and joins due to

NULL values
◎ Generation of invalid and spurious data during

joins
◎ A good design should avoid all problems above.

Functional Dependencies
(FDs)

Relational DB Design I 26

◎ Formal tool for analysis of relational schemas
◎ Enables us to detect and describe some of the

above-mentioned problems in precise terms
◎ Theory of functional dependency

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

14

Relational DB Design I 27

FDs are Properties of Data
◎ There are usually a variety of constraints (rules) on the

data in the real world.
◎ For example, some of the constraints that are expected

to hold in a university database are:
◉ Students and instructors are uniquely identified by IDs.
◉ Each student and instructor has only one name.
◉ Each instructor and student is (primarily) associated with

only one department.
◉ Each department has only one value for its budget, and

only one associated building.

Relational DB Design I 28

FD is Generalization of Key
◎ An instance of a relation that satisfies all such real-world

constraints is called a legal instance of the relation;
◎ A legal instance of a database is one where all the

relation instances are legal instances.
◎ FDs are constraints on the set of legal relations.
◎ Require that the value for a certain set of attributes

determines uniquely the value for another set of
attributes.

◎ A functional dependency is a generalization of the notion
of a key.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

15

Definition of FDs

Relational DB Design I 29

◎ Constraint between two sets of attributes from the
database
◉ An attribute set X functionally determines another set Y if

the value of X determines a unique value for Y
◎ Functional dependencies (FDs)
◉ Are used to specify formal measures of the "goodness" of

relational designs
◉ Are used to define normal forms for relations
◉ Are constraints that are derived from the meaning and

interrelationships of the data attributes
◉ Use in the normalization process of schema design.

Definition of FDs (2)

Relational DB Design I 30

◎ X → Y holds if whenever two tuples have the same value
for X, they must have the same value for Y
◉ For any two tuples t1 and t2 in any relation

instance r(R): t1[X]=t2[X] t1[Y]=t2[Y]
◎ X → Y in R specifies a constraint on all relation instances

r(R)
◎ Written as X → Y; can be displayed graphically on a

relation schema. (denoted by arrow).
◎ FDs are derived from the real-world constraints on the

attributes

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

16

Relational DB Design I 31

Examples of FD Constraints (1)
◎ Social security number determines employee name
◉ SSN → ENAME

◎ Project number determines project name and location
◉ PNUMBER → {PNAME, PLOCATION}

◎ Employee SSN and project number determines the hours
per week that the employee works on the project
◉ {SSN, PNUMBER} → HOURS

◎ Any other example(s) that you can think of?

Relational DB Design I 32

Examples of FD Constraints (2)
◎ Examples of functional dependencies:

employee-number → employee-name
course-number → course-title
movieTitle, movieYear → length, filmType, studioName

◎ Examples that are NOT functional dependencies
employee-name → employee-number ×
two distinct employees can have the same name
course-number → book ×
a course may use multiple books
course-number → car-color ×
????

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

17

What is functional in a FD?

Relational DB Design I 33

◎ A1,…,An → B
◎ A FD is a function that takes a list of values (A1,…,An) and

produces a unique value B or no value at all (this value
can be the NULL value)

◎ We are looking for functional relationships (that must
occur in a relation) among attribute values.

More on FD Constraints

Relational DB Design I 34

◎ An FD is an intrinsic property of the attributes in
the schema R

◎ The constraint must hold on every relation instance
r(R)

◎ If K is a key of R, then K functionally determines all
attributes in R (why?)
◉ (since we never have two distinct tuples with

t1[K]=t2[K])

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

18

Relational DB Design I 35

Keys and FDs
◎ K is a superkey for relation schema R if and only if K R
◎ K is a candidate key for R if and only if
◉ K R, and
◉ There is no K such that R

◎ Functional dependencies allow us to express constraints that
cannot be expressed using superkeys. Consider the schema:

emp_dep (ID, name, salary, dept_name, building, budget
).
We expect these functional dependencies to hold:

dept_name building
ID building

but would not expect the following to hold:
dept_name salary

Relational DB Design I 36

Use of FDs
◎ We use functional dependencies to:
◉ To test relations to see if they are legal under a given

set of FDs.
￮ If a relation r is legal under a set F of FDs, we say that r satisfies F.

◉ To specify constraints on the set of legal relations
￮ We say that F holds on R if all legal relations on R satisfy the set

of functional dependencies F.
◎ Note: A specific instance of a relation schema

may satisfy an FD even if the FD does not hold
on all legal instances.
◉ For example, a specific instance of instructor may, by

chance, satisfy the FD name ID.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

19

Inference Rules for FDs (1)

Relational DB Design I 37

◎ Given a set of FDs F, we can infer additional FDs that
hold whenever the FDs in F hold

◎ Armstrong's inference rules:
◉ IR1. (Reflexive) If Y subset-of X, then X → Y
◉ IR2. (Augmentation) If X → Y, then XZ → YZ

￮ (Notation: XZ stands for X U Z)
◉ IR3. (Transitive) If X → Y and Y → Z, then X → Z

◎ IR1, IR2, IR3 form a sound and complete set of
inference rules
◉ These rules are correct
◉ All other rules that hold can be deduced from these

Inference Rules for FDs (2)

Relational DB Design I 38

◎ Some additional inference rules that are useful:
◉ Decomposition: If X → YZ, then X → Y and X → Z
◉ Union: If X → Y and X → Z, then X → YZ
◉ Psuedotransitivity: If X → Y and WY → Z, then WX → Z

◎ The three inference rules above, as well as any
other inference rules, can be deduced from IR1,
IR2, and IR3. (completeness property)

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

20

Relational DB Design I 39

Example: Using Inference
Rules

◎ Prove that if X→Y and Z→W, then XZ→YW
1. X→Y (given)
2. XZ→YZ (1 and Augmentation)
3. Z→W (given)
4. YZ→YW (3 and Augmentation)
5. XZ→YW (2, 4, and Transitivity)

◎Try to prove the three additional rules introduced
earlier.

Relational DB Design I 40

Closure
◎ Closure of a set F of FDs is the set F+ of all FDs that

can be inferred from F
◎ Closure of a set of attributes X with respect to F is

the set X+ of all attributes that are functionally
determined by X

◎ X+ can be calculated by repeatedly applying IR1, IR2,
IR3 using the FDs in F

◎ If we know how to compute the closure of any set of
attributes, we can test if any given FD A1,…,An→B
follows from a set of FDs F
◉ Compute {A1,…,An}+
◉ If B ∈ {A1,…,An}+ , then A1,…,An → B

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

21

Equivalence of Sets of FDs

Relational DB Design I 41

◎ Two sets of FDs F and G are equivalent if:
◉ Every FD in F can be inferred from G, and
◉ Every FD in G can be inferred from F
◉ Hence, F and G are equivalent if F+ = G+

◎ Definition (Covers):
◉ F covers G if every FD in G can be inferred from F

￮ (i.e., if G+ subset-of F+)
◎ F and G are equivalent if F covers G and G covers F
◎ There is an algorithm for checking equivalence of sets of

FDs

Minimal Sets of FDs (1)

Relational DB Design I 42

◎A set of FDs is minimal if it satisfies the following
conditions:
1. Every dependency in F has a single attribute for its RHS.
2. We cannot remove any dependency from F and have a set

of dependencies that is equivalent to F.
3. We cannot replace any dependency X → A in F with a

dependency Y → A, where Y is a proper-subset-of X (Y
subset-of X) and still have a set of dependencies that is
equivalent to F.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

22

Relational DB Design I 43

Minimal Sets of FDs (2)
◎ Every set of FDs has an equivalent minimal set
◎ There can be several equivalent minimal sets
◎ There is no simple algorithm for computing a

minimal set of FDs that is equivalent to a set F of
FDs

◎ To synthesize a set of relations, we assume that
we start with a set of dependencies that is a
minimal set

Relational DB Design I 44

Normal Forms Based on
Primary Keys

◎ Normalization of relations
◎ Approaches for relational schema design
◉ Perform a conceptual schema design using a conceptual

model then map conceptual design into a set of relations
◉ Design relations based on external knowledge derived

from existing implementation of files or forms or reports
◎ Normalization is then applied on the schema to

transform the schema into a proper (‘good’) one.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

23

Normalization (1)

Relational DB Design I 45

◎ Normalization:
◉ Takes a schema through a series of tests
◉ Certify whether it satisfies a certain normal form
◉ Decompose unsatisfactory “bad” relations into

smaller “good” relations
◎ Normal form:
◉ Conditions that must be satisfied for a relation

schema to be in a particular “good” form

Normalization (2)

Relational DB Design I 46

◎ 2NF, 3NF, BCNF
◉ based on keys and FDs of a relation schema

◎ 4NF
◉ based on keys, multi-valued dependencies(MVDs)

◎ 5NF
◉ based on keys, join dependencies(JDs)

◎ Additional properties may be needed to ensure a
good relational design

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

24

Relational DB Design I 47

Desirable Properties of
Relational Schemas

◎ Nonadditive join property (lossless join)
• Extremely critical

◎ Dependency preservation property
• Desirable but sometimes sacrificed for other factors

Relational DB Design I 48

Practical Use of Normal
Forms

◎ Normalization is carried out in practice so that the resulting
designs are of high quality and meet the desirable properties

◎ The practical utility of these normal forms becomes
questionable when the constraints on which they are based are
hard to understand or to detect

◎ The database designers need not normalize to the highest
possible normal form
◉ (usually up to 3NF, BCNF. 4NF and further are rarely used)

◎ Denormalization:
◉ The process of storing the join of higher normal form relations

as a base relation—which is in a lower normal form

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

25

Problems with
Decompositions

Relational DB Design I 49

◎ There are three potential problems to consider:
◉ Some queries become more expensive.

￮ e.g., In which project does John work? (EMP2 JOIN X)
◉ Given instances of the decomposed relations, we may not

be able to reconstruct the corresponding instance of the
original relation!

◉ Checking some dependencies may require joining the
instances of the decomposed relations.

◎ Tradeoff: Must consider these issues vs.
redundancy.

Keys and Attributes (1)

Relational DB Design I 50

◎ A superkey of a relation schema R = {A1, A2,,
An} is a set of attributes S R with the property
that no two tuples t1 and t2 in any legal relation
state r of R will have t1[S] = t2[S]

◎ A key K is a superkey with the additional
property that removal of any attribute from K will
cause K not to be a superkey any more.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

26

Relational DB Design I 51

Keys and Attributes(2)
◎ If a relation schema has more than one key, each

is called a candidate key.
◉ One of the candidate keys is arbitrarily designated to be

the primary key, and the others are called secondary keys.
◎ A prime attribute must be a member of some

candidate key
◎ A nonprime attribute is not a prime attribute—

that is, it is not a member of any candidate key.

Relational DB Design I 52

First Normal Form
◎ Disallows
◉ composite attributes
◉ multivalued attributes
◉ nested relations; attributes whose values for an

individual tuple are non-atomic
◎ Considered to be part of the definition of the

basic (flat) relational model
◎ Most RDBMSs allow only those relations to be

defined that are in First Normal Form

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

27

Normalizing into 1NF

Relational DB Design I 53

Normalizing Nested
Relations into 1NF

Relational DB Design I 54

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

28

Relational DB Design I 55

Second Normal Form (1)
◎ Uses the concepts of FDs, primary key
◎ Definitions
◉ Prime attribute: An attribute that is member of any

candidate key K
◉ Full functional dependency: a FD Y → Z where removal of

any attribute from Y means the FD does not hold any more
◎ Examples:
◉ {SSN, PNUMBER} → HOURS is a full FD since neither SSN
→ HOURS nor PNUMBER → HOURS hold

◉ {SSN, PNUMBER} → ENAME is not a full FD (it is called a
partial dependency) since SSN → ENAME also holds

Relational DB Design I 56

Second Normal Form (2)
◎ A relation schema R is in second normal form

(2NF) if every non-prime attribute A in R is fully
functionally dependent on the primary key.

◎ If R is not in 2NF, it can be decomposed into 2NF
relations via the process of 2NF normalization.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

29

Normalizing into 2NF

Relational DB Design I 57

Third Normal Form (1)

Relational DB Design I 58

◎ Transitive dependency :
◉ a FD X → Z that can be derived from two FDs X → Y and

Y → Z

◎ Examples:
◉ SSN → DMGRSSN is a transitive FD

￮ Since SSN → DNUMBER and DNUMBER → DMGRSSN hold
◉ SSN → ENAME is non-transitive

￮ Since there is no set of attributes X where SSN → X and X →
ENAME

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

30

Relational DB Design I 59

Third Normal Form (2)
◎ A relation schema R is in third normal form (3NF) if it is

in 2NF and no non-prime attribute A in R is transitively
dependent on the primary key.

◎ R can be decomposed into 3NF relations via the process of
3NF normalization

◎ NOTE:
◉ In X → Y and Y → Z, with X as the primary key, we consider

this a problem only if Y is not a candidate key.
◉ When Y is a candidate key, there is no problem with the

transitive dependency .
◉ E.g., Consider EMP (SSN, Emp#, Salary).

￮ Here, SSN → Emp# → Salary and Emp# is a candidate
key.

Relational DB Design I 60

Normalizing into 3NF

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

31

Normalization into 2NF and
3NF

Relational DB Design I 61

2NF and 3NF Normalization

Relational DB Design I 62

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

32

Relational DB Design I 63

Normal Forms Defined
Informally

◎ 1st normal form
◉ All attributes depend on the key

◎ 2nd normal form
◉ All attributes depend on the whole key

◎ 3rd normal form
◉ All attributes depend on nothing but the key

Relational DB Design I 64

General Definition of
Second Normal Form

◎ The above definitions consider the primary key
only.

◎ The following more general definitions take into
account relations with multiple candidate keys.

◎ A relation schema R is in second normal form
(2NF) if every non-prime attribute A in R is not
partially dependent on any key of R.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

33

General Definition of Third
Normal Form

Relational DB Design I 65

◎ Definition:
◉ Superkey of relation schema R - a set of attributes S of R

that contains a key of R
◉ A relation schema R is in third normal form (3NF) if

whenever a FD X → A holds in R, then either:
￮ (a) X is a superkey of R, or (the main point)
￮ (b) A is a prime attribute of R (not a problem)

◎ NOTE: Boyce-Codd normal form disallows
condition (b) above (slide 67)

Alternative Definition of
3NF

Relational DB Design I 66

◎ A relation schema R is in 3NF if every
nonprime attribute of R meets both of the
following conditions:
◉ It is fully functionally dependent on every key of R.
◉ It is nontransitively dependent on every key of R.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

34

Relational DB Design I 67

BCNF (Boyce-Codd Normal
Form)

◎ A relation schema R is in Boyce-Codd Normal Form (BCNF)
if whenever an FD X → A holds in R, then X is a superkey of
R

◎ Each normal form is strictly stronger than the previous one
◉ Every 2NF relation is in 1NF
◉ Every 3NF relation is in 2NF
◉ Every BCNF relation is in 3NF

◎ There exist relations that are in 3NF but not in BCNF
◎ The goal is to have each relation in BCNF (or 3NF)

Relational DB Design I 68

Boyce-Codd Normal Form

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

35

A relation in 3NF but not in
BCNF

Relational DB Design I 69

• A student can take
several courses. But
cannot take the same
course twice.

• A course can be
taught by several
instructors.

• An instructor teaches
only one course.

BCNF by Decomposition(1)

Relational DB Design I 70

◎ Two FDs exist in the relation TEACH:
◉ fd1: { student, course} → instructor
◉ fd2: instructor → course

◎ {student, course} is a candidate key for this
relation and that the dependencies shown follow
the pattern in Figure 14.13 (b).
◉ So this relation is in 3NF but not in BCNF

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

36

Relational DB Design I 71

BCNF by Decomposition (2)
◎ A relation NOT in BCNF should be decomposed so

as to meet this property, while possibly forgoing
the preservation of all functional dependencies in
the decomposed relations.

◎ Three possible decompositions for relation TEACH
◉ {student, instructor} and {student, course}
◉ {course, instructor } and {course, student}
◉ {instructor, course } and {instructor, student}

Relational DB Design I 72

BCNF by Decomposition (3)
◎ All three decompositions will lose fd1.
◉ We have to settle for sacrificing the functional

dependency preservation. But we cannot sacrifice the
non-additivity property after decomposition.

◎ Only the 3rd decomposition will not generate spurious
tuples after join (and hence has the non-additive
property).

◎ A test to determine whether a binary decomposition
(decomposition into two relations) is non-additive
(lossless) will be discussed in the next lecture.

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

37

Modeling Temporal Data

Relational DB Design I 73

◎ Temporal data have an association time interval
during which the data are valid.

◎ A snapshot is the value of the data at a particular
point in time.

◎ Several proposals to extend ER model by adding
valid time to
◉ attributes, e.g., address of an instructor at different

points in time
◉ entities, e.g., time duration when a student entity

exists
◉ relationships, e.g., time during which an instructor

was associated with a student as an advisor.

Modeling Temporal Data

RDB Design I 74

◎ But no accepted standard. (yet)
◎ Adding a temporal component results in FDs like

ID street, city
not holding, because the address varies over time

◎ A temporal functional dependency X Y
holds on schema R if the functional dependency X
 Y holds on all snapshots for all legal instances
r(R).

CSIE30600/CSIEB0290 Database Systems Lecture 10: RDB Design I

38

Relational DB Design I 75

Modeling Temporal Data
◎ In practice, database designers may add start and end

time attributes to relations
◉ E.g., course(course_id, course_title) is replaced by

course(course_id, course_title, start, end)
￮ Constraint: no two tuples can have overlapping valid

times
● Hard to enforce efficiently

◎ Foreign key references may be to current version of
data, or to data at a point in time.
◉ E.g., student transcript should refer to course

information at the time the course was taken

Relational DB Design I 76

Lecture Summary
◎ Informal Design Guidelines for Relational DBs
◎ Functional Dependencies (FDs)
◉ Definition, Inference Rules, Equivalence of Sets of FDs,

Minimal Sets of FDs
◎ Normal Forms Based on Primary Keys
◎ General Normal Form Definitions (For Multiple

Keys)
◎ BCNF (Boyce-Codd Normal Form)
◎ Modeling temporal data

