
CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 1

CSIEB0100 Data Structures

Lecture01 Basic Concepts

Shiow-yang Wu 吳秀陽
Department of Computer Science
and Information Engineering
National Dong Hwa University

Lecture material is mostly home-grown, partly adapted from slides came with
the textbook originally prepared by Professor Jiun-Long Huang of NCTU.

What The Course Is About

 Data structures is concerned with the
representation and manipulation of data.

 All programs manipulate data.

 So, all programs need to represent data in
some way.

 All programs need data structures.

 Data manipulation requires an algorithm.

CSIEB0100 Data Structures Basic Concepts 2

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 2

What The Course Is About

 We shall study structures to represent data
and algorithms to manipulate these structures

 The study of data structures is fundamental to
Computer Science & Engineering

CSIEB0100 Data Structures Basic Concepts 3

Prerequisites

 C++
 Most examples will be presented in C++

 Asymptotic Complexity
 Big Oh, Theta, and Omega notations

 We will provide short reviews for both topics

CSIEB0100 Data Structures Basic Concepts 4

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 3

Course Web Page

 http://web.csie.ndhu.edu.tw/showyang/DS202
3f/index.html

 Handouts, syllabus, textbooks, source codes,
exercises, lectures, assignments, TAs, etc.

 Office: Sci & Eng Building II C308

CSIEB0100 Data Structures Basic Concepts 5

Assignments
 All assignments will be given in the class.

 Submit your programs and test data/result to
the TA leader. (Detail instruction will be given
in the class Web page)

 Do Assignment 0 by next week

CSIEB0100 Data Structures Basic Concepts 6

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 4

Grades
 Assignments 35%

 Midterm Exam 35%

 Final Exam 35%

 Yes! 105% !!

 As long as you work hard, it’s hard to fail in this
class.

CSIEB0100 Data Structures Basic Concepts 7

Assignment 0: Getting Started
 Download Code::Blocks and install it on your own

machine by following the instructions along with
the file.

 Download the source code of the textbook
samples from the book’s web site.

 Unfortunately, the code doesn’t work out of the
box.

 Assignment 0 is to make all code of Chapter 1
work correctly.

 Submit any one of the corrected code to the TA.

CSIEB0100 Data Structures Basic Concepts 8

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 5

System Life Cycle
 Large-scale programs are considered as systems

with many complex interacting components.

 The development process of such programs is
known as the system/software life cycle.

 Different development methodologies lead to
different software life cycles.

 The goal is to find repeatable, predictable
processes that improve software productivity and
quality.

 No de-facto standard yet!

CSIEB0100 Data Structures Basic Concepts 9

Three Traditional Models

CSIEB0100 Data Structures Basic Concepts 10

(https://courses.lumenlearning.com/sanjacinto-computerapps/chapter/reading-
software-development-process/)

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 6

Waterfall Model 1/2
 Requirements
 Project goals

 Input/Output specification

 Analysis
 Bottom-up

 Top-down

 Design
 Data objects: abstract data types

 Operations: specification & design of algorithms

CSIEB0100 Data Structures Basic Concepts 11

Waterfall Model 2/2
 Refinement & Implementation

 Choose representations for data objects
 Write algorithms for operations on data objects
 Write programs that implement the algorithms

 Verification
 Correctness proofs: selecting proved algorithms
 Testing: correctness & efficiency
 Error removal (debugging): much easier with well-

designed and well-documented code

 Maintenance
 Modification to correct faults, improve performance or

other attributes.

CSIEB0100 Data Structures Basic Concepts 12

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 7

Agile Model
 Flexible and responsive software development

for fast adaptation to changes.

CSIEB0100 Data Structures Basic Concepts 13

(https://www.javatpoint.com/agile-vs-waterfall-model)

S/W Development with AI
 AI-assisted

development is a
widespread trend.

 No proven and
well-accepted
model yet.

 Use cases and
best practices are
accumulating.

 Very popular for
generating code
snippets.

CSIEB0100 Data Structures Basic Concepts 14

Requirement Collection
(func, input, output, …)

Prompt Formulation
(prompt engineering)

Code Generation

Code Verification

Refinement
(prompt

engineering)

Test and Integration

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 8

Quality Evaluation
 Meet the original requirement specification?

 Work correctly?

 Document?

 Use functions to create logical units?

 Code readable?

 Use storage efficiently?

 Running time acceptable?

CSIEB0100 Data Structures Basic Concepts 15

Data Abstraction & Encapsulation
 Data encapsulation or information hiding is

the concealing of the implementation details of a
data object from the outside world

 Data abstraction is the separation between the
specification of a data object and its
implementation

 A data type is a collection of objects and a set of
operations that act on those objects

CSIEB0100 Data Structures Basic Concepts 16

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 9

Specification vs Implementation
 Specification: Description of data or function

without representation or implementation details.
 Representation: Detail description of how data

should be represented in a computer program.
 E.g., char 1 byte, int 4 bytes

 Implementation: Detail description of how to realize
the specification of data or function with computer
programs.

 Separation of specification and implementation is the
key to the systematic study of data structures.

 It is possible to have different implementations of the
same specification.

CSIEB0100 Data Structures Basic Concepts 17

Abstract Data Type (ADT)
 An abstract data type (ADT) is a data type

that is organized such that
 the specification of the objects & operations

 is separated from the representation of the objects
and the implementation of the operations

 ADT is implementation-independent

CSIEB0100 Data Structures Basic Concepts 18

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 10

CSIEB0100 Data Structures Basic Concepts 19

In
te

rf
ac

e

Behavior(semantics)

Algorithm Specification
 Definition: An algorithm is a finite set of

instructions that accomplishes a particular
task.

 Criteria that ALL algorithms must satisfy:
 Input: zero or more
 Output: at least one
 Definiteness: clear and unambiguous
 Finiteness: terminate after a finite number of

steps
 Effectiveness: instruction is basic enough to be

carried out

CSIEB0100 Data Structures Basic Concepts 20

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 11

Algorithm vs Program
 One difference between an algorithm and a

program is that the latter does not have to
satisfy the fourth condition
 Program doesn’t have to be finite

 E.g., OS scheduling

CSIEB0100 Data Structures Basic Concepts 21

Example 1: Selection Sort

 From those integers that are currently unsorted,
find the smallest and place it next in the sorted
list.

CSIEB0100 Data Structures Basic Concepts 22

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 12

Selection Sort

CSIEB0100 Data Structures

void sort (int *a, int n)
// sort n integers a[0] to a[n-1] into nondecreasing order
{

for (int i = 0; i < n; i++)
{

int j = i; // a[j] is the current smallest int
// find smallest KeyType in a[i] to a[n-1]
for (int k = i+1; k < n; k++)

if (a[k] < a[j]) j = k; // update j to the new smallest
int temp = a[i]; a[i] = a[j]; a[j] = temp; // swap

}
}

Basic Concepts 23

CSIEB0100 Data Structures Basic Concepts 24

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 13

Selection Sort Animation
 http://liveexample.pearsoncmg.com/liang/animati

on/web/SelectionSort.html

 The site:
https://liveexample.pearsoncmg.com/liang/animat
ion/

 Provides many animations for other data
structures and algorithms.

CSIEB0100 Data Structures Course Information 25

Example 2: Binary Search

CSIEB0100 Data Structures Basic Concepts 26

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 14

Binary Search in C++
char compare (int x, int y)

{

if (x > y) return '>';

else if (x < y) return '<';

else return '=';

}

CSIEB0100 Data Structures Basic Concepts 27

int BinarySearch (int *a, int x, const int n)

// Search the sorted array a[0], ..., a[n-1] for x

{

for (int left = 0, right = n - 1; left <= right;) { // more elements

int middle = (left + right)/2;

switch (compare (x, a[middle])){

case '>': left = middle + 1; break; // x > a[middle]

case '<': right = middle - 1; break; // x < a[middle]

case '=': return middle; // x == a[middle]

} // end of switch

} // end of for

return -1; // not found

} // end of BinarySearch

CSIEB0100 Data Structures Basic Concepts 28

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 15

Binary Search Examples

 Input
 1 3 7 9 13 20 31

 Search for 7 (next slide)

 Search for 16 (exercise)

CSIEB0100 Data Structures Basic Concepts 29

CSIEB0100 Data Structures Basic Concepts 30

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 16

Binary Search Animation
 http://liveexample.pearsoncmg.com/liang/animati

on/web/BinarySearch.html

CSIEB0100 Data Structures Basic Concepts 31

Binary vs Sequential Search
 Comparison between sequential search and

binary search
 Binary search is faster than sequential search

 However, binary search requires the input to be
sorted in advance

 Should we always use binary search?
 Not necessary.

CSIEB0100 Data Structures Basic Concepts 32

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 17

Example 3: Selection Problem
 Selection problem: select the k-th largest

among N numbers

 Approach 1
 Read N numbers into an array

 Sort the array in decreasing order

 Return the element in position k

CSIEB0100 Data Structures Basic Concepts 33

Example 3: Selection Problem
 Approach 2
 Read k elements into an array

 Sort them in decreasing order

 For each remaining elements, read one by one

 Ignored if it is smaller than the k-th element

 Otherwise, place in correct place and kick one out
of the array (which one?)

 Return the last (kth) element of the array after all
elements have been processed

CSIEB0100 Data Structures Basic Concepts 34

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 18

Example of Approach 2
 Input

 20 9 15 6 17 30

 Find the 3rd largest number

 Read three numbers and sort them in
descending order
 20 15 9

 Read next: “6”
 20 15 9

CSIEB0100 Data Structures Basic Concepts 35

Example of Approach 2
 Read next: “17”

 20 17 15

 9 is out

 Read next: “30”
 30 20 17

 15 is out

 Finish processing of all numbers.

 The third largest number is 17.

 Does it work all the time?

CSIEB0100 Data Structures Basic Concepts 36

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 19

Comparison of Approach 1 & 2
 Which one is better?
 Implementation difficulty

 Efficiency
 Time complexity analysis

 Remember that time complexity is not the only
yardstick
 Space complexity

 Easy to implement

 …

CSIEB0100 Data Structures Basic Concepts 37

Recursive Algorithms
 Recursion is usually used to solve a problem in a

“divided-and-conquer” manner

 Direct recursion
 Functions that call themselves

 Indirect recursion
 Functions that call other functions that invoke calling

function again

 C(n,m) = n!/[m!(n-m)!]
 C(n,m)=C(n-1,m)+C(n-1,m-1) // why?

 Boundary condition for recursion

CSIEB0100 Data Structures Basic Concepts 38

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 20

Recursive Summation
 sum(1, n)=sum(1, n-1)+n

 sum(1, 1)=1

int sum(int n)

{

if (n==1)

return (1);

else

return(sum(n-1)+n);

}
CSIEB0100 Data Structures Basic Concepts 39

Recursive Factorial
 n!=n×(n-1)!

 fact(n)=n×fact(n-1)

 0!=1
int fact(int n)

{

if (n== 0)

return (1);

else

return (n * fact(n-1));

}

CSIEB0100 Data Structures Basic Concepts 40

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 21

Recursive Multiplication
 a×b=a×(b-1)+a

 a×1=a

int mult(int a, int b)

{

if (b==1)

return (a);

else

return(mult(a,b-1) + a);

}
CSIEB0100 Data Structures Basic Concepts 41

Recursive Binary Search
int BinarySearch (int *a, int x, const int left, const int right)

//Search the sorted array a[left], ..., a[right] for x

{

if (left <= right) {

int mid = (left + right)/2;

switch (compare (x, a[mid])){

case '>': return BinarySearch(a, x, mid+1, right); // x > a[mid]

case '<': return BinarySearch(a, x, left, mid-1); // x < a[mid]

case '=': return mid; // x == a[mid]

} // end of switch

} // end of if

return -1;// not found

}// end of BinarySearch

CSIEB0100 Data Structures Basic Concepts 42

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 22

Recursive Permutation
 Permutation of {a, b, c}
 (a, b, c), (a, c, b)

 (b, a, c), (b, c, a)

 (c, a, b), (c, b, a)

 Recursion?
 a+Perm({b,c})

 b+Perm({a,c})

 c+Perm({a,b})

CSIEB0100 Data Structures Basic Concepts 43

void perm (char *a, const int k, const int n) // n is the size of a
// Generate all the permutations of a[k], ..., a[n-1].
{

if (k == n-1) { // output permutation
for (int i = 0; i < n; i++) cout << a[i] << " ";
cout << endl;

}
else { // a[k], ..., a[n-1] has more than one permutation.

// Generate these recursively
for (int i = k; i < n; i++) {

// swap a[k] and a[i]
char temp = a[k]; a[k] = a[i]; a[i] = temp;
perm(a, k+1, n); // all permutations of a[k+1], ..., a[n-1]
// swap a[k] and a[i] back to original
temp = a[k]; a[k] = a[i]; a[i] = temp;

}
} // end of else

} // end of perm
// Can we improve the code above?

CSIEB0100 Data Structures Basic Concepts 44

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 23

CSIEB0100 Data Structures Basic Concepts 45

Performance Evaluation
 Criteria
 Is it correct?

 Is it efficient?

 Is it readable?

 Performance analysis
 Machine independent

 Performance measurement
 Machine dependent

CSIEB0100 Data Structures Basic Concepts 46

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 24

Performance Analysis
 Complexity theory

 Space complexity
 Amount of memory

 Time complexity
 Amount of computing time

CSIEB0100 Data Structures Basic Concepts 47

Space Complexity
 S(P) = c + Sp(I)
 c: fixed space (instruction, simple variables,

constants)

 Sp(I): depends on characteristics of instance I

 Characteristics: number, size, values of I/O
associated with I

 If n is the only characteristic, Sp(I) = Sp(n)

CSIEB0100 Data Structures Basic Concepts 48

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 25

Space Complexity Examples

CSIEB0100 Data Structures Basic Concepts 49

Space Complexity Examples

CSIEB0100 Data Structures Basic Concepts 50

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 26

Time Complexity
 T(P) = c + Tp(I)
 c: compile time

 Tp(I): program execution time
 Depends on characteristics of instance I

 Predict the growth in run time as the instance
characteristics change

CSIEB0100 Data Structures Basic Concepts 51

Time Complexity
 Compile time (c)
 Independent of instance characteristics

 Run (execution) time TP

 A program step is a syntactically or
semantically meaningful program segment
whose execution time is independent of the
instance characteristics.

 Time complexity can be measured by
counting the total number of steps required.

CSIEB0100 Data Structures Basic Concepts 52

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 27

Methods to Compute Step Count
 Introduce variable count into programs

 Tabular method

 Determine the total number of steps
contributed by each statement

step per execution × frequency

 Add up the contribution of all statements

CSIEB0100 Data Structures Basic Concepts 53

Step Count with count Variable

CSIEB0100 Data Structures Basic Concepts 54

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 28

Step Count with count Variable

CSIEB0100 Data Structures Basic Concepts 55

Tabular Method

CSIEB0100 Data Structures Basic Concepts 56

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 29

Time Complexity
 Cases
 Worst case

 Best case

 Average case

 Worst case and average case analysis is
much more useful in practice

CSIEB0100 Data Structures Basic Concepts 57

Time Complexity
 Difficult to determine the exact step counts

 What a step stands for is inexact
 e.g. x := y v.s. x := y + z + (x/y) + …

 Exact step count is not useful for comparison

 Step count doesn’t tell how much time a step
takes

 Just consider the growth in run time as the
instance characteristics change

CSIEB0100 Data Structures Basic Concepts 58

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 30

Asymptotic Notation – Big O
 f(n)=O(g(n)) iff

∃ a real constant c > 0 and an integer constant
n0 ≧ 1, ∋ f(n) ≤ cg(n) ∀n, n ≥ n0

CSIEB0100 Data Structures Basic Concepts 59

Big O Examples
 Examples
 3n+2 =O(n)

3n+2≤4n for all n≥2

 10n2+4n+2=O(n2)

10n2+4n+2≤11n2 for all n≥10

 3n+2 = O(n2)

3n+2≤n2 for all n≥4 (Not tight enough!)

 g(n) should be a least upper bound

CSIEB0100 Data Structures Basic Concepts 60

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 31

Asymptotic Notation – Big 
 f(n)=(g(n)) iff

∃ a real constant c > 0 and an integer constant
n0 ≧ 1, ∋ f(n)  cg(n) ∀n, n ≥ n0

CSIEB0100 Data Structures Basic Concepts 61

Big  Examples
 Examples
 3n+3=Ω(n)

3n+3≥3n for all n≥1

 6*2n+n2=Ω(2n)

6*2n+n2≥2n for all n≥1

 3n+3=Ω(1)

3n+3≥3 for all n≥1 (Not tight enough!)

 g(n) should be a greatest lower bound

CSIEB0100 Data Structures Basic Concepts 62

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 32

Asymptotic Notation – Big 
 f(n)=Θ(g(n)) iff

∃ two positive real constants c1,c2 > 0, and an
integer constant n0 ≧ 1, ∋ c1g(n) ≤ f(n) ≤ c2g(n), ∀
n, n ≥ n0

CSIEB0100 Data Structures Basic Concepts 63

Big  Examples
 Examples
 3n+2= Θ(n)

3n≤3n+2≤4n, for all n≥2

 10n2+4n+2= Θ(n2)

10n2≤10n2+4n+2≤11n2, for all n≥5

 g(n) should be both lower bound & upper
bound

CSIEB0100 Data Structures Basic Concepts 64

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 33

Some Rules
 Rule 1:

If T1(N)=O(f(N)) and T2(N)=O(g(N)) Then

(a) T1(N)+T2(N) = max (O(f(N)), O(g(N)))

(b) T1(N)×T2(N) = O(f(N)×g(N))

 Rule 2:

If T(N) is a polynomial of degree k, then

T(N)= Θ(Nk)

CSIEB0100 Data Structures Basic Concepts 65

Running Time Calculation
 For loop

for (i=0; i<n; i++)

{

x++;

y++;

z++;

}

 n×3=O(n)

CSIEB0100 Data Structures Basic Concepts 66

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 34

Running Time Calculation
 Nested for loops

for (i=0; i <n; i++)

for (j=0; j<n; j++)

k++;

 n×n=O(n2)

CSIEB0100 Data Structures Basic Concepts 67

Running Time Calculation
 Consecutive statements

for (i=0; i<n; i++)

A[i]=0;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

A[i]+=A[j]+i+j

 max(1×n, 1×n×n)=1×n×n=O(n2)

CSIEB0100 Data Structures Basic Concepts 68

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 35

Running Time Calculation
 If/Else

if (i>0) {
i++;
j++;

}
else {

for (j=0; j<n; j++)
k++;

}
 max(2, 1×n)=n

CSIEB0100 Data Structures Basic Concepts 69

Running Time Calculation – Recursion

long int F(int N)

{

if (N<=1)

return 1;

else

return N*F(N-1);

}

CSIEB0100 Data Structures Basic Concepts 70

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 36

Typical Growth Rate
 c: constant

 log N: logarithmic

 log2N: Log-squared

 N: Linear

 NlogN:

 N2: Quadratic

 N3: Cubic

 2N, cN : Exponential

CSIEB0100 Data Structures Basic Concepts 71

Comparison of Growth Rate

CSIEB0100 Data Structures Basic Concepts 72

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 37

Colorful Growth Rate Comparison

CSIEB0100 Data Structures Basic Concepts 73

Practical Complexities

109 instructions/second

n n nlogn n2 n3

1000 1mic 10mic 1milli 1sec

10000 10mic 130mic 100milli 17min

106 1milli 20milli 17min 32years

CSIEB0100 Data Structures Basic Concepts 74

CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 38

Impractical Complexities

109 instructions/second

n n4 n10 2n

1000 17min 3.2 x 1013
years

3.2 x 10283
years

10000

116
days

 ??? ???

106 3 x 107
years

?????? ??????

CSIEB0100 Data Structures Basic Concepts 75

Faster Computer vs Better
Algorithm

Algorithmic improvement more useful

than hardware improvement.

E.g. 2n to n3

CSIEB0100 Data Structures Basic Concepts 76

