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CSIEB0100 Data Structures

Lecture01 Basic Concepts

Shiow-yang Wu 吳秀陽
Department of Computer Science 
and Information Engineering
National Dong Hwa University

Lecture material is mostly home-grown, partly adapted from slides came with 
the textbook originally prepared by Professor Jiun-Long Huang of NCTU.

What The Course Is About

 Data structures is concerned with the 
representation and manipulation of data.

 All programs manipulate data.

 So, all programs need to represent data in 
some way.

 All programs need data structures.

 Data manipulation requires an algorithm.
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What The Course Is About

 We shall study structures to represent data 
and algorithms to manipulate these structures

 The study of data structures is fundamental to 
Computer Science & Engineering
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Prerequisites

 C++
 Most examples will be presented in C++

 Asymptotic Complexity
 Big Oh, Theta, and Omega notations

 We will provide short reviews for both topics
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Course Web Page

 http://web.csie.ndhu.edu.tw/showyang/DS202
3f/index.html

 Handouts, syllabus, textbooks, source codes, 
exercises, lectures, assignments, TAs, etc.

 Office: Sci & Eng Building II C308
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Assignments
 All assignments will be given in the class.

 Submit your programs and test data/result to 
the TA leader. (Detail instruction will be given 
in the class Web page)

 Do Assignment 0 by next week
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Grades
 Assignments 35%

 Midterm Exam 35%

 Final Exam 35%

 Yes!  105% !!  

 As long as you work hard, it’s hard to fail in this 
class.

CSIEB0100 Data Structures Basic Concepts 7

Assignment 0: Getting Started
 Download Code::Blocks and install it on your own 

machine by following the instructions along with 
the file.

 Download the source code of the textbook 
samples from the book’s web site.

 Unfortunately, the code doesn’t work out of the 
box.

 Assignment 0 is to make all code of Chapter 1
work correctly.

 Submit any one of the corrected code to the TA.
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System Life Cycle
 Large-scale programs are considered as systems

with many complex interacting components.

 The development process of such programs is 
known as the system/software life cycle.

 Different development methodologies lead to 
different software life cycles.

 The goal is to find repeatable, predictable
processes that improve software productivity and 
quality.

 No de-facto standard yet!

CSIEB0100 Data Structures Basic Concepts 9

Three Traditional Models
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Waterfall Model 1/2
 Requirements
 Project goals

 Input/Output specification

 Analysis
 Bottom-up

 Top-down

 Design
 Data objects: abstract data types

 Operations: specification & design of algorithms
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Waterfall Model 2/2
 Refinement & Implementation

 Choose representations for data objects
 Write algorithms for operations on data objects
 Write programs that implement the algorithms

 Verification
 Correctness proofs: selecting proved algorithms
 Testing: correctness & efficiency
 Error removal (debugging): much easier with well-

designed and well-documented code

 Maintenance
 Modification to correct faults, improve performance or 

other attributes.
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Agile Model
 Flexible and responsive software development 

for fast adaptation to changes.
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(https://www.javatpoint.com/agile-vs-waterfall-model)

S/W Development with AI
 AI-assisted

development is a 
widespread trend.

 No proven and 
well-accepted 
model yet.

 Use cases and 
best practices are 
accumulating.

 Very popular for 
generating code 
snippets.
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Requirement Collection 
(func, input, output, …)

Prompt Formulation 
(prompt engineering)

Code Generation

Code Verification

Refinement 
(prompt 

engineering)

Test and Integration
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Quality Evaluation
 Meet the original requirement specification?

 Work correctly?

 Document?

 Use functions to create logical units?

 Code readable?

 Use storage efficiently?

 Running time acceptable?
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Data Abstraction & Encapsulation
 Data encapsulation or information hiding is 

the concealing of the implementation details of a 
data object from the outside world

 Data abstraction is the separation between the 
specification of a data object and its 
implementation

 A data type is a collection of objects and a set of 
operations that act on those objects
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Specification vs Implementation
 Specification: Description of data or function 

without representation or implementation details.
 Representation: Detail description of how data 

should be represented in a computer program.
 E.g., char 1 byte, int 4 bytes

 Implementation: Detail description of how to realize 
the specification of data or function with computer 
programs.

 Separation of specification and implementation is the 
key to the systematic study of data structures.

 It is possible to have different implementations of the 
same specification.
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Abstract Data Type (ADT)
 An abstract data type (ADT) is a data type 

that is organized such that
 the specification of the objects & operations 

 is separated from the representation of the objects 
and the implementation of the operations

 ADT is implementation-independent

CSIEB0100 Data Structures Basic Concepts 18



CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 10

CSIEB0100 Data Structures Basic Concepts 19

In
te

rf
ac

e

Behavior(semantics)

Algorithm Specification
 Definition: An algorithm is a finite set of 

instructions that accomplishes a particular 
task.

 Criteria that ALL algorithms must satisfy:
 Input: zero or more
 Output: at least one
 Definiteness: clear and unambiguous
 Finiteness: terminate after a finite number of 

steps
 Effectiveness: instruction is basic enough to be 

carried out
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Algorithm vs Program
 One difference between an algorithm and a 

program is that the latter does not have to 
satisfy the fourth condition
 Program doesn’t have to be finite

 E.g., OS scheduling
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Example 1: Selection Sort

 From those integers that are currently unsorted, 
find the smallest and place it next in the sorted 
list.
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Selection Sort

CSIEB0100 Data Structures

void sort (int *a, int n)
// sort n integers a[0] to a[n-1] into nondecreasing order
{

for ( int i = 0; i < n; i++)
{

int j = i;  // a[j] is the current smallest int
// find smallest KeyType in a[i] to a[n-1]
for (int k = i+1; k < n; k++)

if (a[k] < a[j]) j = k;  // update j to the new smallest
int temp = a[i]; a[i] = a[j]; a[j] = temp;  // swap

}
}

Basic Concepts 23

CSIEB0100 Data Structures Basic Concepts 24



CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 13

Selection Sort Animation
 http://liveexample.pearsoncmg.com/liang/animati

on/web/SelectionSort.html

 The site: 
https://liveexample.pearsoncmg.com/liang/animat
ion/

 Provides many animations for other data 
structures and algorithms.
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Example 2: Binary Search
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Binary Search in C++
char compare (int x, int y)

{

if (x > y) return '>';

else if (x < y) return '<';

else return '=';

}

CSIEB0100 Data Structures Basic Concepts 27

int BinarySearch (int *a, int x, const int n)

// Search the sorted array a[0], ..., a[n-1] for x

{

for (int left = 0,  right = n - 1; left <= right;) { // more elements

int middle = (left + right)/2;

switch (compare (x, a[middle])){

case '>': left = middle + 1; break; // x > a[middle]

case '<': right = middle - 1; break; // x < a[middle]

case '=': return middle; // x == a[middle]

} // end of switch

} // end of for

return -1; // not found

} // end of BinarySearch
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Binary Search Examples

 Input
 1 3 7 9 13 20 31

 Search for 7 (next slide)

 Search for 16 (exercise)
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Binary Search Animation
 http://liveexample.pearsoncmg.com/liang/animati

on/web/BinarySearch.html
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Binary vs Sequential Search
 Comparison between sequential search and 

binary search
 Binary search is faster than sequential search

 However, binary search requires the input to be 
sorted in advance

 Should we always use binary search?
 Not necessary.
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Example 3: Selection Problem
 Selection problem: select the k-th largest 

among N numbers

 Approach 1
 Read N numbers into an array

 Sort the array in decreasing order

 Return the element in position k
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Example 3: Selection Problem
 Approach 2
 Read k elements into an array

 Sort them in decreasing order

 For each remaining elements, read one by one

 Ignored if it is smaller than the k-th element

 Otherwise, place in correct place and kick one out 
of the array (which one?)

 Return the last (kth) element of the array after all 
elements have been processed
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Example of  Approach 2
 Input

 20 9 15 6 17 30

 Find the 3rd largest number

 Read three numbers and sort them in 
descending order
 20 15 9

 Read next: “6”
 20 15 9
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Example of  Approach 2
 Read next: “17”

 20 17 15

 9 is out

 Read next: “30”
 30 20 17

 15 is out

 Finish processing of all numbers.

 The third largest number is 17.

 Does it work all the time?
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Comparison of  Approach 1 & 2
 Which one is better?
 Implementation difficulty

 Efficiency
 Time complexity analysis

 Remember that time complexity is not the only 
yardstick
 Space complexity

 Easy to implement

 …
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Recursive Algorithms
 Recursion is usually used to solve a problem in a 

“divided-and-conquer” manner

 Direct recursion
 Functions that call themselves

 Indirect recursion
 Functions that call other functions that invoke calling 

function again

 C(n,m) = n!/[m!(n-m)!]
 C(n,m)=C(n-1,m)+C(n-1,m-1)    // why?

 Boundary condition for recursion
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Recursive Summation
 sum(1, n)=sum(1, n-1)+n

 sum(1, 1)=1

int sum(int n)

{

if (n==1)

return (1);

else

return(sum(n-1)+n);

}
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Recursive Factorial
 n!=n×(n-1)!

 fact(n)=n×fact(n-1)

 0!=1
int fact(int n)

{

if ( n== 0)

return (1);

else

return (n * fact(n-1) );

}
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Recursive Multiplication
 a×b=a×(b-1)+a

 a×1=a

int mult(int a, int b)

{

if ( b==1)

return (a);

else

return( mult(a,b-1) + a);

}
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Recursive Binary Search
int BinarySearch (int *a, int x, const int left, const int right)

//Search the sorted array a[left], ..., a[right] for x

{

if (left <= right) {

int mid = (left + right)/2;

switch (compare (x, a[mid])){

case '>': return BinarySearch(a, x, mid+1, right); // x > a[mid]

case '<': return BinarySearch(a, x, left, mid-1);  // x < a[mid]

case '=': return mid; // x == a[mid]

} // end of switch

} // end of if

return -1;// not found

}// end of BinarySearch
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Recursive Permutation
 Permutation of {a, b, c}
 (a, b, c), (a, c, b)

 (b, a, c), (b, c, a)

 (c, a, b), (c, b, a)

 Recursion?
 a+Perm({b,c})

 b+Perm({a,c})

 c+Perm({a,b})
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void perm (char *a, const int k, const int n) // n is the size of a
// Generate all the permutations of a[k], ..., a[n-1].
{

if (k == n-1) {  // output permutation
for (int i = 0; i < n; i++) cout << a[i] << " ";
cout << endl;

}
else { // a[k], ..., a[n-1] has more than one permutation.

// Generate these recursively
for (int i = k; i < n; i++) {

// swap a[k] and a[i]
char temp = a[k]; a[k] = a[i]; a[i] = temp;
perm(a, k+1, n); // all permutations of a[k+1], ..., a[n-1]
// swap a[k] and a[i] back to original
temp = a[k]; a[k] = a[i]; a[i] = temp;

}
} // end of else

} // end of perm
// Can we improve the code above?
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Performance Evaluation
 Criteria
 Is it correct?

 Is it efficient?

 Is it readable?

 Performance analysis
 Machine independent

 Performance measurement
 Machine dependent
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Performance Analysis
 Complexity theory

 Space complexity
 Amount of memory

 Time complexity
 Amount of computing time
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Space Complexity
 S(P) = c + Sp(I)
 c: fixed space (instruction, simple variables, 

constants)

 Sp(I): depends on characteristics of instance I

 Characteristics: number, size, values of I/O 
associated with I

 If n is the only characteristic, Sp(I) = Sp(n)
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Space Complexity Examples
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Space Complexity Examples
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Time Complexity
 T(P) = c + Tp(I)
 c: compile time

 Tp(I): program execution time
 Depends on characteristics of instance I

 Predict the growth in run time as the instance 
characteristics change
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Time Complexity
 Compile time (c)
 Independent of instance characteristics

 Run (execution) time TP

 A program step is a syntactically or 
semantically meaningful program segment 
whose execution time is independent of the 
instance characteristics.

 Time complexity can be measured by 
counting the total number of steps required.
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Methods to Compute Step Count
 Introduce variable count into programs

 Tabular method

 Determine the total number of steps 
contributed by each statement 

step per execution × frequency

 Add up the contribution of all statements
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Step Count with count Variable
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Step Count with count Variable
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Tabular Method
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Time Complexity
 Cases
 Worst case

 Best case

 Average case

 Worst case and average case analysis is 
much more useful in practice
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Time Complexity
 Difficult to determine the exact step counts

 What a step stands for is inexact
 e.g. x := y v.s. x := y + z + (x/y) + …

 Exact step count is not useful for comparison

 Step count doesn’t tell how much time a step 
takes

 Just consider the growth in run time as the 
instance characteristics change

CSIEB0100 Data Structures Basic Concepts 58



CSIEB0100 Data Structures Lecture 1: Basic Concepts

Note 30

Asymptotic Notation – Big O
 f(n)=O(g(n)) iff

∃ a real constant c > 0 and an integer constant 
n0 ≧ 1, ∋ f(n) ≤ cg(n) ∀n, n ≥ n0
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Big O Examples
 Examples
 3n+2 =O(n)

3n+2≤4n for all n≥2

 10n2+4n+2=O(n2)

10n2+4n+2≤11n2 for all n≥10

 3n+2 = O(n2)

3n+2≤n2 for all n≥4  (Not tight enough!)

 g(n) should be a least upper bound
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Asymptotic Notation – Big 
 f(n)=(g(n)) iff

∃ a real constant c > 0 and an integer constant 
n0 ≧ 1, ∋ f(n)  cg(n) ∀n, n ≥ n0
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Big  Examples
 Examples
 3n+3=Ω(n)

3n+3≥3n for all n≥1

 6*2n+n2=Ω(2n)

6*2n+n2≥2n for all n≥1

 3n+3=Ω(1)

3n+3≥3 for all n≥1 (Not tight enough!)

 g(n) should be a greatest lower bound
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Asymptotic Notation – Big 
 f(n)=Θ(g(n)) iff

∃ two positive real constants c1,c2 > 0, and an 
integer constant n0 ≧ 1, ∋ c1g(n) ≤ f(n) ≤ c2g(n), ∀
n, n ≥ n0
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Big  Examples
 Examples
 3n+2= Θ(n)

3n≤3n+2≤4n, for all n≥2

 10n2+4n+2= Θ(n2)

10n2≤10n2+4n+2≤11n2, for all n≥5

 g(n) should be both lower bound & upper 
bound
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Some Rules
 Rule 1:

If T1(N)=O(f(N)) and T2(N)=O(g(N)) Then

(a) T1(N)+T2(N) = max ( O(f(N)), O(g(N)) )

(b) T1(N)×T2(N) = O( f(N)×g(N) )

 Rule 2:

If T(N) is a polynomial of degree k, then

T(N)= Θ(Nk)
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Running Time Calculation
 For loop

for (i=0; i<n; i++)

{

x++;

y++;

z++;

}

 n×3=O(n)
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Running Time Calculation
 Nested for loops

for (i=0; i <n; i++)

for (j=0; j<n; j++)

k++;

 n×n=O(n2)
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Running Time Calculation
 Consecutive statements

for (i=0; i<n; i++)

A[i]=0;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

A[i]+=A[j]+i+j

 max(1×n, 1×n×n)=1×n×n=O(n2)
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Running Time Calculation
 If/Else

if (i>0) {
i++;
j++;

}
else {

for (j=0; j<n; j++)
k++;

}
 max(2, 1×n)=n
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Running Time Calculation – Recursion

long int F(int N)

{

if (N<=1)

return 1;

else

return N*F(N-1);

}
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Typical Growth Rate
 c: constant

 log N: logarithmic

 log2N: Log-squared

 N: Linear

 NlogN:

 N2: Quadratic

 N3: Cubic

 2N, cN : Exponential
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Comparison of  Growth Rate
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Colorful Growth Rate Comparison
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Practical Complexities

109 instructions/second

n n nlogn n2 n3 

1000 1mic 10mic 1milli 1sec 

10000 10mic 130mic 100milli 17min 

106 1milli 20milli 17min 32years 
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Impractical Complexities

109 instructions/second

n n4 n10 2n 

1000 17min 3.2 x 1013 
years 

3.2 x 10283 
years 

10000 
 
 

116 
days 

  ??? ??? 

106 3 x 107 
years 

?????? ?????? 
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Faster Computer vs Better 
Algorithm

Algorithmic improvement more useful

than hardware improvement.

E.g. 2n to n3
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