
CSIEB0100 Data Structures Lecture 2: C++ Review

Note 1

CSIEB0100 Data Structures

Lecture02 C++ Review

Shiow-yang Wu 吳秀陽
Department of Computer Science
and Information Engineering
National Dong Hwa University

Object-Oriented Design (OOD)
 Data structure is about the structuring of data.
 Traditional programming have used

algorithmic decomposition.
 View software as a process.
 Decompose the process into functional modules.
 Data structures are a secondary concern.

 OOD views software as a set of interacting
objects.
 Directly model entities in the application domain.
 Result in flexibility w.r.t. changes.
 Lead to more intuitive design.

CSIEB0100 Data Structures C++ Review 2

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 2

Key Concepts in OOD
 You need to have solid understanding of the

following terms

CSIEB0100 Data Structures C++ Review 3

(https://www.javatpoint.com/software-engineering-object-oriented-design)

Object-Oriented Concepts
 Object: an entity with behavior (i.e. performs

computation) and a local state. (Encapsulation)
 Object-oriented programming(OOP):

 Representing entities with objects.
 Each object is an instance of a class.
 Classes are related to each other by inheritance.
 Problems/solutions are modeled/provided by a set of

objects interacting with each other by passing messages.

 A programming language that supports OOP is
called an object-oriented language.

 All other features of OO are related directly or
indirectly with the basic characteristics above.

CSIEB0100 Data Structures C++ Review 4

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 3

Evolution of Languages
 1st gen language: Fortran, for evaluating math

expression

 2nd gen language: Pascal, C, for algorithmic and
structured programming

 3rd gen language: Modula, for ADTs

 4th gen language: C++, Objective C, Smalltalk,
for OOP.

 C++ was designed by Bjarne Stroustrup of AT&T
Bell Lab. (next slide)

 C/C++ form the basics of many modern langs.

CSIEB0100 Data Structures C++ Review 5

Bjarne Stroustrup

 How to pronounce his name?

(https://youtu.be/9QKHg8wj4MA)

CSIEB0100 Data Structures C++ Review 6

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 4

C++ Program Organization
 A C++ program usually consists of multiple files.

 Header files (.h)
 Source files (.cc or .cpp)

 Header files are to store declarations of classes,
functions, and variables. Usually in the form:
#ifndef FILENAME_H
#define FILENAME_H
…
#endif

 Source files contain the implementation source
code. Include header with #include statement.

CSIEB0100 Data Structures C++ Review 7

Conditional
compilation

Structure of a C++ Program

CSIEB0100 Data Structures Course Information 8

(Optional)

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 5

C++: Comments
 Single line:

// My comment goes here

 Multi line: (C style comments)
/*

My first comment line
Another comment line
Yet another comment line

*/

C++: Scope
 File Scope:
 Any declarations not within a block, function,

class, or namespace.
 Global variables that can be used anywhere in

file.

 Namespace Scope:
 A collection of logically related names (of

variables, functions, etc.)
 Can be accessed with the scope resolution

operator (::) such as std::cout
 With using namespace declaration, can omit

the scope operator

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 6

C++: Scope
 Local Scope:
 Declared within a block
 Holds within a block and any subblocks nested

within that block

 Class Scope:
 Declarations within a class are associated with

that class
 Each class represents a distinct class scope

CSIEB0100 Data Structures C++ Review 11

C++: Scope
 Less common scope usage:
 Scope operator, ::, allows access to global

variable if within a block that contains a local
variable of the same name

 extern avoids re-declaration of global variable
across multiple files
 allows you to use variable defined elsewhere

 static allows re-declaration of global variables in
multiple files
 Static file scope variables can NOT be used with extern

in another file.

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 7

C++: Data Types
 Primitive data types:
 char

 int

 float

 double

 Modifiers:
 Amount of data held: short, long

 Use of sign bit: signed, unsigned

 User-defined: Build on top of primitive and
other user-defined types

C++: Types for collection of data
 array:
 Homogeneous collection of indexed data

 struct:
 Heterogeneous collection of named data

 Public data items by default

 class:
 Heterogeneous collection of named data

 Operations on that data

 Private data items by default

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 8

C++: Data Declarations
 Constants
 Literals and fixed values – 5, ‘a’, 4.331

 Variables
 Instance of a type
 Location in memory whose contents can change

during program execution

 Constant variable
 Variable whose contents are fixed
 const keyword

C++: Data Declarations
 Enumerated Types:
 Assigned names to integer constants
enum semester {SUMMER, FALL, SPRING};

 Pointers:
 Hold memory address of a variable
 De-referenced to access the actual data
 *variableName

int i = 25;

int *np;

np = &i;

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 9

C++: Data Declarations
 References:
 Provide an alternate name for an existing object
 Used in calling functions

int x = 5;
int& foo = x;
// foo is a reference to x, so this will set 7 to x
foo = 7;
cout << "x= " << x << ", foo= " << foo << endl;

// The value of both x and foo is 7

CSIEB0100 Data Structures C++ Review 17

C++: Data Declarations
 Reference parameters in function

void swap (int& first, int& second)

{

int temp = first;

first = second;

second = temp;

}

…

swap(a, b);

CSIEB0100 Data Structures C++ Review 18

How to swap without
reference parameters?

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 10

C++ Stream I/O Concept
 C++ I/O are based on streams (sequence of

bytes flowing in and out of the programs).

CSIEB0100 Data Structures C++ Review 19

C++: Standard I/O
 #include <iostream>

 Writing to screen:
 cout << variable << “string literal” << endl;

 Reading from keyboard:
 cin >> variable;

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 11

C++: File I/O
 #include <fstream>

 Use the << and >> operators exactly like cin
and cout.

 Output Streams:
 ofstream fileVariableName(“filename”, ios::out);

 If, after declaring the file, fileVariableName equals
0, the file couldn’t be opened

 To write, replace cout with the fileVariableName
you have chosen (e.g., outFile)
 outFile << “Hello World” << endl;

C++: File I/O
 Input Streams:
 ifstream fileVariableName(“filename”, ios::in);

 fileVariableName (e.g., inFile) set to 0 if couldn’t
be opened.

 inFile >> VariableName to read from file;

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 12

C++: Functions
 Every function has four parts:

 Function name

 Parameter list (function inputs) – parameter types and
names

 Return type (function outputs)

 Body, enclosed by curly brackets

 An example:

int Max (int a, int b)

{

if (a > b) return a;

return b;

}

C++: Functions

 Every function must end with a return
statement if the return type is not void

 Function names can be overloaded as
long as they have different signatures
(parameter lists).

 More about function overloading later.

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 13

C++: Parameter Passing
 Pass by value:
 Example: double square (double value)
 Default mechanism
 Make a copy of the value of argument
 Doesn’t change argument when function returns

 Pass by reference:
 Example: double square(double& value)
 Copies address of argument into function
 Manipulates underlying data
 Default for arrays

C++: Parameter Passing
 Why pass by reference?
 Faster than pass by value for large objects

 Allows you to return more than one thing from a
function

 Good option: constant pass by reference
 Example: double square(const double& value)

 Uses reference passing for speed

 Compiler prevents modification to argument within
function body

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 14

Function Overloading
 C++ allow more than one function with the same

name but different signatures.

 Examples:

int Max(int, int);

int Max(int, int, int);

int Max(int*, int);

int Max(float, int);

int Max(int, float);

are overloaded declarations of the Max function

CSIEB0100 Data Structures C++ Review 27

Inline Functions
 A function definition with the inline keyword

inline int Sum(int a, int b)

{

return a + b;

}

 The compiler will replace the call to Sum by the
body of function.

 Keep the function call syntax but eliminate the
overhead of call/return and parameter passing.

 Suitable for short functions.

CSIEB0100 Data Structures C++ Review 28

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 15

C++: Dynamic Allocation
 Use the new keyword to allocate a new object from

free memory.
 Creates an object of desired type and returns a pointer to

it.

 int* myInteger = new int;

 int* myIntegerArray = new int[10];

 Returns 0 if unable to allocate memory

 Use the delete keyword to free the memory being
used by an object.
 delete myInteger;

 delete [] myIntegerArray;

Exception Handling Concepts
 Exceptions are used to signal errors and other

special conditions.

 The special processing that may be required
after detection of an exception is called
exception handling

 The exception handling code unit is called an
exception handler

CSIEB0100 Data Structures C++ Review 30

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 16

Exception Handling

CSIEB0100 Data Structures C++ Review 31

Exception Handling in C++
 C++ provides built-in support for exception handling

 Allow programs to check error conditions and
throw an exception if occurred.

int DivZero(int a, int b, int c)

{

if (a <= 0 || b <= 0 || c <= 0)

throw “All parameters should be >0”;

return a + b * c + b / c;

}

CSIEB0100 Data Structures C++ Review 32

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 17

C++ Exception Handlers
 Exception handlers format:
try {
-- code that is expected to raise an exception
}
catch (formal parameter) {
-- handler code
}
...
catch (formal parameter) {
-- handler code
}

CSIEB0100 Data Structures C++ Review 33

C++ Exception Handlers
 Each catch block has a parameter whose type

determines the exception caught by that catch.
 catch is the name of all handlers--it is an

overloaded name, so the parameter must be
unique

 The parameter can be used to transfer
information to the handler.

 Examples:
 catch (char* e) {} // catches exception of type char*
 catch (bad_alloc e) {} // for exception of type bad_alloc
 catch (…) {} // catches all exceptions not yet handled

CSIEB0100 Data Structures C++ Review 34

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 18

Exception Handling Example

CSIEB0100 Data Structures C++ Review 35

int main ()
{

try{ cout << DivZero (2,0,4) << endl; }
catch (const char* e)
{

cout << ”Exception in calling DivZero” << endl ;
cout << e << endl ;
return 1 ;

}
return 0 ;

}

STL – Standard Template Library
 A collection of useful classes and functions for

common data structures and algorithms

 Part of the ISO Standard C++ Library

 Can store and process objects of any type

 Greatly simplify application development

 Heavily used in the S/W industry

 Key components: Containers, Iterators,
Algorithms, Functors(Function Objects)

 Other components: Adapters, Allocators

CSIEB0100 Data Structures C++ Review 36

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 19

Why Use STL?
 Reduce development time
 Data structures already written and debugged.

 Efficient algorithms
 STL implementation is optimized

 Code readability
 Robustness
 STL data structures grow automatically.

 Portable/reusable/maintainable code.
 Easy to use, understand and communicate.
 Large community of users

CSIEB0100 Data Structures C++ Review 37

Disadvantages of STL
 Learning curve

 Learning STL takes time and effort.

 Lack of control
 Using STL limit your control over certain aspects of

your code.

 Performance
 There are cases when using STL can result in slower

execution time compared to custom code.

 The defects cannot obscure the virtues. 瑕不掩瑜

CSIEB0100 Data Structures C++ Review 38

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 20

The ‘Top 3’ Data Structures in STL
 map

 Associate any key type, any value type.

 Sorted.

 vector

 Like C array, but auto-extending.

 list

 doubly-linked list

 To be discussed when needed

 Many online tutorials and documents

CSIEB0100 Data Structures C++ Review 39

STL Algorithm accumulate
 For accumulating elements in a sequence
 #include <numeric>

 Two forms:
 accumulate(start, end, initValue)

 accumulate(start, end, initValue, operator)

 Examples:
 accumulate(a, a+n, initValue) returns the value

initValue +

 The second form returns the accumulation of the same
range of elements with the operator instead of +

CSIEB0100 Data Structures C++ Review 40






1n

0i

a[i]

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 21

Example of accumulate
#include <iostream>

#include <vector>

#include <numeric>

#include <string>

using namespace std;

int multiply(int x, int y) {

return x*y;

}

string magic_function(string res, int x) { // what does it do?

return res += (x > 5) ? "b" : "s";

}

CSIEB0100 Data Structures C++ Review 41

Example of accumulate
int main() {

vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int sum = accumulate(v.begin(), v.end(), 0);

int product = accumulate(v.begin(), v.end(), 1,
multiply);

string magic = accumulate(v.begin(), v.end(), string(),
magic_function);

cout << sum << '\n' << product << '\n' << magic <<
'\n';

return 0;

}
CSIEB0100 Data Structures C++ Review 42

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 22

STL Algorithm copy
 Copy range of elements
 #include <algorithm>

 Syntax: copy(start, end, to)

 Copy the elements in the range [start,end)
into the range beginning at to.

CSIEB0100 Data Structures C++ Review 43

Example of copy
#include <iostream> // std::cout
#include <algorithm> // std::copy
#include <vector> // std::vector
using namespace std;

int main () {
int myints[]={10,20,30,40,50,60,70};
vector<int> myvec(7);
copy (myints, myints+7, myvec.begin());
cout << "myvec contains:";
for (vector<int>::iterator it = myvec.begin(); it != myvec.end(); ++it)

cout << ' ' << *it;
cout << '\n';
return 0;

}

CSIEB0100 Data Structures C++ Review 44

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 23

Timing in C++
#include <ctime> // or #include <time.h>
clock_t start, stop;
start = clock(); // set start to current time in millisecond

// code to be timed comes here

stop = clock(); // set stop to current time
double runTime = stop – start;

CSIEB0100 Data Structures Performance Measurement 45

Accurate Timing
 Measuring one-time execution is not accurate

enough, especially when the execution time is
short.

 Measure the average execution time of
repeated execution.

 Keeps a counter for the #times of execution.

 Divide the elapsed time by the #times of
execution to get average exe time.

CSIEB0100 Data Structures Performance Measurement 46

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 24

Accurate Timing
clock_t start, stop;
start = clock(); // set start to current time
long counter;
do {

counter++;
doSomething();
stop = clock();

} while (stop - start < 1000) // repeat long enough

double elapsedTime = stop - start;
double timeForTask = elapsedTime/counter;

CSIEB0100 Data Structures Performance Measurement 47

High Resolution Timing with chrono
 Can also use the std::chrono library introduced in C++11.
#include <chrono>
using namespace std::chrono;
…
// Get the start timepoint using now()
auto start = high_resolution_clock::now();

… // The segment to be measured

// Get the stop timepoint
auto stop = high_resolution_clock::now();

// Get the duration between start and stop
auto duration = duration_cast<microseconds>(stop - start);

// Get the value of duration using the count() member function
cout << duration.count() << endl;

CSIEB0100 Data Structures C++ Review 48

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 25

Accuracy
However:

first reading may be just about to change to start
+ 1

second reading may have just changed to stop

so stop - start is off by 1 unit

CSIEB0100 Data Structures Performance Measurement 49

Accuracy

Examining these cases, we get

trueElapsedTime = stop - start ± 1

To ensure 10% accuracy, require

elapsedTime = stop – start
>= 10

CSIEB0100 Data Structures Performance Measurement 50

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 26

What Went Wrong?
start=clock();
long counter;
do {

counter++;
insertionSort(a,n);
stop=clock();

} while (stop - start < 10)
double elapsedTime = (stop – start);
double timeToSort = elapsedTime/counter;

CSIEB0100 Data Structures Performance Measurement 51

The Fix
start=clock();
long counter;
do {

counter++;
// put code to initialize the array a here
insertionSort(a,n);
stop=clock();

} while (stop - start < 10)
…

CSIEB0100 Data Structures Performance Measurement 52

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 27

Bad Way To Time
do {

counter++;
start=clock();
doSomething();
stop=clock();
elapsedTime += stop - start;

} while (elapsedTime < 10)

CSIEB0100 Data Structures Performance Measurement 53

C++ Timing Example
int SequentialSearch (int *a, const int n, const int x)

{ // search a[0, ..., n] for x

int i;

for (int i=0; i < n && a[i] != x; i++) ;

if (i == n) return -1;

else return i;

}

CSIEB0100 Data Structures C++ Review 54

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 28

void TimeSearch1() {

int a[1001], n[20], k;

for (int j=1; j <= 1000 ; j++) // initialize a

a[j] = j;

for (int j=0; j < 10; j++) { // initialize n

n[j] = 10*j; n[j+10] = 100*(j+1) ;

}

cout << " n time" << endl; // print header

for (int j=0; j < 20; j++) { // calculate exe time

clock_t start, stop;

start = clock(); // start time

CSIEB0100 Data Structures C++ Review 55

k = SequentialSearch(a, n[j], 0);

stop = clock(); // stop time

double runTime =

(double)(stop - start)/CLOCKS_PER_SEC;

cout << " " << n[j] << " " << runTime << endl;

}

cout << "Times are in seconds." << endl ;

}

What’s wrong with TimeSearch1 ?

CSIEB0100 Data Structures C++ Review 56

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 29

void TimeSearch2() {

int a[1001], n[20], k;

const long r[20] = {300000, 300000, 200000,
200000, 100000, 100000,100000, 80000, 80000,
50000, 50000, 25000, 15000, 15000, 10000,
7500, 7000, 6000, 5000, 5000};

for (int j=1; j <= 1000 ; j++) // initialize a

a[j] = j;

for (int j=0; j < 10; j++) { // initialize n

n[j] = 10*j; n[j+10] = 100*(j+1);

}

cout << " n r total runTime" << endl;
CSIEB0100 Data Structures C++ Review 57

for (int j=0; j < 20; j++) { // calculate exe time
clock_t start, stop;
start = clock(); // start time
for (long b=1; b <= r[j]; b++)

k = SequentialSearch(a, n[j], 0);
stop = clock(); // stop time
double totalTime =

(double)(stop - start)/CLOCKS_PER_SEC;
double runTime = totalTime/(double)(r[j]);
cout << " " << n[j] << " " << r[j] << " “

<< totalTime << " " << runTime << endl;
}
cout << "Times are in seconds." << endl;

}
CSIEB0100 Data Structures C++ Review 58

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 30

Assignment 1: C++ Exercises
 Several interesting problems for you to practice

C++ programming.

 Check the assignment page for more details.

CSIEB0100 Data Structures C++ Review 59

