CSIEB0100 Data Structures Lecture 2: C++ Review

CSIEB0100 Data Structures

Lecture02 C++ Review

Shiow-yang Wu £ % %

Department of Computer Science
and Information Engineering

National Dong Hwa University

|Ob'ect-0riented Design (OOD
J g

= Data structure is about the structuring of data.
= Traditional programming have used
algorithmic decomposition.
o View software as a process.
o Decompose the process into functional modules.
o Data structures are a secondary concern.
= OOD views software as a set of interacting
objects.
a Directly model entities in the application domain.
o Result in flexibility w.r.t. changes.
o Lead to more intuitive design.

CSIEB0100 Data Structures C++ Review 2

Note 1

CSIEB0100 Data Structures Lecture 2: C++ Review

Key Concepts in OOD

= You need to have solid understanding of the

following terms
Object Oriented Design

Objects @ Messages
’ Polymorphism

(https://www.javatpoint.com/software-engineering-object-oriented-design)

Encapsulation

CSIEB0100 Data Structures C++ Review 3

| Object-Oriented Concepts

= Object: an entity with behavior (i.e. performs
computation) and a local state. (Encapsulation)
= Object-oriented programming(OOP):
Representing entities with objects.
o Each object is an instance of a class.
o Classes are related to each other by inheritance.
o Problems/solutions are modeled/provided by a set of
objects interacting with each other by passing messages.
= A programming language that supports OOP is
called an object-oriented language.
= All other features of OO are related directly or
indirectly with the basic characteristics above.

O

CSIEB0100 Data Structures C++ Review 4

Note 2

CSIEB0100 Data Structures Lecture 2: C++ Review

Evolution of Languages

1st gen language: Fortran, for evaluating math
expression

2"d gen language: Pascal, C, for algorithmic and
structured programming

31 gen language: Modula, for ADTs

4% gen language: C++, Objective C, Smalltalk,
for OOP.

C++ was designed by Bjarne Stroustrup of AT&T
Bell Lab. (next slide)

C/C++ form the basics of many modern langs.

CSIEB0100 Data Structures C++ Review 5

Bjarne Stroustrup

C makes it easy to shoot yourself in
the foot: C++ makes it harder, but
when you do, it blows away your

whole leg.

How to pronounce his name?
(https://lyoutu.be/9QKHg8wj4MA)

CSIEB0100 Data Structures C++ Review 6

Note 3

CSIEB0100 Data Structures Lecture 2: C++ Review

C++ Program Organization

= A C++ program usually consists of multiple files.
o Header files (.h)
a Source files (.cc or .cpp)

= Header files are to store declarations of classes,
functions, and variables. Usually in the form:

#ifndef FILENAME_H
#define FILENAME_H = [Conditional
compilation

#endif
= Source files contain the implementation source
code. Include header with #include statement.

CSIEB0100 Data Structures C++ Review 7

|Structure of a C++ Program

Header File Declaration Sectdon

Global Declaration Section

Class Declaration
and
Method Definition Section

Method Definition Section (Optional)

CSIEB0100 Data Structures Course Information 8

Note 4

CSIEB0100 Data Structures Lecture 2: C++ Review

C++: Comments

Single line:
/[My comment goes here

Multi line: (C style comments)
/*

My first comment line

Another comment line

Yet another comment line
*/

C++: Scope

File Scope:

o Any declarations not within a block, function,
class, or namespace.

o Global variables that can be used anywhere in
file.
Namespace Scope:

o A collection of logically related names (of
variables, functions, etc.)

o Can be accessed with the scope resolution
operator (::) such as std::cout

o With using namespace declaration, can omit
the scope operator

Note 5

CSIEB0100 Data Structures Lecture 2: C++ Review

C++: Scope

Local Scope:

o Declared within a block

o Holds within a block and any subblocks nested
within that block

Class Scope:

o Declarations within a class are associated with
that class

o Each class represents a distinct class scope

CSIEB0100 Data Structures C++ Review 11

C++: Scope

Less common SCOpe usage.

o Scope operator, ::, allows access to global
variable if within a block that contains a local
variable of the same name

o extern avoids re-declaration of global variable
across multiple files
allows you to use variable defined elsewhere
o static allows re-declaration of global variables in
multiple files

Static file scope variables can NOT be used with extern
in another file.

Note 6

CSIEB0100 Data Structures Lecture 2: C++ Review

C++: Data Types

Primitive data types:
o char

o int

o float

o double

o Modifiers:

Amount of data held: short, Tong

Use of sign bit: signed, unsigned
User-defined: Build on top of primitive and
other user-defined types

C++: Types for collection of data

array:

o Homogeneous collection of indexed data
struct:

o Heterogeneous collection of named data
o Public data items by default

class:

o Heterogeneous collection of named data
o Operations on that data

o Private data items by default

Note 7

CSIEB0100 Data Structures Lecture 2: C++ Review

C++: Data Declarations

Constants

o Literals and fixed values — 5, ‘a’, 4.331
Variables

o Instance of a type

o Location in memory whose contents can change
during program execution

Constant variable
o Variable whose contents are fixed
a const keyword

C++: Data Declarations

Enumerated Types:
o Assigned names to integer constants
enum semester {SUMMER, FALL, SPRING};
Pointers:
o Hold memory address of a variable
a De-referenced to access the actual data
o *variableName

int 1 = 25;
int *np;
np = &i;

Note 8

CSIEB0100 Data Structures

C++: Data Declarations

References:
o Provide an alternate name for an existing object
o Used in calling functions
intx =5;
int& foo = x;
/] foo is a reference to x, so this will set 7 to x
foo=7;
cout << "x="<<x << ", foo=" << foo << endl;

/| The value of both x and foo is 7

CSIEB0100 Data Structures C++ Review 17

C++: Data Declarations

Reference parameters in function
void swap (int& first, int& second)

{

int temp = first;

first = second;

second = temp;
}

How to swap without
. reference parameters?

swap(a, b);

CSIEB0100 Data Structures C++ Review 18

Lecture 2: C++ Review

Note 9

CSIEB0100 Data Structures Lecture 2: C++ Review

C++ Stream I/0O Concept

= C++ 1/O are based on streams (sequence of
bytes flowing in and out of the programs).

Input Source ‘
p—) (keyboard, file, ‘
———r
Input Straam network, program)
C++ Program . —
Output Sink ‘
—) (console, file,
Output Stream network, program)
_____,/’
Internal Data Formats: External Data Formats:
= Text: char, wchar_t = Textin various encodings
= int, float, double, (US-ASCII, 1SO-8859-1, UCS-2, UTF-8,
etc. UTF-16, UTF-16BE, UTF16-LE, etc.)
= Binary (raw bytes)
CSIEB0100 Data Structures C++ Review 19

|C++: Standard I/0O

= #include <iostream>

= Writing to screen:
o cout << variable << “string literal” << endl;

= Reading from keyboard:
o cin >> variable;

Note 10

CSIEB0100 Data Structures Lecture 2: C++ Review

C++: FileI/0O

#include <fstream>

Use the << and >> operators exactly like cin
and cout.

Output Streams:
o ofstream fileVariableName(“filename”, ios::out);

o If, after declaring the file, fileVariableName equals
0, the file couldn’t be opened
o To write, replace cout with the fileVariableName
you have chosen (e.g., outFile)
outFile << “Hello world” << endl;

C++: File I/O

Input Streams:
o ifstream fileVariableName(“filename”, ios::in);

o fileVariableName (e.g., inFile) set to O if couldn’t
be opened.

a inFile >> VariableName to read from file;

Note 11

CSIEB0100 Data Structures Lecture 2: C++ Review

C++: Functions

Every function has four parts:
a Function name

Parameter list (function inputs) — parameter types and
names

Return type (function outputs)
Body, enclosed by curly brackets
An example:
int Max (int a, int b)
{
if (@ > b) return a;
return b;

}

O

O

O

O

C++: Functions

Every function must end with a return
statement if the return type is not void

Function names can be overloaded as
long as they have different signatures
(parameter lists).

More about function overloading later.

Note 12

CSIEB0100 Data Structures Lecture 2: C++ Review

C++: Parameter Passing

Pass by value:

o Example: double square (double value)

o Default mechanism

o Make a copy of the value of argument

o Doesn’t change argument when function returns

Pass by reference:

o Example: double square(double& value)
o Copies address of argument into function
o Manipulates underlying data

o Default for arrays

C++: Parameter Passing

Why pass by reference?

o Faster than pass by value for large objects

o Allows you to return more than one thing from a
function

Good option: constant pass by reference

o Example: double square(const double& value)

o Uses reference passing for speed

o Compiler prevents modification to argument within
function body

Note 13

CSIEB0100 Data Structures Lecture 2: C++ Review

Function Overloading

C++ allow more than one function with the same
name but different signatures.

Examples:
int Max(int, int);
int Max(int, int, int);
int Max(int*, int);
int Max(float, int);
int Max(int, float);
are overloaded declarations of the Max function

CSIEB0100 Data Structures C++ Review 27

Inline Functions

A function definition with the inline keyword
inline int Sum(int a, int b)
{

return a + b;

}

The compiler will replace the call to Sum by the
body of function.

Keep the function call syntax but eliminate the
overhead of call/return and parameter passing.

Suitable for short functions.

CSIEB0100 Data Structures C++ Review 28

Note 14

CSIEB0100 Data Structures Lecture 2: C++ Review

C++: Dynamic Allocation

Use the new keyword to allocate a new object from

free memory.

o Creates an object of desired type and returns a pointer to
it.

o int* mylnteger = new int;

o int* mylntegerArray = new int[10];

o Returns 0 if unable to allocate memory

Use the delete keyword to free the memory being

used by an object.

o delete mylinteger;

o delete [] mylntegerArray;

Exception Handling Concepts

Exceptions are used to signal errors and other
special conditions.

The special processing that may be required
after detection of an exception is called
exception handling

The exception handling code unit is called an
exception handler

CSIEB0100 Data Structures C++ Review 30

Note 15

CSIEB0100 Data Structures Lecture 2: C++ Review

E tion Handli
Executing code Exception handlers
when ..
begin
: ?
begin - 09
- \f\a\'\d\e‘ end;
Exception Exception
i —>» some statement;
is raised
end;
?
Termination
CSIEBO0100 Data Structures C++ Review 31

|Exception Handling in C++
= C++ provides built-in support for exception handling

= Allow programs to check error conditions and
throw an exception if occurred.

int DivZero(int a, int b, int ¢)

{
if(a<=0]||b<=0]|lc<=0)
throw “All parameters should be >07;
returna+b*c+ b/ c;
}

Note 16

CSIEB0100 Data Structures Lecture 2: C++ Review

C++ Exception Handlers

Exception handlers format:

try {

-- code that is expected to raise an exception
}

catch (formal parameter) {
-- handler code

}

catch (formal parameter) {
-- handler code

}

CSIEB0100 Data Structures C++ Review 33

C++ Exception Handlers

Each catch block has a parameter whose type
determines the exception caught by that catch.
catch is the name of all handlers--it is an
overloaded name, so the parameter must be
unique

The parameter can be used to transfer
information to the handler.

Examples:

o catch (char* e) {} // catches exception of type char*
o catch (bad_alloc e) {} // for exception of type bad_alloc
o catch (...) {} // catches all exceptions not yet handled

CSIEB0100 Data Structures C++ Review 34

Note 17

CSIEB0100 Data Structures Lecture 2: C++ Review

Exception Handling Example

int main ()
{
try{ cout << DivZero (2,0,4) << endl; }
catch (const char* e)
{
cout << "Exception in calling DivZero” << endl ;
cout << e <<endl ;
return 1 ;

}

return O ;

}

CSIEB0100 Data Structures C++ Review 35

|STL — Standard Template Library

= A collection of useful classes and functions for
common data structures and algorithms

= Part of the ISO Standard C++ Library

= Can store and process objects of any type
= Greatly simplify application development
= Heavily used in the S/W industry

= Key components: Containers, lterators,
Algorithms, Functors(Function Objects)

= Other components: Adapters, Allocators

CSIEB0100 Data Structures C++ Review 36

Note 18

CSIEB0100 Data Structures Lecture 2: C++ Review

Why Use STL?

Reduce development time

o Data structures already written and debugged.
Efficient algorithms

o STL implementation is optimized

Code readability

Robustness

o STL data structures grow automatically.
Portable/reusable/maintainable code.

Easy to use, understand and communicate.
Large community of users

CSIEB0100 Data Structures C++ Review 37

Disadvantages of STL

Learning curve
o Learning STL takes time and effort.
Lack of control

o Using STL limit your control over certain aspects of
your code.

Performance

o There are cases when using STL can result in slower
execution time compared to custom code.

The defects cannot obscure the virtues. & % :}3;@1

CSIEB0100 Data Structures C++ Review 38

Note 19

CSIEB0100 Data Structures Lecture 2: C++ Review

The “Top 3’ Data Structures in STL

= map
o Associate any key type, any value type.
o Sorted.

m vector
o Like C array, but auto-extending.
m list
o doubly-linked list
= To be discussed when needed
= Many online tutorials and documents

CSIEB0100 Data Structures C++ Review 39

|STL Algorithm accumulate

For accumulating elements in a sequence

#include <numeric>

Two forms:

o accumulate(start, end, initvalue)

o accumulate(start, end, initvalue, operator)

Examples:

o accumulate(a, a+n, initValue) returns the value
inﬁVéMe-+§fﬂﬂ

o The second fBOrm returns the accumulation of the same
range of elements with the operator instead of +

CSIEB0100 Data Structures C++ Review 40

Note 20

CSIEB0100 Data Structures

Example of accumulate

#include <iostream>
#include <vector>
#include <numeric>
#include <string>
using namespace std;

int multiply(int x, int y) {
return x*y;

}

string magic_function(string res, int x) { // what does it do?
return res += (x > 5) 7 "b" : "s";

}

CSIEB0100 Data Structures C++ Review 41

|Example of accumulate

int main() {
vector<int>v={1,2,3,4,5,6,7,8, 9, 10};
int sum = accumulate(v.begin(), v.end(), 0);

int product = accumulate(v.begin(), v.end(), 1,
multiply);

string magic = accumulate(v.begin(), v.end(), string(),
magic_function);

cout << sum << '\n' << product << "\n' << magic <<
\n';

return O;

}

CSIEB0100 Data Structures C++ Review 42

Lecture 2: C++ Review

Note 21

CSIEB0100 Data Structures Lecture 2: C++ Review

STL Algorithm COpY

= Copy range of elements
= #include <algorithm>
= Syntax: copy(start, end, to)

= Copy the elements in the range [start,end)
into the range beginning at to.

CSIEB0100 Data Structures C++ Review 43

| Example of copy

#include <iostream> // std::cout
#include <algorithm> // std::copy
#include <vector> // std::vector
using namespace std;

int main () {
int myints[]={10,20,30,40,50,60,70};
vector<int> myvec(7);
copy (myints, myints+7, myvec.begin());
cout << "myvec contains:";
for (vector<int>::iterator it = myvec.begin(); it = myvec.end(); ++it)
cout <<'' << ¥t;
cout << '\n';
return O;

}

CSIEB0100 Data Structures C++ Review 44

Note 22

CSIEB0100 Data Structures Lecture 2: C++ Review

Timing in C++

#include <ctime> // or #include <time.h>
clock t start, stop;
start = clock(); // set start to current time in millisecond

/l code to be timed comes here

stop = clock(); // set stop to current time
double runTime = stop — start;

CSIEB0100 Data Structures Performance Measurement 45

|Accurate Timing

= Measuring one-time execution is not accurate
enough, especially when the execution time is
short.

= Measure the average execution time of
repeated execution.

= Keeps a counter for the #times of execution.

= Divide the elapsed time by the #times of
execution to get average exe time.

CSIEB0100 Data Structures

Note 23

CSIEB0100 Data Structures Lecture 2: C++ Review

Accurate Timing

clock_t start, stop;
start = clock(); // set start to current time
long counter;
do {
counter++;
doSomething();
stop = clock();
} while (stop - start < 1000) // repeat long enough
double elapsedTime = stop - start;
double timeForTask = elapsedTime/counter;

CSIEB0100 Data Structures Performance Measurement 47

| High Resolution Timing with chrono

= Can also use the std::chrono library introduced in C++11.
#include <chrono>
using namespace std::chrono;

/I Get the start timepoint using now()
auto start = high_resolution_clock::now();

... Il The segment to be measured

/I Get the stop timepoint
auto stop = high_resolution_clock::now();

/I Get the duration between start and stop
auto duration = duration_cast<microseconds>(stop - start);

/I Get the value of duration using the count() member function
cout << duration.count() << endl;

CSIEB0100 Data Structures C++ Review 48

Note 24

CSIEB0100 Data Structures Lecture 2: C++ Review

Accuracy

However:

first reading may be just about to change to start
+ 1

second reading may have just changed to stop

so stop - start is off by 1 unit

CSIEB0100 Data Structures Performance Measurement 49

| Accuracy

Examining these cases, we get
trueElapsedTime = stop - start = 1
To ensure 10% accuracy, require

elapsedTime = stop — start
>=10

CSIEB0100 Data Structures Performance Measurement 50

Note 25

CSIEB0100 Data Structures Lecture 2: C++ Review

What Went Wrong?
start=clock(); sh’

long counter;
do {
counter++;
insertionSort(a,n);
stop=clock();
} while (stop - start < 10)
double elapsedTime = (stop — start);
double timeToSort = elapsedTime/counter;

CSIEBO0100 Data Structures Performance Measurement 51

|'The Fix

start=clock();
long counter;
do {

«r

counter++;
// put code to initialize the array a here
insertionSort(a,n);
stop=clock();
} while (stop - start < 10)

CSIEBO0100 Data Structures Performance Measurement 52

Note 26

CSIEB0100 Data Structures

Bad Way To Time a

do {
counter++;
start=clock();
doSomething();
stop=clock();
elapsedTime += stop - start;
} while (elapsedTime < 10)

CSIEB0100 Data Structures Performance Measurement 53

| C++ Timing Example

int SequentialSearch (int *a, const int n, const int x)
{// search a0, ..., n] for x

int i;

for (inti=0; i < n && a[i] = x; i++) ;

if (i ==n) return -1;

else return i;

CSIEB0100 Data Structures C++ Review 54

Lecture 2: C++ Review

Note 27

CSIEB0100 Data Structures Lecture 2: C++ Review

void TimeSearch1() {

int a[1001], n[20], k;

for (int j=1; j <= 1000 ; j++) // initialize a
alil =J;

for (int j=0; j < 10; j++) {// initialize n
n[j] = 10%; n[j+10] = 100*(j+1) ;

}

cout <<" ntime" << endl; // print header

for (int j=0; j < 20; j++) {// calculate exe time
clock t start, stop;
start = clock(); // start time

CSIEB0100 Data Structures C++ Review 55

k = SequentialSearch(a, n[j], 0);
stop = clock(); // stop time
double runTime =
(double)(stop - start)/ CLOCKS PER_SEC;
cout <<" "<<n[j] <<" " << runTime << endl|;

}

cout << "Times are in seconds." << endl ;

What’s wrong with TimeSearch1 ?

CSIEB0100 Data Structures C++ Review 56

Note 28

CSIEB0100 Data Structures Lecture 2: C++ Review

void TimeSearch2() {

int a[1001], n[20], k;

const long r[20] = {300000, 300000, 200000,
200000, 100000, 100000,100000, 80000, 80000,

50000, 50000, 25000, 15000, 15000, 10000,
7500, 7000, 6000, 5000, 5000},

for (intj=1;j <= 1000 ; j++) // initialize a
alll =j;

for (intj=0; j < 10; j++) {// initialize n
n[j] = 10%; n[j+10] = 100*(j+1);

}

cout<<" n r total runTime" << endl;

CSIEB0100 Data Structures C++ Review 57

for (int j=0; j < 20; j++) {// calculate exe time
clock t start, stop;
start = clock(); // start time
for (long b=1; b <= r[j]; b++)
k = SequentialSearch(a, n[j], 0);
stop = clock(); // stop time
double totalTime =
(double)(stop - start)/ CLOCKS_PER_SEC;
double runTime = totalTime/(double)(r[j]);
cout<<" "<<n[j] <<" "<<] <<"
<< totalTime << " " << runTime << end!I;

}

cout << "Times are in seconds." << endl;

}

CSIEB0100 Data Structures C++ Review 58

Note 29

CSIEB0100 Data Structures Lecture 2: C++ Review

Assignment 1: C++ Exercises

= Several interesting problems for you to practice
C++ programming.
= Check the assignment page for more details.

CSIEB0100 Data Structures C++ Review 59

Note 30

