
CSIEB0100 Data Structures Lecture 2: C++ Review

Note 1

CSIEB0100 Data Structures

Lecture02 C++ Review

Shiow-yang Wu 吳秀陽
Department of Computer Science
and Information Engineering
National Dong Hwa University

Object-Oriented Design (OOD)
 Data structure is about the structuring of data.
 Traditional programming have used

algorithmic decomposition.
 View software as a process.
 Decompose the process into functional modules.
 Data structures are a secondary concern.

 OOD views software as a set of interacting
objects.
 Directly model entities in the application domain.
 Result in flexibility w.r.t. changes.
 Lead to more intuitive design.

CSIEB0100 Data Structures C++ Review 2

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 2

Key Concepts in OOD
 You need to have solid understanding of the

following terms

CSIEB0100 Data Structures C++ Review 3

(https://www.javatpoint.com/software-engineering-object-oriented-design)

Object-Oriented Concepts
 Object: an entity with behavior (i.e. performs

computation) and a local state. (Encapsulation)
 Object-oriented programming(OOP):

 Representing entities with objects.
 Each object is an instance of a class.
 Classes are related to each other by inheritance.
 Problems/solutions are modeled/provided by a set of

objects interacting with each other by passing messages.

 A programming language that supports OOP is
called an object-oriented language.

 All other features of OO are related directly or
indirectly with the basic characteristics above.

CSIEB0100 Data Structures C++ Review 4

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 3

Evolution of Languages
 1st gen language: Fortran, for evaluating math

expression

 2nd gen language: Pascal, C, for algorithmic and
structured programming

 3rd gen language: Modula, for ADTs

 4th gen language: C++, Objective C, Smalltalk,
for OOP.

 C++ was designed by Bjarne Stroustrup of AT&T
Bell Lab. (next slide)

 C/C++ form the basics of many modern langs.

CSIEB0100 Data Structures C++ Review 5

Bjarne Stroustrup

 How to pronounce his name?

(https://youtu.be/9QKHg8wj4MA)

CSIEB0100 Data Structures C++ Review 6

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 4

C++ Program Organization
 A C++ program usually consists of multiple files.

 Header files (.h)
 Source files (.cc or .cpp)

 Header files are to store declarations of classes,
functions, and variables. Usually in the form:
#ifndef FILENAME_H
#define FILENAME_H
…
#endif

 Source files contain the implementation source
code. Include header with #include statement.

CSIEB0100 Data Structures C++ Review 7

Conditional
compilation

Structure of a C++ Program

CSIEB0100 Data Structures Course Information 8

(Optional)

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 5

C++: Comments
 Single line:

// My comment goes here

 Multi line: (C style comments)
/*

My first comment line
Another comment line
Yet another comment line

*/

C++: Scope
 File Scope:
 Any declarations not within a block, function,

class, or namespace.
 Global variables that can be used anywhere in

file.

 Namespace Scope:
 A collection of logically related names (of

variables, functions, etc.)
 Can be accessed with the scope resolution

operator (::) such as std::cout
 With using namespace declaration, can omit

the scope operator

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 6

C++: Scope
 Local Scope:
 Declared within a block
 Holds within a block and any subblocks nested

within that block

 Class Scope:
 Declarations within a class are associated with

that class
 Each class represents a distinct class scope

CSIEB0100 Data Structures C++ Review 11

C++: Scope
 Less common scope usage:
 Scope operator, ::, allows access to global

variable if within a block that contains a local
variable of the same name

 extern avoids re-declaration of global variable
across multiple files
 allows you to use variable defined elsewhere

 static allows re-declaration of global variables in
multiple files
 Static file scope variables can NOT be used with extern

in another file.

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 7

C++: Data Types
 Primitive data types:
 char

 int

 float

 double

 Modifiers:
 Amount of data held: short, long

 Use of sign bit: signed, unsigned

 User-defined: Build on top of primitive and
other user-defined types

C++: Types for collection of data
 array:
 Homogeneous collection of indexed data

 struct:
 Heterogeneous collection of named data

 Public data items by default

 class:
 Heterogeneous collection of named data

 Operations on that data

 Private data items by default

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 8

C++: Data Declarations
 Constants
 Literals and fixed values – 5, ‘a’, 4.331

 Variables
 Instance of a type
 Location in memory whose contents can change

during program execution

 Constant variable
 Variable whose contents are fixed
 const keyword

C++: Data Declarations
 Enumerated Types:
 Assigned names to integer constants
enum semester {SUMMER, FALL, SPRING};

 Pointers:
 Hold memory address of a variable
 De-referenced to access the actual data
 *variableName

int i = 25;

int *np;

np = &i;

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 9

C++: Data Declarations
 References:
 Provide an alternate name for an existing object
 Used in calling functions

int x = 5;
int& foo = x;
// foo is a reference to x, so this will set 7 to x
foo = 7;
cout << "x= " << x << ", foo= " << foo << endl;

// The value of both x and foo is 7

CSIEB0100 Data Structures C++ Review 17

C++: Data Declarations
 Reference parameters in function

void swap (int& first, int& second)

{

int temp = first;

first = second;

second = temp;

}

…

swap(a, b);

CSIEB0100 Data Structures C++ Review 18

How to swap without
reference parameters?

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 10

C++ Stream I/O Concept
 C++ I/O are based on streams (sequence of

bytes flowing in and out of the programs).

CSIEB0100 Data Structures C++ Review 19

C++: Standard I/O
 #include <iostream>

 Writing to screen:
 cout << variable << “string literal” << endl;

 Reading from keyboard:
 cin >> variable;

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 11

C++: File I/O
 #include <fstream>

 Use the << and >> operators exactly like cin
and cout.

 Output Streams:
 ofstream fileVariableName(“filename”, ios::out);

 If, after declaring the file, fileVariableName equals
0, the file couldn’t be opened

 To write, replace cout with the fileVariableName
you have chosen (e.g., outFile)
 outFile << “Hello World” << endl;

C++: File I/O
 Input Streams:
 ifstream fileVariableName(“filename”, ios::in);

 fileVariableName (e.g., inFile) set to 0 if couldn’t
be opened.

 inFile >> VariableName to read from file;

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 12

C++: Functions
 Every function has four parts:

 Function name

 Parameter list (function inputs) – parameter types and
names

 Return type (function outputs)

 Body, enclosed by curly brackets

 An example:

int Max (int a, int b)

{

if (a > b) return a;

return b;

}

C++: Functions

 Every function must end with a return
statement if the return type is not void

 Function names can be overloaded as
long as they have different signatures
(parameter lists).

 More about function overloading later.

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 13

C++: Parameter Passing
 Pass by value:
 Example: double square (double value)
 Default mechanism
 Make a copy of the value of argument
 Doesn’t change argument when function returns

 Pass by reference:
 Example: double square(double& value)
 Copies address of argument into function
 Manipulates underlying data
 Default for arrays

C++: Parameter Passing
 Why pass by reference?
 Faster than pass by value for large objects

 Allows you to return more than one thing from a
function

 Good option: constant pass by reference
 Example: double square(const double& value)

 Uses reference passing for speed

 Compiler prevents modification to argument within
function body

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 14

Function Overloading
 C++ allow more than one function with the same

name but different signatures.

 Examples:

int Max(int, int);

int Max(int, int, int);

int Max(int*, int);

int Max(float, int);

int Max(int, float);

are overloaded declarations of the Max function

CSIEB0100 Data Structures C++ Review 27

Inline Functions
 A function definition with the inline keyword

inline int Sum(int a, int b)

{

return a + b;

}

 The compiler will replace the call to Sum by the
body of function.

 Keep the function call syntax but eliminate the
overhead of call/return and parameter passing.

 Suitable for short functions.

CSIEB0100 Data Structures C++ Review 28

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 15

C++: Dynamic Allocation
 Use the new keyword to allocate a new object from

free memory.
 Creates an object of desired type and returns a pointer to

it.

 int* myInteger = new int;

 int* myIntegerArray = new int[10];

 Returns 0 if unable to allocate memory

 Use the delete keyword to free the memory being
used by an object.
 delete myInteger;

 delete [] myIntegerArray;

Exception Handling Concepts
 Exceptions are used to signal errors and other

special conditions.

 The special processing that may be required
after detection of an exception is called
exception handling

 The exception handling code unit is called an
exception handler

CSIEB0100 Data Structures C++ Review 30

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 16

Exception Handling

CSIEB0100 Data Structures C++ Review 31

Exception Handling in C++
 C++ provides built-in support for exception handling

 Allow programs to check error conditions and
throw an exception if occurred.

int DivZero(int a, int b, int c)

{

if (a <= 0 || b <= 0 || c <= 0)

throw “All parameters should be >0”;

return a + b * c + b / c;

}

CSIEB0100 Data Structures C++ Review 32

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 17

C++ Exception Handlers
 Exception handlers format:
try {
-- code that is expected to raise an exception
}
catch (formal parameter) {
-- handler code
}
...
catch (formal parameter) {
-- handler code
}

CSIEB0100 Data Structures C++ Review 33

C++ Exception Handlers
 Each catch block has a parameter whose type

determines the exception caught by that catch.
 catch is the name of all handlers--it is an

overloaded name, so the parameter must be
unique

 The parameter can be used to transfer
information to the handler.

 Examples:
 catch (char* e) {} // catches exception of type char*
 catch (bad_alloc e) {} // for exception of type bad_alloc
 catch (…) {} // catches all exceptions not yet handled

CSIEB0100 Data Structures C++ Review 34

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 18

Exception Handling Example

CSIEB0100 Data Structures C++ Review 35

int main ()
{

try{ cout << DivZero (2,0,4) << endl; }
catch (const char* e)
{

cout << ”Exception in calling DivZero” << endl ;
cout << e << endl ;
return 1 ;

}
return 0 ;

}

STL – Standard Template Library
 A collection of useful classes and functions for

common data structures and algorithms

 Part of the ISO Standard C++ Library

 Can store and process objects of any type

 Greatly simplify application development

 Heavily used in the S/W industry

 Key components: Containers, Iterators,
Algorithms, Functors(Function Objects)

 Other components: Adapters, Allocators

CSIEB0100 Data Structures C++ Review 36

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 19

Why Use STL?
 Reduce development time
 Data structures already written and debugged.

 Efficient algorithms
 STL implementation is optimized

 Code readability
 Robustness
 STL data structures grow automatically.

 Portable/reusable/maintainable code.
 Easy to use, understand and communicate.
 Large community of users

CSIEB0100 Data Structures C++ Review 37

Disadvantages of STL
 Learning curve

 Learning STL takes time and effort.

 Lack of control
 Using STL limit your control over certain aspects of

your code.

 Performance
 There are cases when using STL can result in slower

execution time compared to custom code.

 The defects cannot obscure the virtues. 瑕不掩瑜

CSIEB0100 Data Structures C++ Review 38

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 20

The ‘Top 3’ Data Structures in STL
 map

 Associate any key type, any value type.

 Sorted.

 vector

 Like C array, but auto-extending.

 list

 doubly-linked list

 To be discussed when needed

 Many online tutorials and documents

CSIEB0100 Data Structures C++ Review 39

STL Algorithm accumulate
 For accumulating elements in a sequence
 #include <numeric>

 Two forms:
 accumulate(start, end, initValue)

 accumulate(start, end, initValue, operator)

 Examples:
 accumulate(a, a+n, initValue) returns the value

initValue +

 The second form returns the accumulation of the same
range of elements with the operator instead of +

CSIEB0100 Data Structures C++ Review 40

1n

0i

a[i]

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 21

Example of accumulate
#include <iostream>

#include <vector>

#include <numeric>

#include <string>

using namespace std;

int multiply(int x, int y) {

return x*y;

}

string magic_function(string res, int x) { // what does it do?

return res += (x > 5) ? "b" : "s";

}

CSIEB0100 Data Structures C++ Review 41

Example of accumulate
int main() {

vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int sum = accumulate(v.begin(), v.end(), 0);

int product = accumulate(v.begin(), v.end(), 1,
multiply);

string magic = accumulate(v.begin(), v.end(), string(),
magic_function);

cout << sum << '\n' << product << '\n' << magic <<
'\n';

return 0;

}
CSIEB0100 Data Structures C++ Review 42

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 22

STL Algorithm copy
 Copy range of elements
 #include <algorithm>

 Syntax: copy(start, end, to)

 Copy the elements in the range [start,end)
into the range beginning at to.

CSIEB0100 Data Structures C++ Review 43

Example of copy
#include <iostream> // std::cout
#include <algorithm> // std::copy
#include <vector> // std::vector
using namespace std;

int main () {
int myints[]={10,20,30,40,50,60,70};
vector<int> myvec(7);
copy (myints, myints+7, myvec.begin());
cout << "myvec contains:";
for (vector<int>::iterator it = myvec.begin(); it != myvec.end(); ++it)

cout << ' ' << *it;
cout << '\n';
return 0;

}

CSIEB0100 Data Structures C++ Review 44

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 23

Timing in C++
#include <ctime> // or #include <time.h>
clock_t start, stop;
start = clock(); // set start to current time in millisecond

// code to be timed comes here

stop = clock(); // set stop to current time
double runTime = stop – start;

CSIEB0100 Data Structures Performance Measurement 45

Accurate Timing
 Measuring one-time execution is not accurate

enough, especially when the execution time is
short.

 Measure the average execution time of
repeated execution.

 Keeps a counter for the #times of execution.

 Divide the elapsed time by the #times of
execution to get average exe time.

CSIEB0100 Data Structures Performance Measurement 46

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 24

Accurate Timing
clock_t start, stop;
start = clock(); // set start to current time
long counter;
do {

counter++;
doSomething();
stop = clock();

} while (stop - start < 1000) // repeat long enough

double elapsedTime = stop - start;
double timeForTask = elapsedTime/counter;

CSIEB0100 Data Structures Performance Measurement 47

High Resolution Timing with chrono
 Can also use the std::chrono library introduced in C++11.
#include <chrono>
using namespace std::chrono;
…
// Get the start timepoint using now()
auto start = high_resolution_clock::now();

… // The segment to be measured

// Get the stop timepoint
auto stop = high_resolution_clock::now();

// Get the duration between start and stop
auto duration = duration_cast<microseconds>(stop - start);

// Get the value of duration using the count() member function
cout << duration.count() << endl;

CSIEB0100 Data Structures C++ Review 48

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 25

Accuracy
However:

first reading may be just about to change to start
+ 1

second reading may have just changed to stop

so stop - start is off by 1 unit

CSIEB0100 Data Structures Performance Measurement 49

Accuracy

Examining these cases, we get

trueElapsedTime = stop - start ± 1

To ensure 10% accuracy, require

elapsedTime = stop – start
>= 10

CSIEB0100 Data Structures Performance Measurement 50

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 26

What Went Wrong?
start=clock();
long counter;
do {

counter++;
insertionSort(a,n);
stop=clock();

} while (stop - start < 10)
double elapsedTime = (stop – start);
double timeToSort = elapsedTime/counter;

CSIEB0100 Data Structures Performance Measurement 51

The Fix
start=clock();
long counter;
do {

counter++;
// put code to initialize the array a here
insertionSort(a,n);
stop=clock();

} while (stop - start < 10)
…

CSIEB0100 Data Structures Performance Measurement 52

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 27

Bad Way To Time
do {

counter++;
start=clock();
doSomething();
stop=clock();
elapsedTime += stop - start;

} while (elapsedTime < 10)

CSIEB0100 Data Structures Performance Measurement 53

C++ Timing Example
int SequentialSearch (int *a, const int n, const int x)

{ // search a[0, ..., n] for x

int i;

for (int i=0; i < n && a[i] != x; i++) ;

if (i == n) return -1;

else return i;

}

CSIEB0100 Data Structures C++ Review 54

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 28

void TimeSearch1() {

int a[1001], n[20], k;

for (int j=1; j <= 1000 ; j++) // initialize a

a[j] = j;

for (int j=0; j < 10; j++) { // initialize n

n[j] = 10*j; n[j+10] = 100*(j+1) ;

}

cout << " n time" << endl; // print header

for (int j=0; j < 20; j++) { // calculate exe time

clock_t start, stop;

start = clock(); // start time

CSIEB0100 Data Structures C++ Review 55

k = SequentialSearch(a, n[j], 0);

stop = clock(); // stop time

double runTime =

(double)(stop - start)/CLOCKS_PER_SEC;

cout << " " << n[j] << " " << runTime << endl;

}

cout << "Times are in seconds." << endl ;

}

What’s wrong with TimeSearch1 ?

CSIEB0100 Data Structures C++ Review 56

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 29

void TimeSearch2() {

int a[1001], n[20], k;

const long r[20] = {300000, 300000, 200000,
200000, 100000, 100000,100000, 80000, 80000,
50000, 50000, 25000, 15000, 15000, 10000,
7500, 7000, 6000, 5000, 5000};

for (int j=1; j <= 1000 ; j++) // initialize a

a[j] = j;

for (int j=0; j < 10; j++) { // initialize n

n[j] = 10*j; n[j+10] = 100*(j+1);

}

cout << " n r total runTime" << endl;
CSIEB0100 Data Structures C++ Review 57

for (int j=0; j < 20; j++) { // calculate exe time
clock_t start, stop;
start = clock(); // start time
for (long b=1; b <= r[j]; b++)

k = SequentialSearch(a, n[j], 0);
stop = clock(); // stop time
double totalTime =

(double)(stop - start)/CLOCKS_PER_SEC;
double runTime = totalTime/(double)(r[j]);
cout << " " << n[j] << " " << r[j] << " “

<< totalTime << " " << runTime << endl;
}
cout << "Times are in seconds." << endl;

}
CSIEB0100 Data Structures C++ Review 58

CSIEB0100 Data Structures Lecture 2: C++ Review

Note 30

Assignment 1: C++ Exercises
 Several interesting problems for you to practice

C++ programming.

 Check the assignment page for more details.

CSIEB0100 Data Structures C++ Review 59

