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Introduction
 Array
 Successive items (homogenous) locate a fixed 

distance

 Disadvantage
 Data movements during insertion and deletion

 Waste space in storing n ordered lists of varying 
size

 Possible solution
 Linked list
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Singly Linked Lists
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Insertion
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Insertion Steps
 What are the correct steps for insertion?

 What happens if we do this?
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Right Steps of  Insertion
 The key is to set up the connection before

reassign existing connection.
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Deletion

 What are the correct steps?

 What about the deleted node?
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Defining a List Node in C++

class ThreeLetterNode
{
private:

char data[3];
ThreeLetterNode *link;

}
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Designing a List in C++
 Design Attempt 1:
 Use a global variable first which is a pointer of 

ThreeLetterNode.

 Unable to access to private data members: data
and link.

 A popular approach in C

ThreeLetterNode *first;
first->data, first->link
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Designing a List in C++
 Design Attempt 2:
 Make data members public or define public 

member functions GetLink(), SetLink() and 
GetData()

 Defeat the purpose of data encapsulation
 We should not know how the list is implemented

 An ideal solution should
 Only grant those functions that perform list 

manipulation operations (i.e., inserting a node or 
deleting a node) access to data members
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Designing a List in C++
 Design Attempt 3:

 Use of two classes.

 Create a class that represents the linked list.

 The class contains the items (list nodes) of another 
objects of another class.

 A data object of Type A HAS-A data object of 
Type B if A conceptually contains B or B is a part 
of A
 Computer HAS-A Processor
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Composite Classes (initial design)
// forward delcarion
class ThreeLetterList;

class ThreeLetterNode {
friend class ThreeLetterList;
private:  // Node data
char data[3];
ThreeLetterNode * link;

};

class ThreeLetterList {
public:
// List Manipulation operations
...
private:
ThreeLetterNode *first;

};
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Composite Classes
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Nested Classes (safer design)
 Nested classes
 One class is defined inside the definition of 

another.

 Class ThreeLetterNode is defined inside the 
private portion of the definition of class 
ThreeLetterList
 This ensures that ThreeLetterNode objects cannot 

be accessed outside class ThreeLetterList
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Nested Classes
class ThreeLetterList {
public:

// List Manipulation operations
.
.
private:

// nested class
class ThreeLetterNode {
public:
char data[3];
ThreeLetterNode *link;

};
ThreeLetterNode *first;

};
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Pointer Manipulation in C++
 Two pointer variables of the same type can be 

compared.
 x == y, x != y, x == 0
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Create a Two-Node List
void List::Create2( )
{
// create a linked list with two nodes
first = new ListNode(10);
first->link = new ListNode(20);

}
ListNode::ListNode(int element=0)
{
data=element;
link=0;

}
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List Insertion
 Insert a node after a specific node
void List::Insert50(ListNode *x)  //insert after x
{

// insert a new node with data=50 into the list
ListNode *t=new ListNode(50);
if (!first) { // empty list

first=t;
return;

}
//insert after x
t->link=x->link;
x->link=t;

}
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List Deletion
 Delete the first node (first = first->link)

 Delete node other than the first node.
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List Iterator
 A list iterator is an object that is used to traverse all 

elements of a container class.
 ListIterator<Type> is declared as a friend of 

both List<Type> and ListNode<Type>.
 A ListIterator<Type> object is initialized with the 

name of a List<Type> object L with which it will be 
associated.

 The ListIterator<Type> object contains a private 
data member current of type ListNode<Type>*. 
At all times, current points to a node of list L.

 The ListIterator<Type> object defines public 
member functions NotNull(), NextNotNull(), 
First(), and Next() to perform various tests on 
and to retrieve elements of list L.
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Template of  Linked List
enum Boolean { FALSE, TRUE };
template <class Type> class List;
template <class Type> class ListIterator;
template <class Type> class ListNode {

friend class List<Type>;
friend class ListIterator<Type>;
private:

Type data;
ListNode *link;

};
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Template of  Linked List
template <class Type> class List {

friend class ListIterator<Type>;
public:

List() {first = 0;};
// List manipulation operations
..

private:
ListNode<Type> *first, *last;

};
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Template of  ListIterator
template <class Type> class ListIterator {

public:
ListIterator(const List<Type> &l): 

list(l), current(l.first)
{};
Boolean NotNull();
Boolean NextNotNull();
Type * First();
Type * Next();

private:
const List<Type>& list; // refers to a list
ListNode<Type>* current; // current node in list

};
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Attaching a Node at the End
Template <class Type>
void List<Type>::Attach(Type k)
{
ListNode<Type> *newnode = 

new ListNode<Type>(k);
if (first == 0) 
first = last = newnode;

else {
last->link = newnode;
last = newnode;

}
};
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Inverting a List
template <class Type>
void List<Type>:: Invert()
// A chain x is inverted so that if x=(a1,…an)
// then, after execution, x=(an,…,a1)
{

ListNode<Type>*p = first,*q=0; //q trails p
while (p)
{
ListNode<Type> *r=q;
q=p; //r trails q
p=p->link;
q->link=r;

}
first=q;

};
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Inverting a List (visually)
 Initial case

 After 1st iteration

 After 2nd iteration

 …

 At the end of the list ?
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Concatenating Two Lists
Template <class Type>
void List<Type>:: Concatenate(List<Type> b)
// this = (a1, …, am) and b = (b1, …, bn) m, n ≥ ,
// produces the new chain z = (a1, …, am, b1, bn) in this.
{

if (!first) {
first = b.first;
return;

}
if (b.first) {

for (ListNode<Type> *p = first; p->link; p = p->link);
// no body
p->link = b.first;

}
}
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List Destructor
Template <class Type>
List<Type>:: ~List()
// Free all nodes in the chain
{

ListNode<Type>* next;
for (; first; first = next) {

next = first->link;
delete first;

}
}
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Diagram of  a Circular List
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Linked Stacks and Queues
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Revisit Polynomials
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Polynomial Class Definition
struct Term
/* all members of Terms are public by default */
{
int coef; // coefficient
int exp; // exponent
void Init(int c, int e)
{coef = c; exp = e;};

};

class Polynomial
{
friend Polynomial operator+(const Polynomial&, 

const Polynomial&);
private:
List<Term> poly;

};
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Operating on Polynomials
 With linked lists, it is much easier to perform 

operations on polynomials such as adding and 
deleting.
 E.g., adding two polynomials a and b
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Operating on Polynomials
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Operating on Polynomials
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Free Pool (of  Items)
 When items are created and deleted constantly, it 

is more efficient to have a circular list to contain 
all available items.
 To reduce the times of creating and deleting objects

 When an item is needed, the free pool is checked 
to see if there is any item available.  If yes, then 
an item is retrieved and assigned for use.

 If the list is empty, then either we stop allocating 
new items or use new to create more items for 
use.
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Template of  Circular List
template <class Type>
void CircList<Type>:: ~CircList()
// Erase the circular list pointed to by first and add to av
{

if ( first )
{

ListNode* second=first->link; //(1)
first->link=av; //(2)
av=second; //(3)
first=0; //(4)

}
}

CSIEB0100 Data Structures Linked Lists 37

template < class Type>
ListNode <Type>* CircList<Type>::GetNode()
// Provide a node in free pool for use
{
ListNode <Type> *x;
if ( !av )  // No more free node
x = new ListNode<Type>;

else {
x = av;
av = av->link;

}
return x;

}
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template <class Type>
Void CircList<Type>::RetNode( 
ListNode<Type> *x)
//Free the node pointed to by x
{

x->link = av;
av = x;

}
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Head Node
 Represent polynomial as circular list
 Zero

 Others
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Equivalence Relation
 For an arbitrary relation by the symbol 
 Reflexive

 If x  x

 Symmetric
 If x  y, then y  x

 Transitive
 If x  y and y  z, then x  z

 A relation over a set, S, is said to be an 
equivalence relation over S iff it is symmetric, 
reflexive, and transitive over S.
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Examples
 The “equal to” (=) relationship is an 

equivalence relation since
 x = x

 x = y implies y = x

 x = y and y = z implies x = z

 An equivalence relation is to partition the set 
S into equivalence classes such that two 
members x and y of S are in the same 
equivalence class iff x  y
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Examples
 Treating numbers as symbols

 0  4, 3  1, 6  10, 8  9, 7  4,

 6  8, 3  5, 2  11, 11  0

 Results in three equivalent classes

{0,2,4,7,11}; {1,3,5}; {6,8,9,10}
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A Rough Algorithm to Find 
Equivalence Classes

void equivalence()
{

initialize;
while (there are more pairs) {

read the next pair <i,j>;
process this pair;

}
initialize the output;
do {

output a new equivalence class;
} while (not done);

}

CSIEB0100 Data Structures Linked Lists 44

P
h

a
se

 1
P

h
a

se
 2

What kinds 
of data 
structures 
to adopt?



CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 23

void equivalence()
{

read n; // read in number of objects
initialize seq to 0 and out to FASLE;
while more pairs // input pairs
{

read the next pair (i,j);
insert j on seq[i] list;
insert i on seq[j] list;

}
for( i = 0; i < n; i++ )

if ( out[i] == FALSE) {
out[i] = TRUE;
output the equivalence class that contains object i

}
} // end of equivalence
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direct equivalence

Compute indirect equivalence
using transitivity
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enum Boolean { FALSE, TRUE };
class ListNode {
friend void equivalence();
private:

int data;
ListNode *link;
ListNode(int);

};
typedef ListNode *ListNodePrt;
/* so we can create an array of pointers
using new */
ListNode::ListNode(int d){
data = d;
link = 0;

}
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void equivalence()
/* Input the equivalence pairs and 
output the equivalence classes */
{

//”equiv.in” is the input file
ifstream inFile(“equiv.in”, ios::in);
if (!inFile) {

cerr << “Cannot open file ” << endl;
return;

}
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int i, j, n;
inFile >> n; // read no. of objects
// initialize seq and out
ListNodePtr *seq = new ListNodePtr[n];
Boolean *out = new Boolean[n];
for (i=0; i < n ; i++) {
seq[i] = 0;
out[i] = FALSE;

}
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// Phase 1: input equivalence pairs
inFile >> i >> j ;
while(inFile.good()) { // check EOF

ListNode *x = new ListNode(j);
x->link = seq[i];
seq[i] = x; // add j to seq[i]
ListNode *y = new ListNode(i);
y->link = seq[j];
seq[j] = y; // add i to seq[j]
inFile >> i >> j;

}
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// Phase 2: output equivalence classes
for( i = 0; i < n; i++)

if( out[i]==FALSE ){ // needs to be output
cout << endl << “A new class: “ << i;
out[i] = TRUE;
ListNode *x = seq[i]; 
ListNode *top = 0; //init stack
while(1){ // find rest of class
while(x){ // process the list

j = x->data;
if( out[j]==FALSE ) {

cout << “,” << j;
out[j] = TRUE;
ListNode *y = x->link; //next node
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x->link = top;
top = x;
x = y;

}
else x = x->link;

} // end of while(x)
if( !top ) break;
else {
x = seq[top->data];
top = top->link; // unstack

}
} // end of while(1)

} // end of if( out[i]==FALSE )
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for( i = 0; i < n; i++ )
while( seq[i] ) {
ListNode *delnode = seq[i];
seq[i] = delnode->link;
delete delnode;

}
}
delete [] seq; 
delete [] out;

} // end of equivalence
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Output of  Previous Example
A new class: 0, 11, 4, 7, 2
A new class: 1, 3, 5
A new class: 6, 8, 10, 9
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Sparse Matrices
 Inadequates of sequential schemes
 # of nonzero terms will vary after some matrix 

computation

 Matrix just represents intermediate results

 New scheme
 Each column (or row): a circular linked list with a 

head node
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Sparse Matrices Representation
 # of head nodes = max{# of rows, # of columns}

 The field head is used to distinguish between 
head nodes and entry nodes
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Down to link into column list
Right to link into row list
Next links head nodes 

Head Nodes of  Sparse Matrices
 Each head node is in three lists: 

 A list of rows,

 A list of columns,

 A list of head nodes

 The list of head nodes also has a head node (the 
matrix head) which is in entry node structure and 
the row and column fields of this node is used to 
store matrix dimensions.
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Matrix 
Head

The head node for rowi is also head node for columni

Another Example
 A 5x4 sparse matrix
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enum Boolean { FALSE, TRUE };
struct Triple { int value, row, col ; };
class Matrix ; //forward declaration
class MatrixNode {

friend class Matrix ;
//for reading in a matrix
friend istream& operator>>(istream&, Matrix&) ;
private:
MatrixNode *down, *right ;
Boolean head ;
union { //anonymous union
MatrixNode *next ; // when it is a head
Triple triple ;    // when it is an entry

};
MatrixNode(Boolean, Triple *) ; //constructor

};
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typedef MatrixNode * MatrixNodePtr ;
// to allow subsequent creation of 
// array of pointers
class Matrix{

friend istream& operator>>(istream&,
Matrix&) ;

public:
~Matrix() ; //destructor

private:
MatrixNode *headnode ;

};
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MatrixNode::MatrixNode(Boolean b, Triple *t)
//constructor
{
head = b ;
if (b) { 

// row/column head node
right = next = down = this; 

}
else 

// head node for list of headnodes OR
// element node
triple = *t ;

}
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Sparse Matrix Example
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Doubly Linked Lists
 Move in forward and backward direction.
 Singly linked list in one direction only

 How to get the preceding node during deletion 
or insertion?
 Using 2 pointers

 Node in doubly linked list
 left link field (llink)

 data field (item)

 right link field (rlink)
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Doubly vs. Singly Linked List
 Can operate on both ends

 Need extra space for additional pointers

 Insertion/Deletion need extra work

 Node deletion requires no additional pointers

 Can work as a Queue and a Stack at the same 
time. (How?)
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class DblList ;
class DblListNode {
friend class DblList ;
private:

int data ;
DblListNode *llink, *rlink ;

};
class DblList {
public:

//List manipulation operations
private:

//points to head node
DblListNode *head ;

};
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Doubly Linked Lists
 A head node is also used in a doubly linked list to 

allow us to implement our operations more easily.
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Insertion
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void DblList::Insert(DblListNode *p,
DblListNode *x)
//insert node p to the right of node x
{

p->llink = x ; //(1)
p->rlink = x->rlink ; //(2)
x->rlink->llink = p ; //(3)
x->rlink = p ; //(4)

}
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Deletion
void DblList::Delete(DblListNode *x) {

if(x == first) 
cerr << "Deletion of head node not permitted" 

<< endl;
else {

x->llink->rlink = x->rlink; //(1)
x->rlink->llink = x->llink; //(2)
delete x;

}
}
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Reverse
 Reverse a doubly linked list is a good exercise to test your 

understanding of the structure.
void DblList::Reverse() {

DblListNode *temp = NULL;
DblListNode *current = ...; //exercise!
//swap llink and rlink for all nodes
while (current != ...) {

temp = current->llink;
current->llink = current->rlink;
current->rlink = temp;
current = current->llink;

}
... //exercise!

}
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Generalized Lists
 A generalized list is a finite sequence of n 

elements (a0, … an-1) where ai is either an atom 
or a list.

 The elements that are not atoms are said to be 
sublists.

 Self-study.

CSIEB0100 Data Structures Linked Lists 73

Inventor of  Linked List
 1953: Idea of Linked List was published by Hans 

Peter Luhn from IBM. (also the inventor of Hash 
Map)

 1955: Linked List was implemented in a 
production software by Allen Newell, Cliff Shaw 
and Herbert Simon from RAND Corporation.

 The 4 people above are credited as the inventors 
of Linked List.

 1958: LISP was developed by John McCarthy at 
MIT. Linked List was a major component of LISP 
design.
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Advantages & Disadvantages
 Advantages:

 Dynamic: Linked lists can change size dynamically.
 Effective insertion and deletion: Inserting or removing 

elements cab be done quickly and efficiently. O(1)
 Memory efficiency: Linked lists don't require 

contiguous memory allocation.
 Flexibility: Linked lists offer a lot of versatility.

 Disadvantages:
 Sequential access: Linked lists have poor cache 

locality which results in significant overhead.
 Absence of random access: Accessing entries directly 

from an index is impossible.
 Complexity: The implementation of linked lists can be 

more difficult than those of arrays.
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Applications of  Linked Lists
 Implementation of other Data Structures: Many data structures can 

be implemented using the linked lists.
 Memory Management: Linked Lists can be used in memory 

management systems for allocating and reallocating memory.
 File Systems: File systems can be represented using linked lists. A 

node represents a file or directory; the links signify the parent-child 
relationships between the files and directories.

 Graphs and Charts: Graphs can be represented by Linked Lists, 
where nodes are vertices and the links are edges.

 Making music playlists: Linked List are frequently used to build 
music playlists. A node represents a song, and the list indicate the 
order in which the songs are played.

 Picture Processing Method: Picture processing methods can be 
implemented using linked lists, where a node represents each 
pixel.

 …
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