
CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 1

CSIEB0100 Data Structures

Lecture 05 Linked Lists

Shiow-yang Wu 吳秀陽
Department of Computer Science
and Information Engineering
National Dong Hwa University

Lecture material is partly home-grown, partly taken from slides came with the
textbook originally prepared by Professor Jiun-Long Huang of NCTU.

Introduction
 Array
 Successive items (homogenous) locate a fixed

distance

 Disadvantage
 Data movements during insertion and deletion

 Waste space in storing n ordered lists of varying
size

 Possible solution
 Linked list

CSIEB0100 Data Structures Linked Lists 2

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 2

Singly Linked Lists

CSIEB0100 Data Structures Linked Lists 3

Insertion

CSIEB0100 Data Structures Linked Lists 4

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 3

Insertion Steps
 What are the correct steps for insertion?

 What happens if we do this?

CSIEB0100 Data Structures Linked Lists 5

x

x

x

Right Steps of Insertion
 The key is to set up the connection before

reassign existing connection.

CSIEB0100 Data Structures Linked Lists 6

x

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 4

Deletion

 What are the correct steps?

 What about the deleted node?

CSIEB0100 Data Structures Linked Lists 7

Defining a List Node in C++

class ThreeLetterNode
{
private:

char data[3];
ThreeLetterNode *link;

}

CSIEB0100 Data Structures Linked Lists 8

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 5

Designing a List in C++
 Design Attempt 1:
 Use a global variable first which is a pointer of

ThreeLetterNode.

 Unable to access to private data members: data
and link.

 A popular approach in C

ThreeLetterNode *first;
first->data, first->link

CSIEB0100 Data Structures Linked Lists 9

Designing a List in C++
 Design Attempt 2:
 Make data members public or define public

member functions GetLink(), SetLink() and
GetData()

 Defeat the purpose of data encapsulation
 We should not know how the list is implemented

 An ideal solution should
 Only grant those functions that perform list

manipulation operations (i.e., inserting a node or
deleting a node) access to data members

CSIEB0100 Data Structures Linked Lists 10

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 6

Designing a List in C++
 Design Attempt 3:

 Use of two classes.

 Create a class that represents the linked list.

 The class contains the items (list nodes) of another
objects of another class.

 A data object of Type A HAS-A data object of
Type B if A conceptually contains B or B is a part
of A
 Computer HAS-A Processor

CSIEB0100 Data Structures Linked Lists 11

Composite Classes (initial design)
// forward delcarion
class ThreeLetterList;

class ThreeLetterNode {
friend class ThreeLetterList;
private: // Node data
char data[3];
ThreeLetterNode * link;

};

class ThreeLetterList {
public:
// List Manipulation operations
...
private:
ThreeLetterNode *first;

};

CSIEB0100 Data Structures Linked Lists 12

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 7

Composite Classes

CSIEB0100 Data Structures Linked Lists 13

Nested Classes (safer design)
 Nested classes
 One class is defined inside the definition of

another.

 Class ThreeLetterNode is defined inside the
private portion of the definition of class
ThreeLetterList
 This ensures that ThreeLetterNode objects cannot

be accessed outside class ThreeLetterList

CSIEB0100 Data Structures Linked Lists 14

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 8

Nested Classes
class ThreeLetterList {
public:

// List Manipulation operations
.
.
private:

// nested class
class ThreeLetterNode {
public:
char data[3];
ThreeLetterNode *link;

};
ThreeLetterNode *first;

};

CSIEB0100 Data Structures Linked Lists 15

Pointer Manipulation in C++
 Two pointer variables of the same type can be

compared.
 x == y, x != y, x == 0

CSIEB0100 Data Structures Linked Lists 16

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 9

Create a Two-Node List
void List::Create2()
{
// create a linked list with two nodes
first = new ListNode(10);
first->link = new ListNode(20);

}
ListNode::ListNode(int element=0)
{
data=element;
link=0;

}

CSIEB0100 Data Structures Linked Lists 17

List Insertion
 Insert a node after a specific node
void List::Insert50(ListNode *x) //insert after x
{

// insert a new node with data=50 into the list
ListNode *t=new ListNode(50);
if (!first) { // empty list

first=t;
return;

}
//insert after x
t->link=x->link;
x->link=t;

}

CSIEB0100 Data Structures Linked Lists 18

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 10

List Deletion
 Delete the first node (first = first->link)

 Delete node other than the first node.

CSIEB0100 Data Structures Linked Lists 19

List Iterator
 A list iterator is an object that is used to traverse all

elements of a container class.
 ListIterator<Type> is declared as a friend of

both List<Type> and ListNode<Type>.
 A ListIterator<Type> object is initialized with the

name of a List<Type> object L with which it will be
associated.

 The ListIterator<Type> object contains a private
data member current of type ListNode<Type>*.
At all times, current points to a node of list L.

 The ListIterator<Type> object defines public
member functions NotNull(), NextNotNull(),
First(), and Next() to perform various tests on
and to retrieve elements of list L.

CSIEB0100 Data Structures Linked Lists 20

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 11

Template of Linked List
enum Boolean { FALSE, TRUE };
template <class Type> class List;
template <class Type> class ListIterator;
template <class Type> class ListNode {

friend class List<Type>;
friend class ListIterator<Type>;
private:

Type data;
ListNode *link;

};

CSIEB0100 Data Structures Linked Lists 21

Template of Linked List
template <class Type> class List {

friend class ListIterator<Type>;
public:

List() {first = 0;};
// List manipulation operations
..

private:
ListNode<Type> *first, *last;

};

CSIEB0100 Data Structures Linked Lists 22

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 12

Template of ListIterator
template <class Type> class ListIterator {

public:
ListIterator(const List<Type> &l):

list(l), current(l.first)
{};
Boolean NotNull();
Boolean NextNotNull();
Type * First();
Type * Next();

private:
const List<Type>& list; // refers to a list
ListNode<Type>* current; // current node in list

};

CSIEB0100 Data Structures Linked Lists 23

Attaching a Node at the End
Template <class Type>
void List<Type>::Attach(Type k)
{
ListNode<Type> *newnode =

new ListNode<Type>(k);
if (first == 0)
first = last = newnode;

else {
last->link = newnode;
last = newnode;

}
};

CSIEB0100 Data Structures Linked Lists 24

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 13

Inverting a List
template <class Type>
void List<Type>:: Invert()
// A chain x is inverted so that if x=(a1,…an)
// then, after execution, x=(an,…,a1)
{

ListNode<Type>*p = first,*q=0; //q trails p
while (p)
{
ListNode<Type> *r=q;
q=p; //r trails q
p=p->link;
q->link=r;

}
first=q;

};

CSIEB0100 Data Structures Linked Lists 25

Inverting a List (visually)
 Initial case

 After 1st iteration

 After 2nd iteration

 …

 At the end of the list ?

CSIEB0100 Data Structures Linked Lists 26

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 14

Concatenating Two Lists
Template <class Type>
void List<Type>:: Concatenate(List<Type> b)
// this = (a1, …, am) and b = (b1, …, bn) m, n ≥ ,
// produces the new chain z = (a1, …, am, b1, bn) in this.
{

if (!first) {
first = b.first;
return;

}
if (b.first) {

for (ListNode<Type> *p = first; p->link; p = p->link);
// no body
p->link = b.first;

}
}

CSIEB0100 Data Structures Linked Lists 27

List Destructor
Template <class Type>
List<Type>:: ~List()
// Free all nodes in the chain
{

ListNode<Type>* next;
for (; first; first = next) {

next = first->link;
delete first;

}
}

CSIEB0100 Data Structures Linked Lists 28

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 15

Diagram of a Circular List

CSIEB0100 Data Structures Linked Lists 29

Linked Stacks and Queues

CSIEB0100 Data Structures Linked Lists 30

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 16

Revisit Polynomials

CSIEB0100 Data Structures Linked Lists 31

Polynomial Class Definition
struct Term
/* all members of Terms are public by default */
{
int coef; // coefficient
int exp; // exponent
void Init(int c, int e)
{coef = c; exp = e;};

};

class Polynomial
{
friend Polynomial operator+(const Polynomial&,

const Polynomial&);
private:
List<Term> poly;

};

CSIEB0100 Data Structures Linked Lists 32

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 17

Operating on Polynomials
 With linked lists, it is much easier to perform

operations on polynomials such as adding and
deleting.
 E.g., adding two polynomials a and b

CSIEB0100 Data Structures Linked Lists 33

Operating on Polynomials

CSIEB0100 Data Structures Linked Lists 34

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 18

Operating on Polynomials

CSIEB0100 Data Structures Linked Lists 35

Free Pool (of Items)
 When items are created and deleted constantly, it

is more efficient to have a circular list to contain
all available items.
 To reduce the times of creating and deleting objects

 When an item is needed, the free pool is checked
to see if there is any item available. If yes, then
an item is retrieved and assigned for use.

 If the list is empty, then either we stop allocating
new items or use new to create more items for
use.

CSIEB0100 Data Structures Linked Lists 36

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 19

Template of Circular List
template <class Type>
void CircList<Type>:: ~CircList()
// Erase the circular list pointed to by first and add to av
{

if (first)
{

ListNode* second=first->link; //(1)
first->link=av; //(2)
av=second; //(3)
first=0; //(4)

}
}

CSIEB0100 Data Structures Linked Lists 37

template < class Type>
ListNode <Type>* CircList<Type>::GetNode()
// Provide a node in free pool for use
{
ListNode <Type> *x;
if (!av) // No more free node
x = new ListNode<Type>;

else {
x = av;
av = av->link;

}
return x;

}

CSIEB0100 Data Structures Linked Lists 38

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 20

template <class Type>
Void CircList<Type>::RetNode(
ListNode<Type> *x)
//Free the node pointed to by x
{

x->link = av;
av = x;

}

CSIEB0100 Data Structures Linked Lists 39

Head Node
 Represent polynomial as circular list
 Zero

 Others

CSIEB0100 Data Structures Linked Lists 40

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 21

Equivalence Relation
 For an arbitrary relation by the symbol
 Reflexive

 If x x

 Symmetric
 If x y, then y x

 Transitive
 If x y and y z, then x z

 A relation over a set, S, is said to be an
equivalence relation over S iff it is symmetric,
reflexive, and transitive over S.

CSIEB0100 Data Structures Linked Lists 41

Examples
 The “equal to” (=) relationship is an

equivalence relation since
 x = x

 x = y implies y = x

 x = y and y = z implies x = z

 An equivalence relation is to partition the set
S into equivalence classes such that two
members x and y of S are in the same
equivalence class iff x y

CSIEB0100 Data Structures Linked Lists 42

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 22

Examples
 Treating numbers as symbols

 0 4, 3 1, 6 10, 8 9, 7 4,

 6 8, 3 5, 2 11, 11 0

 Results in three equivalent classes

{0,2,4,7,11}; {1,3,5}; {6,8,9,10}

CSIEB0100 Data Structures Linked Lists 43

A Rough Algorithm to Find
Equivalence Classes

void equivalence()
{

initialize;
while (there are more pairs) {

read the next pair <i,j>;
process this pair;

}
initialize the output;
do {

output a new equivalence class;
} while (not done);

}

CSIEB0100 Data Structures Linked Lists 44

P
h

a
se

 1
P

h
a

se
 2

What kinds
of data
structures
to adopt?

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 23

void equivalence()
{

read n; // read in number of objects
initialize seq to 0 and out to FASLE;
while more pairs // input pairs
{

read the next pair (i,j);
insert j on seq[i] list;
insert i on seq[j] list;

}
for(i = 0; i < n; i++)

if (out[i] == FALSE) {
out[i] = TRUE;
output the equivalence class that contains object i

}
} // end of equivalence

CSIEB0100 Data Structures Linked Lists 45

direct equivalence

Compute indirect equivalence
using transitivity

CSIEB0100 Data Structures Linked Lists 46

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 24

enum Boolean { FALSE, TRUE };
class ListNode {
friend void equivalence();
private:

int data;
ListNode *link;
ListNode(int);

};
typedef ListNode *ListNodePrt;
/* so we can create an array of pointers
using new */
ListNode::ListNode(int d){
data = d;
link = 0;

}

CSIEB0100 Data Structures Linked Lists 47

void equivalence()
/* Input the equivalence pairs and
output the equivalence classes */
{

//”equiv.in” is the input file
ifstream inFile(“equiv.in”, ios::in);
if (!inFile) {

cerr << “Cannot open file ” << endl;
return;

}

CSIEB0100 Data Structures Linked Lists 48

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 25

int i, j, n;
inFile >> n; // read no. of objects
// initialize seq and out
ListNodePtr *seq = new ListNodePtr[n];
Boolean *out = new Boolean[n];
for (i=0; i < n ; i++) {
seq[i] = 0;
out[i] = FALSE;

}

CSIEB0100 Data Structures Linked Lists 49

// Phase 1: input equivalence pairs
inFile >> i >> j ;
while(inFile.good()) { // check EOF

ListNode *x = new ListNode(j);
x->link = seq[i];
seq[i] = x; // add j to seq[i]
ListNode *y = new ListNode(i);
y->link = seq[j];
seq[j] = y; // add i to seq[j]
inFile >> i >> j;

}
CSIEB0100 Data Structures Linked Lists 50

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 26

CSIEB0100 Data Structures Linked Lists 51

// Phase 2: output equivalence classes
for(i = 0; i < n; i++)

if(out[i]==FALSE){ // needs to be output
cout << endl << “A new class: “ << i;
out[i] = TRUE;
ListNode *x = seq[i];
ListNode *top = 0; //init stack
while(1){ // find rest of class
while(x){ // process the list

j = x->data;
if(out[j]==FALSE) {

cout << “,” << j;
out[j] = TRUE;
ListNode *y = x->link; //next node

CSIEB0100 Data Structures Linked Lists 52

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 27

x->link = top;
top = x;
x = y;

}
else x = x->link;

} // end of while(x)
if(!top) break;
else {
x = seq[top->data];
top = top->link; // unstack

}
} // end of while(1)

} // end of if(out[i]==FALSE)

CSIEB0100 Data Structures Linked Lists 53

for(i = 0; i < n; i++)
while(seq[i]) {
ListNode *delnode = seq[i];
seq[i] = delnode->link;
delete delnode;

}
}
delete [] seq;
delete [] out;

} // end of equivalence

CSIEB0100 Data Structures Linked Lists 54

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 28

Output of Previous Example
A new class: 0, 11, 4, 7, 2
A new class: 1, 3, 5
A new class: 6, 8, 10, 9

CSIEB0100 Data Structures Linked Lists 55

Sparse Matrices
 Inadequates of sequential schemes
 # of nonzero terms will vary after some matrix

computation

 Matrix just represents intermediate results

 New scheme
 Each column (or row): a circular linked list with a

head node

CSIEB0100 Data Structures Linked Lists 56

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 29

Sparse Matrices Representation
 # of head nodes = max{# of rows, # of columns}

 The field head is used to distinguish between
head nodes and entry nodes

CSIEB0100 Data Structures Linked Lists 57

Down to link into column list
Right to link into row list
Next links head nodes

Head Nodes of Sparse Matrices
 Each head node is in three lists:

 A list of rows,

 A list of columns,

 A list of head nodes

 The list of head nodes also has a head node (the
matrix head) which is in entry node structure and
the row and column fields of this node is used to
store matrix dimensions.

CSIEB0100 Data Structures Linked Lists 58

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 30

CSIEB0100 Data Structures Linked Lists 59

Matrix
Head

The head node for rowi is also head node for columni

Another Example
 A 5x4 sparse matrix

CSIEB0100 Data Structures Linked Lists 60

0600

1008

0000

3004

0002

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 31

enum Boolean { FALSE, TRUE };
struct Triple { int value, row, col ; };
class Matrix ; //forward declaration
class MatrixNode {

friend class Matrix ;
//for reading in a matrix
friend istream& operator>>(istream&, Matrix&) ;
private:
MatrixNode *down, *right ;
Boolean head ;
union { //anonymous union
MatrixNode *next ; // when it is a head
Triple triple ; // when it is an entry

};
MatrixNode(Boolean, Triple *) ; //constructor

};

CSIEB0100 Data Structures Linked Lists 61

typedef MatrixNode * MatrixNodePtr ;
// to allow subsequent creation of
// array of pointers
class Matrix{

friend istream& operator>>(istream&,
Matrix&) ;

public:
~Matrix() ; //destructor

private:
MatrixNode *headnode ;

};
CSIEB0100 Data Structures Linked Lists 62

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 32

MatrixNode::MatrixNode(Boolean b, Triple *t)
//constructor
{
head = b ;
if (b) {

// row/column head node
right = next = down = this;

}
else

// head node for list of headnodes OR
// element node
triple = *t ;

}

CSIEB0100 Data Structures Linked Lists 63

Sparse Matrix Example

CSIEB0100 Data Structures Linked Lists 64

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 33

Doubly Linked Lists
 Move in forward and backward direction.
 Singly linked list in one direction only

 How to get the preceding node during deletion
or insertion?
 Using 2 pointers

 Node in doubly linked list
 left link field (llink)

 data field (item)

 right link field (rlink)

CSIEB0100 Data Structures Linked Lists 65

Doubly vs. Singly Linked List
 Can operate on both ends

 Need extra space for additional pointers

 Insertion/Deletion need extra work

 Node deletion requires no additional pointers

 Can work as a Queue and a Stack at the same
time. (How?)

CSIEB0100 Data Structures Linked Lists 66

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 34

class DblList ;
class DblListNode {
friend class DblList ;
private:

int data ;
DblListNode *llink, *rlink ;

};
class DblList {
public:

//List manipulation operations
private:

//points to head node
DblListNode *head ;

};

CSIEB0100 Data Structures Linked Lists 67

Doubly Linked Lists
 A head node is also used in a doubly linked list to

allow us to implement our operations more easily.

CSIEB0100 Data Structures Linked Lists 68

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 35

Insertion

CSIEB0100 Data Structures Linked Lists 69

void DblList::Insert(DblListNode *p,
DblListNode *x)
//insert node p to the right of node x
{

p->llink = x ; //(1)
p->rlink = x->rlink ; //(2)
x->rlink->llink = p ; //(3)
x->rlink = p ; //(4)

}

CSIEB0100 Data Structures Linked Lists 70

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 36

Deletion
void DblList::Delete(DblListNode *x) {

if(x == first)
cerr << "Deletion of head node not permitted"

<< endl;
else {

x->llink->rlink = x->rlink; //(1)
x->rlink->llink = x->llink; //(2)
delete x;

}
}

CSIEB0100 Data Structures Linked Lists 71

Reverse
 Reverse a doubly linked list is a good exercise to test your

understanding of the structure.
void DblList::Reverse() {

DblListNode *temp = NULL;
DblListNode *current = ...; //exercise!
//swap llink and rlink for all nodes
while (current != ...) {

temp = current->llink;
current->llink = current->rlink;
current->rlink = temp;
current = current->llink;

}
... //exercise!

}

CSIEB0100 Data Structures Linked Lists 72

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 37

Generalized Lists
 A generalized list is a finite sequence of n

elements (a0, … an-1) where ai is either an atom
or a list.

 The elements that are not atoms are said to be
sublists.

 Self-study.

CSIEB0100 Data Structures Linked Lists 73

Inventor of Linked List
 1953: Idea of Linked List was published by Hans

Peter Luhn from IBM. (also the inventor of Hash
Map)

 1955: Linked List was implemented in a
production software by Allen Newell, Cliff Shaw
and Herbert Simon from RAND Corporation.

 The 4 people above are credited as the inventors
of Linked List.

 1958: LISP was developed by John McCarthy at
MIT. Linked List was a major component of LISP
design.

CSIEB0100 Data Structures Linked Lists 74

CSIEB0100 Data Structures Lecture 5: Linked Lists

Note 38

Advantages & Disadvantages
 Advantages:

 Dynamic: Linked lists can change size dynamically.
 Effective insertion and deletion: Inserting or removing

elements cab be done quickly and efficiently. O(1)
 Memory efficiency: Linked lists don't require

contiguous memory allocation.
 Flexibility: Linked lists offer a lot of versatility.

 Disadvantages:
 Sequential access: Linked lists have poor cache

locality which results in significant overhead.
 Absence of random access: Accessing entries directly

from an index is impossible.
 Complexity: The implementation of linked lists can be

more difficult than those of arrays.

CSIEB0100 Data Structures Linked Lists 75

Applications of Linked Lists
 Implementation of other Data Structures: Many data structures can

be implemented using the linked lists.
 Memory Management: Linked Lists can be used in memory

management systems for allocating and reallocating memory.
 File Systems: File systems can be represented using linked lists. A

node represents a file or directory; the links signify the parent-child
relationships between the files and directories.

 Graphs and Charts: Graphs can be represented by Linked Lists,
where nodes are vertices and the links are edges.

 Making music playlists: Linked List are frequently used to build
music playlists. A node represents a song, and the list indicate the
order in which the songs are played.

 Picture Processing Method: Picture processing methods can be
implemented using linked lists, where a node represents each
pixel.

 …

CSIEB0100 Data Structures Linked Lists 76

