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Language Tree
 The Proto-Indo-European language(原始印歐語
系) tree
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Family Tree
 We are all familiar with family tree.
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Trees - Definition
 Tree: a finite set of one or more nodes such that

 a distinguished node r (root)

 zero or more nonempty (sub)trees T1, T2, …, Tk

 each of whose roots are connected by a directed edge 
from r
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A Sample Tree
 Assume the root is at level 1, then the level of a 

node is the level of the node’s parent plus one.

 The height or the depth of a tree is the maximum 
level of any node in the tree.
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Terminologies
 The degree of a node is the # subtrees of the node.

 The degree of A is 3; the degree of C is 1.

 The node with degree 0 is a leaf or terminal node.
 A node that has subtrees is the parent of the roots of 

the subtrees.
 The roots of these subtrees are the children of the 

node.
 Children of the same parent are siblings.
 The ancestors of a node are all the nodes along the 

path from the root to the node.
 The descendants of a node are all nodes along the 

path from the leaf node to the node. 
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Tree Data Structure
 In some definition, the level starts with 0.
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More Terminologies
 A path in a tree is a sequence of (0 or more) 

connected nodes.

 The length of a path is the # nodes in the path.

 The height of a tree is the length of the longest
path from the root to a leaf.

 The depth of a node is the length of the path from 
the root to that node.

 The diameter of a tree is the length of the longest 
path between any tow nodes. (They must be two 
leaf nodes. Why?)
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Representation of  Trees
 List Representation

 The root comes first, followed by a list of sub-trees

 T=(root (T1, T2,…,Tn))
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List Representation of  Trees
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Node Structure
 Possible node structure of a tree of degree k

 Lemma 5.1: If T is a k-ary tree (i.e., a tree of 
degree k) with n nodes, each having a fixed size 
as above, then n(k-1) + 1 of the nk child fields 
are 0, n ≥ 1. (why?)

 Very wasteful of memory space!

CSIEB0100 Data Structures Trees 11

Representation of  Trees
 Left Child-Right Sibling Representation

 Each node has two links (or pointers).

 Each node only has one leftmost child and one 
closest right sibling.
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Representation of  Trees
 Rotate the 

right sibling 
pointers in a 
left child right 
sibling tree by 
45 degrees to 
get the left 
child-right 
child (or 
degree two) 
tree.
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More Examples of  Tree Representations
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Binary Trees
 Definition:

 A binary tree is a finite set of nodes that is either 
empty or consists of a root and two disjoint binary 
trees called the left subtree and the right subtree.

 There is no tree with zero nodes. But there is an 
empty binary tree. (Quiz: How to modify the tree 
definition to allow empty tree?)

 Binary tree distinguishes between the order of 
the children while in a tree we do not.
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Binart Tree vs Tree
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Binary Tree Examples
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Properties of  Binary Trees
 Lemma 5.2 [Maximum number of nodes]

 The maximum number of nodes on level i of a binary 
tree is 2i-1, i ≥ 1.

 The maximum number of nodes in a binary tree of 
depth k is 2k – 1, k ≥ 1.

 Lemma 5.3 [Relation between number of leaf 
nodes and nodes of degree 2]: For any non-
empty binary tree, T, if n0 is the number of leaf 
nodes and n2 the number of nodes of degree 2, 
then n0 = n2 + 1.

 Definition: A full binary tree of depth k is a binary 
tree of depth k having 2k – 1 nodes, k ≥ 0.
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# Nodes in Binary Trees
 The maximum number of nodes on level i of a 

binary tree is 2i-1, i>=1.

 The maximum number of nodes in a binary 
tree of depth k is 2k-1, k>=1.

Prove by induction
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# Leaf  Nodes & Nodes of  Degree 2

 For any nonempty binary tree, T, if n0 is the 
number of leaf nodes and n2 the number of 
nodes of degree 2, then n0=n2+1

 Proof:
 Let n and B denote the total number of nodes & 

branches in T.

 Let n0, n1, n2 represent the nodes with no children, 
single child, and two children respectively.

 n= n0 + n1 + n2, B+1=n, B= n1 +2n2 ==> n1 +2n2 +1= n,

 n1 +2n2 +1= n0 + n1 + n2 ==> n0 = n2 +1
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Full BT vs Complete BT
 A full binary tree of depth k is a BT of depth k 

having 2k-1 nodes, k>=0

 A BT with n nodes and depth k is complete iff its 
nodes correspond to the nodes numbered from 1 
to n in the full binary tree of depth k.
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Examples of  Complete BTs
 Which of the following BTs are complete BTs of 

depth 4?
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Array Representation of  BT
 Lemma 5.4: If a complete binary tree with n 

nodes is represented sequentially, then for any 
node with index i, 1 ≤ i ≤ n, we have:
 parent(i) is at i / 2 if i ≠1. If i = 1, i is at the root and 

has no parent.

 left_child(i) is at 2i if 2i ≤ n. If 2i > n, then i has no left 
child.

 right_child(i) is at 2i + 1 if 2i + 1 ≤ n. If 2i + 1 > n, then i 
has no right child.

 Position zero of the array is not used.
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Sequential Representation
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Node Representation
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Linked Representation
class Tree;
class TreeNode {
friend class Tree;
private:
TreeNode *LeftChild;
char data;
TreeNode *RightChild;

};

class Tree {
public:
// Tree operations
...
private:
TreeNode *root;

};
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Linked Representation for BT

CSIEB0100 Data Structures

root

For the tree in 
Figure 5.10(a)

For the tree in Figure 5.10(b)
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00

Compare Two BT Representation
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Binary Tree Traversal
 Let L, V, and R stand for moving left, visiting

the node, and moving right.

 There are six possible combinations of 
traversal
 LVR, LRV, VLR, VRL, RVL, RLV

 Adopt the convention that we traverse left 
before right, only 3 traversals remain
 LVR, LRV, VLR

 inorder, postorder, preorder
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Arithmetic Expression using BT
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Program 5.1
void Tree::inorder()
// Driver calls workhorse for traversal of entire tree. The
// driver is declared as a public member function of Tree.
{

inorder(root);
}
void Tree::inorder(TreeNode *CurrentNode)
/* Workhorse traverses the subtree rooted at CurrentNode
(which is a pointer to a node in a binary tree). The
workhorse is declared as a private member function of Tree. */
{

if(CurrentNode){
inorder(CurrentNode->LeftChild);
cout << CurrentNode->data;
inorder(CurrentNode->RightChild);

}
}
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Trace Operation of  Inorder Traversal
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Program 5.2
void Tree::preorder(){
// Driver calls workhorse for traversal of entire tree. The
// driver is declared as a public member function of Tree.

preorder(root);
}
void Tree::preorder(TreeNode *CurrentNode)
// Workhorse traverses the subtree rooted at CurrentNode
// (which is a pointer to a node in a binary tree). The
// workhorse is declared as a private function of Tree.
{

if(CurrentNode){
cout << CurrentNode->data;
preorder(CurrentNode->LeftChild);
preorder(CurrentNode->RightChild);

}
}
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Program 5.3
void Tree::postorder()
// Driver calls workhorse for traversal of entire tree. The
// driver is declared as a public member function of Tree.
{

postorder(root);
}
void Tree::postorder(TreeNode *CurrentNode)
// Workhorse traverses the subtree rooted at CurrentNode (
// which is a pointer to a node in a binary tree). The workhorse
// is declared as a private member function of Tree.
{

if(CurrentNode){
postorder(CurrentNode->LeftChild);
postorder(CurrentNode->RightChild);
cout << CurrentNode->data;

}
}
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Iterative Inorder Traversal
void Tree::NonrecInorder()
// nonrecursive inorder traversal using a stack
{

Stack<TreeNode *> s; // declare and initialize stack
TreeNode *CurrentNode = root;
while (1) {

while (CurrentNode) { // move down LeftChild fields
s.Add(CurrentNode); // add to stack
CurrentNode = CurrentNode->LeftChild;

}
if (!s.IsEmpty()) { // stack is not empty

CurrentNode = *s.Delete(CurrentNode);
cout << CurrentNode->data << endl;
CurrentNode = CurrentNode->RightChild;

}
else break;

}
}
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Level Order Traversal
 All previous mentioned schemes use stacks

 Level-order traversal uses a queue

 Level-order scheme visit the root first, then the 
root’s left child, followed by the root’s right 
child

 All the nodes at a level are visited before 
moving down to another level
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Level Order Traversal of  BT
void Tree::LevelOrder()
// Traverse the binary tree in level order
{

Queue<TreeNode *> q;
TreeNode *CurrentNode = root;
while (CurrentNode) {
cout << CurrentNode->data << endl;
if (CurrentNode->LeftChild) 
q.Add(CurrentNode->LeftChild);

if (CurrentNode->RightChild) 
q.Add(CurrentNode->RightChild);

CurrentNode = *q.Delete();
}

}

CSIEB0100 Data Structures
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Other BT Functions

 With the inorder, postorder, or preorder 
mechanisms, we can implement all 
needed binary tree functions. e.g.,
 Copying Binary Trees

 Testing Equality
 Two binary trees are equal if their topologies are 

the same and the information in corresponding 
nodes is identical.
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Program 5.9
//Copy constructor
Tree::Tree(const Tree& s) //driver
{

root = copy(s.root);
}
TreeNode* Tree::copy(TreeNode *orignode)
//Workhorse
//This function returns a pointer to an exact copy of the binary
//tree rooted at orignode.
{

if (orignode) {
TreeNode *temp = new TreeNode;
temp->data = orignode->data;
temp->LeftChild = copy(orignode->LeftChild);
temp->RightChild = copy(orignode->RightChild);
return temp;

}
else return 0;

}
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Program 5.10
//Driver-assumed to be a friend of class Tree.
int operator==(const Tree& s, const Tree& t)
{

return equal(s.root, t.root);
}
//Workhorse-assumed to be a friend of TreeNode.
int equal(TreeNode *a, TreeNode *b)
//This function returns 0 if the subtrees at a and b are not
//equivalent. Otherwise, it will return 1.
{

if((!a)&&(!b)) return 1; //both a and b are 0
if(a && b //both a and b are non-0

&& (a->data == b->data) //data is the same
&& equal(a->LeftChild, b->LeftChild) //L subtrees eql
&& equal(a->RightChild, b->RightChild)) //R subtrees eql

return 1;
return 0;

}
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Propositional Calculus Expression
 A variable is an expression.

 If x and y are expressions, then ¬x, xy, xy are 
expressions.

 Parentheses can be used to alter the normal 
order of evaluation (¬ >  > ).

 Example: x1 ∨ (x2 ∧ ¬x3)

 Satisfiability problem: Is there an assignment of 
variables to make an expression true?
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Perform Formula Evaluation
 To evaluate an expression, we can traverse its 

tree in postorder.

 To perform evaluation, can add a value
member so that each node has four fields
 LeftChild

 data

 value

 RightChild
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Satisfiability Algorithm (V1)
For all 2n possible truth value combinations for the n

variables

{

generate the next combination;

replace the variables by their values;

evaluate the formula by traversing the tree it points to

in postorder;

if (formula.rootvalue()) {cout << combination; return;}

}

cout << “no satisfiable combination”;
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Evaluating a Formula
void SatTree::PostOrderEval() // Driver
{

PostOrderEval(root);
}
void SatTree::PostOrderEval(SatNode * s) // workhorse
{

if (s) {
PostOrderEval(s->LeftChild);
PostOrderEval(s->RightChild);
switch (s->data) {

case LogicalNot: 
s->value = !s->RightChild->value;
break;

case LogicalAnd: 
s->value = s->LeftChild->value && s->RightChild->value;
break;

case LogicalOr: 
s->value = s->LeftChild->value || s->RightChild->value;
break;

case LogicalTrue: s->value = TRUE; break;
case LogicalFalse: s->value = FALSE;

}
}

}
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Threaded Binary Trees
 Too many null pointers in current 

representation of binary trees
 n: number of nodes

 number of non-null links: n-1

 total links: 2n

 null links: 2n-(n-1)=n+1

 Replace these null pointers with some useful 
“threads”.
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Threaded Binary Trees

 If ptr->left_child is null,
 replace it with a pointer to the node that 

would be visited before ptr in an inorder 
traversal (inorder predecessor)

 If ptr->right_child is null,
 replace it with a pointer to the node that 

would be visited after ptr in an inorder
traversal (inorder successor)
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A Threaded Binary Tree
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Threads
 To distinguish between normal pointers and 

threads, two boolean fields, LeftThread and 
RightThread, are added to the record in 
memory representation.
 t->LeftThread = TRUE

=> t->LeftChild is a thread

 t->LeftThread = FALSE

=> t->LeftChild is a pointer to the left child.
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Threads
 To avoid dangling threads, a head node is 

used in representing a binary tree.

 The original tree becomes the left subtree of 
the head node.

 Empty Binary Tree
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Threaded Tree of  Fig 5.20
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program 5.14
char* ThreadedInorderIterator::Next()
// Find the inorder successor of CurrentNode in a threaded 
// binary tree
{
ThreadedNode *temp = CurrentNode->RightChild;
if(!CurrentNode->RightThread)
while(!temp->LeftThread)
temp = temp->LeftChild;

CurrentNode = temp;
if(CurrentNode == t.root) return 0;
else return &CurrentNode->data;

}
program 5.15
void ThreadedInorderIterator::Inorder()
{
for(char *ch = Next(); ch ; ch = Next())
cout << *ch << endl;

}

CSIEB0100 Data Structures

Inorder travesal can be 
performaed without stack
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Inserting a Node to a TBT
 Inserting a node r as the right child of a node s.

 If s has an empty right subtree, then the insertion is 
simple and diagram in Figure 5.23(a).

 If the right subtree of s is not empty, then this right 
subtree is made the right subtree of r after insertion. 
When this is done, r becomes the inorder predecessor 
of a node that has a LeftThread==TRUE field, and 
consequently there is a thread which has to be 
updated to point to r. The node containing this thread 
was previously the inorder successor of s. Figure 
5.23(b) illustrates the insertion for this case.
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Inserting a Node to a TBT
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Inserting a Node to a TBT

CSIEB0100 Data Structures
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void ThreadedTree::InsertRight(ThreadNode *s, 
ThreadedNode *r)

// Insert r as the right child of s
{

r->RightChild = s->RightChild;
r->RightThread = s->RightThread;
r->LeftChild = s;
r->LeftThread = TRUE; // LeftChild is a thread
s->RightChild = r; // attach r to s
s->RightThread = FALSE; // RightChild is a node
if (!r->RightThread) {
// gets the inorder successor of r
ThreadedNode *temp = InorderSucc(r); 
temp->LeftChild = r;

}
}
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Priority Queues
 In a priority queue, the element to be deleted 

is the one with highest (or lowest) priority.

 An element with arbitrary priority can be 
inserted into the queue according to its 
priority.

 A data structure supports the above two 
operations is called max (min) priority queue.
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Applications of  Priority Queue
 machine service

 amount of time (min heap)

 amount of payment (max heap)
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Data Structures for Priority Queues
 Unordered linked list

 Unordered array

 Sorted linked list

 Sorted array

 Heap
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Priority Queue Representation
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Max (Min) Heap
 Heaps are frequently used to implement priority 

queues. The complexity is O(log n).

 Definition:
 A max (min) tree is a tree in which the key value in 

each node is no smaller (larger) than the key values in 
its children (if any).

 A max heap is a complete binary tree that is also a 
max tree.

 A min heap is a complete binary tree that is also a 
min tree.

CSIEB0100 Data Structures Trees 61

Max Heap Examples

 Property: The root of max heap contains the 
largest.

 Can you provide more examples and 
nonexamples?
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Min Heap Examples
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 Property: The root of min heap contains the 
smallest.

 Can you provide more examples and 
nonexamples?

Insertion Into a Max Heap
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Insertion Into a Max Heap
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Insertion Into a Max Heap
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template <class Type>
void MaxHeap<Type>::Insert(const Element <Type> &x)
// insert x into the max heap
{

if(n == MaxSize) {HeapFull(); return;}
n++;
int i;
for(i = n; 1; ){
if(i == 1) break; // at root
if(x.key <= heap[i/2].key) break;
// move from parent to i
heap[i] = heap[i/2];
i/=2;

}
heap[i] = x;

}
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Deletion from a Max Heap
template <class Type>
Element<Type>* 
MaxHeap<Type>::DeleteMax(Element<Type>& x)
// Delete from the max heap
{
if (!n) { HeapEmpty(); return 0; }
x = heap[1];
Element<Type> k = heap[n];
n--;
int i, j;
for (i=1, j=2; j <= n;) {

// i is the tentative location of k
if (j < n) {
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if (heap[j].key < heap[j+1].key)
j++;

}
// j points to the larger child
if (k.key >= heap[j].key) break;
heap[i] = heap[j]; // move child up
i = j; j *= 2;

}
heap[i] = k;
return &x;

}
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Binary Search Tree (BST)
 Heap

 a min (max) element is deleted. O(log2n)
 deletion of an arbitrary element O(n)
 search for an arbitrary element O(n)

 Binary search tree
 Every element has a unique key.
 The keys in a nonempty left subtree (right subtree) 

are smaller (larger) than the key in the root of 
subtree.

 The left and right subtrees are also binary search 
trees.
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Binary Trees
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Searching a Binary Search Tree
 If the root is null, then this is an empty tree. 

No search is needed.

 If the root is not null, compare the x with the 
key of root.
 If x is equal to the key of the root, then it’s done.

 If x is less than the key of the root, then no 
elements in the right subtree have key value x. We 
only need to search the left subtree.

 If x is larger than the key of the root, only the right 
subtree is to be searched.

CSIEB0100 Data Structures Trees 74



CSIEB0100 Data Structures Lecture 6: Trees

Note 38

template <class Type> //Driver
BstNode<Type>* BST<Type>::Search(const 
Element<Type>& x)
/* Search the binary search tree (*this) 
for an element with key x. If such an 
element is found, return a pointer to 
the node that contains it. */
{

return Search(root, x);
}
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template <class Type> //Workhorse
BstNode<Type>* 
BST<Type>::Search(BstNode<Type>*b,
const Element <Type>&x)
{

if(!b) return 0;
if(x.key == b->data.key) return b;
if(x.key < b->data.key) 

return Search(b->LeftChild, x);
return Search(b->RightChild, x);

}  //recursive version
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template <class Type>
BstNode<Type>* BST<Type>::IterSearch(const
Element<Type>& x)
/* Search the binary search tree for an element
with key x */
{
for(BstNode<Type> *t = root; t; )
{

if(x.key == t->data.key) return t;
if(x.key < t->data.key) t = t->LeftChild;
else t = t->RightChild;

}
return 0;

}  //Iterative version
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Search Binary Search Tree by Rank
 Search by rank: eg. Find the kth smallest

 To search a binary search tree by the ranks of 
the elements in the tree, we need additional field 
LeftSize.

 LeftSize is the number of the elements in the 
left subtree of a node plus one.

 It is obvious that a binary search tree of height h 
can be searched by key as well as by rank in 
O(h) time.
 What is the range of h?
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template <class Type>
BstNode <Type>* BST<Type>::Search(int k)
// Search the BST for the kth smallest element
{

BstNode<Type> *t = root;
while(t)
{
if (k == t->LeftSize) return t;
if (k < t->LeftSize) t = t->LeftChild;
else {
k -= t->LeftSize;
t = t->RightChild;

}
}
return 0;

}
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Example of  Searching by Rank
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Inserting a Node into a BST
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Deletion from a BST
 Deleting a node from a BST is more 

complicated.
 Two stages:

 Search the node to remove.
 If found, delete the node.

 Three cases to consider when deleting a 
node:
 When the node has no children. (trivial, exercise)
 When the node has one child. (simple)
 When the node has two children. (two alternatives)
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Deletion from a BST – One Child
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Deletion from a BST – Two Children
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Deletion from a BST – Two Children

 Two alternatives.  In both cases, we keep the 
node but replace its value.

 Alternative 1: Replace it with the largest value 
(say, of node N) in its left subtree.  Then delete 
N.

 Alternative 2: Replace it with the smallest value 
(say, of node N) in its right subtree.  Then delete 
N.

 We will discuss Alternative 1 and leave 
Alternative 2 for you as an exercise.
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Deletion from a BST – Two Children
 The largest value in the left subtree must be the 

right most node of the left subtree. (Why?)

 The smallest value in the right subtree must be 
the left most node of the right subtree. (Why?)

CSIEB0100 Data Structures Trees 86



CSIEB0100 Data Structures Lecture 6: Trees

Note 44

Deletion from a BST – Two Children
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Alternative 1 Alternative 2

Selection Trees
 Winner tree

 Loser tree
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Winner Trees
 Complete binary tree with k external nodes 

and k - 1 internal nodes.

 External nodes represent tournament players.

 Each internal node represents a match played 
between its two children; the winner of the 
match is stored at the internal node.

 Root has overall winner.
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Winner Tree For 16 Players

player match node
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Note 46

Winner Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

Smaller element wins => min winner tree.

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1
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Winner Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

height is log2k (excludes player level)

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1
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Note 47

Merging Sequences with Winner Tree

 Given k ordered sequences (non-decreasing) 
called runs

 Want to merge these sequences into one
sequence (of n numbers)
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Note 48

CSIEB0100 Data Structures Course Information 95

Analysis
 K: # of runs

 n: # of records

 setup time: O(K) (K-1)

 restructure time: O(log2K) log2(K+1)
 merge time: O(nlog2K)

 slight modification: tree of loser
 consider the parent node only (vs. sibling nodes)
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Note 49

Loser Tree

CSIEB0100 Data Structures

 Each match node stores the match loser 
rather than the match winner.

 Use the winner for matching at the next level.

 The winner at the root node is placed at an 
"extra" overall winner slot.
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Loser Tree Merge

CSIEB0100 Data Structures

run
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Note 50

Loser Tree Merge

CSIEB0100 Data Structures

run
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Only need to consider 
the parent node along 
the way to the root.

Forest
 A forest is a set of n>=0 disjoint trees.

CSIEB0100 Data Structures Trees 100



CSIEB0100 Data Structures Lecture 6: Trees

Note 51

Transform a Forest into a Binary Tree

 T1, T2, …, Tn: a forest of trees

 B(T1, T2, …, Tn): a binary tree corresponding to 
this forest

 Algorithm
 empty, if n=0

 has root equal to root(T1); has left subtree equal to 
B(T11,T12,…,T1m); where T11,T12,…,T1m are 
subtrees of root(T1); and has right subtree equal to 
B(T2,T3,…,Tn).
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Transform a Forest into a Binary Tree
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Note 52

Forest Traversals
 Preorder

 If F is empty, then return

 Visit the root of the first tree of F

 Traverse the subtrees of the first tree in forest 
preorder

 Traverse the remaining trees of F in forest 
preorder
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Forest Traversals
 Inorder

 If F is empty, then return

 Traverse the subtrees of the first tree in forest inorder

 Visit the root of the first tree

 Traverse the remaining trees of F in forest inorder

 Postorder
 If F is empty, then return

 Traverse the subtrees of the first tree in forest 
postorder

 Traverse the remaining trees of F in forest postorder

 Visit the root of the first tree
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Note 53

Set Representation
 S1={0, 6, 7, 8}, S2={1, 4, 9}, S3={2, 3, 5}

 Two operations considered here
 Disjoint set union S1∪ S2 = {0,6,7,8,1,4,9}

 Find(i): Find the set containing the element i.
 3 ∈ S3, 8 ∈ S1
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Disjoint Set Union
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Note 54

Data Representation of  S1, S2 and S3

CSIEB0100 Data Structures Trees 107

Array Representation of  S1, S2, S3

 We could use an array for the set name. Or 
the set name can be an element at the root.

 Assume set elements are numbered 0 through 
n-1.
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Note 55

SimpleFind
SimpleFind(int i)
// Find the root of the tree containing
// element i
{
while(parent[i]>=0)
i=parent[i];

return;
}
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Degenerate Tree

CSIEB0100 Data Structures Trees 110



CSIEB0100 Data Structures Lecture 6: Trees

Note 56

Weighting Rule
 Weighting rule for union(i, j)

 If the number of nodes in the tree with root i is less 
than the number in the tree with root j, then make j
the parent of i; otherwise make i the parent of j.

 Use the weighting rule on the union operation 
to avoid the creation of degenerate trees.
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Trees Obtained Using The Weighting 
Rule
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Note 57

Weighted Union
 Lemma 5.5: Assume that we start with a forest of 

trees, each having one node. Let T be a tree with 
m nodes created as a result of a sequence of 
unions each performed using function 
WeightedUnion. The height of T is no greater 
than log2 m  + 1

 For the processing of an intermixed sequence of 
u–1 unions and f find operations, the time 
complexity is O(u + f  log u).
 No tree has more than u nodes in it.
 We need O(n) additional time to initialize the n-tree 

forest
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Can still have unbalance trees
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Note 58

Can still have unbalance trees
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Collapsing Rule
 Collapsing rule:

 If j is a node on the path from i to its root and 
parent[j]≠root(i), then set parent[j] to root(i).

 The first run of find operation will collapse the 
tree. Therefore, each following find operation 
of the same element only goes up one link to 
find the root.
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Note 59

CollapsingFind
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CollapsingFind
CollapsingFind(int i)
{
// find root
for(int r=i; parent[r]>=0; r=parent[r]);
//collapse
while(i!=r)
{
int s=parent[i];
parent[i]=r;
i=s;

}
}
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Note 60
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Applications
 Find equivalence class i ≡ j

 Find Si and Sj such that i ∈ Si and j ∈ Sj (two 
finds)
 Si = Sj do nothing

 Si ≠ Sj union(Si , Sj)

 Example:

0 ≡ 4, 3 ≡ 1, 6 ≡ 10, 8 ≡ 9, 7 ≡ 4, 6 ≡ 8,

3 ≡ 5, 2 ≡ 11, 11 ≡ 0

{0, 2, 4, 7, 11}, {1, 3, 5}, {6, 8, 9, 10}
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Note 61

Example 5.5
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Example 5.5
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Note 62

Uniqueness of  a Binary Tree
 Suppose that we have the preorder sequence 

ABCDEFGHI and the inorder sequence 
BCAEDGHFI of the same binary tree.

 Does such a pair of sequence uniquely define 
a binary tree?
 Yes.

 How to prove it?
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Constructing a Binary Tree From Its 
Preoder and Inorder Sequences
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Note 63

Constructing a Binary Tree From Its 
Preoder and Inorder Sequences
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Distinct Binary Trees
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Note 64

Dynamic (Self-Adjusting) Tree Structures

 BST is simple and efficient on insert/delete/search 
but can be unbalanced with degraded performance.

 Dynamic (self-adjusting) tree structures can 
automatically adjust their structures to improve 
future operations.
 AVL tree:  a binary tree in which every node is balanced 

and has height O(log n).

 Red-Black tree: balanced binary tree with height h 
2log(n+1).

 Splay tree: no guarantee of balance but good amortized 
performance (any sequence of m operations take at most 
O(m log n) time on an n-node splay tree.)
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