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Language Tree
 The Proto-Indo-European language(原始印歐語
系) tree
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Family Tree
 We are all familiar with family tree.
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Trees - Definition
 Tree: a finite set of one or more nodes such that

 a distinguished node r (root)

 zero or more nonempty (sub)trees T1, T2, …, Tk

 each of whose roots are connected by a directed edge 
from r
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A Sample Tree
 Assume the root is at level 1, then the level of a 

node is the level of the node’s parent plus one.

 The height or the depth of a tree is the maximum 
level of any node in the tree.
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Terminologies
 The degree of a node is the # subtrees of the node.

 The degree of A is 3; the degree of C is 1.

 The node with degree 0 is a leaf or terminal node.
 A node that has subtrees is the parent of the roots of 

the subtrees.
 The roots of these subtrees are the children of the 

node.
 Children of the same parent are siblings.
 The ancestors of a node are all the nodes along the 

path from the root to the node.
 The descendants of a node are all nodes along the 

path from the leaf node to the node. 
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Tree Data Structure
 In some definition, the level starts with 0.
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More Terminologies
 A path in a tree is a sequence of (0 or more) 

connected nodes.

 The length of a path is the # nodes in the path.

 The height of a tree is the length of the longest
path from the root to a leaf.

 The depth of a node is the length of the path from 
the root to that node.

 The diameter of a tree is the length of the longest 
path between any tow nodes. (They must be two 
leaf nodes. Why?)
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Representation of  Trees
 List Representation

 The root comes first, followed by a list of sub-trees

 T=(root (T1, T2,…,Tn))
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List Representation of  Trees
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Node Structure
 Possible node structure of a tree of degree k

 Lemma 5.1: If T is a k-ary tree (i.e., a tree of 
degree k) with n nodes, each having a fixed size 
as above, then n(k-1) + 1 of the nk child fields 
are 0, n ≥ 1. (why?)

 Very wasteful of memory space!
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Representation of  Trees
 Left Child-Right Sibling Representation

 Each node has two links (or pointers).

 Each node only has one leftmost child and one 
closest right sibling.

CSIEB0100 Data Structures Trees 12



CSIEB0100 Data Structures Lecture 6: Trees

Note 7

Representation of  Trees
 Rotate the 

right sibling 
pointers in a 
left child right 
sibling tree by 
45 degrees to 
get the left 
child-right 
child (or 
degree two) 
tree.

CSIEB0100 Data Structures Trees 13

More Examples of  Tree Representations
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Binary Trees
 Definition:

 A binary tree is a finite set of nodes that is either 
empty or consists of a root and two disjoint binary 
trees called the left subtree and the right subtree.

 There is no tree with zero nodes. But there is an 
empty binary tree. (Quiz: How to modify the tree 
definition to allow empty tree?)

 Binary tree distinguishes between the order of 
the children while in a tree we do not.
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Binart Tree vs Tree
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Binary Tree Examples

CSIEB0100 Data Structures Trees 17

Properties of  Binary Trees
 Lemma 5.2 [Maximum number of nodes]

 The maximum number of nodes on level i of a binary 
tree is 2i-1, i ≥ 1.

 The maximum number of nodes in a binary tree of 
depth k is 2k – 1, k ≥ 1.

 Lemma 5.3 [Relation between number of leaf 
nodes and nodes of degree 2]: For any non-
empty binary tree, T, if n0 is the number of leaf 
nodes and n2 the number of nodes of degree 2, 
then n0 = n2 + 1.

 Definition: A full binary tree of depth k is a binary 
tree of depth k having 2k – 1 nodes, k ≥ 0.
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# Nodes in Binary Trees
 The maximum number of nodes on level i of a 

binary tree is 2i-1, i>=1.

 The maximum number of nodes in a binary 
tree of depth k is 2k-1, k>=1.

Prove by induction
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# Leaf  Nodes & Nodes of  Degree 2

 For any nonempty binary tree, T, if n0 is the 
number of leaf nodes and n2 the number of 
nodes of degree 2, then n0=n2+1

 Proof:
 Let n and B denote the total number of nodes & 

branches in T.

 Let n0, n1, n2 represent the nodes with no children, 
single child, and two children respectively.

 n= n0 + n1 + n2, B+1=n, B= n1 +2n2 ==> n1 +2n2 +1= n,

 n1 +2n2 +1= n0 + n1 + n2 ==> n0 = n2 +1
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Full BT vs Complete BT
 A full binary tree of depth k is a BT of depth k 

having 2k-1 nodes, k>=0

 A BT with n nodes and depth k is complete iff its 
nodes correspond to the nodes numbered from 1 
to n in the full binary tree of depth k.
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Examples of  Complete BTs
 Which of the following BTs are complete BTs of 

depth 4?
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Array Representation of  BT
 Lemma 5.4: If a complete binary tree with n 

nodes is represented sequentially, then for any 
node with index i, 1 ≤ i ≤ n, we have:
 parent(i) is at i / 2 if i ≠1. If i = 1, i is at the root and 

has no parent.

 left_child(i) is at 2i if 2i ≤ n. If 2i > n, then i has no left 
child.

 right_child(i) is at 2i + 1 if 2i + 1 ≤ n. If 2i + 1 > n, then i 
has no right child.

 Position zero of the array is not used.
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Sequential Representation
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Node Representation
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Linked Representation
class Tree;
class TreeNode {
friend class Tree;
private:
TreeNode *LeftChild;
char data;
TreeNode *RightChild;

};

class Tree {
public:
// Tree operations
...
private:
TreeNode *root;

};
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Linked Representation for BT

CSIEB0100 Data Structures

root

For the tree in 
Figure 5.10(a)

For the tree in Figure 5.10(b)
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Compare Two BT Representation
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Binary Tree Traversal
 Let L, V, and R stand for moving left, visiting

the node, and moving right.

 There are six possible combinations of 
traversal
 LVR, LRV, VLR, VRL, RVL, RLV

 Adopt the convention that we traverse left 
before right, only 3 traversals remain
 LVR, LRV, VLR

 inorder, postorder, preorder
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Arithmetic Expression using BT
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Program 5.1
void Tree::inorder()
// Driver calls workhorse for traversal of entire tree. The
// driver is declared as a public member function of Tree.
{

inorder(root);
}
void Tree::inorder(TreeNode *CurrentNode)
/* Workhorse traverses the subtree rooted at CurrentNode
(which is a pointer to a node in a binary tree). The
workhorse is declared as a private member function of Tree. */
{

if(CurrentNode){
inorder(CurrentNode->LeftChild);
cout << CurrentNode->data;
inorder(CurrentNode->RightChild);

}
}
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Trace Operation of  Inorder Traversal
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Program 5.2
void Tree::preorder(){
// Driver calls workhorse for traversal of entire tree. The
// driver is declared as a public member function of Tree.

preorder(root);
}
void Tree::preorder(TreeNode *CurrentNode)
// Workhorse traverses the subtree rooted at CurrentNode
// (which is a pointer to a node in a binary tree). The
// workhorse is declared as a private function of Tree.
{

if(CurrentNode){
cout << CurrentNode->data;
preorder(CurrentNode->LeftChild);
preorder(CurrentNode->RightChild);

}
}
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Program 5.3
void Tree::postorder()
// Driver calls workhorse for traversal of entire tree. The
// driver is declared as a public member function of Tree.
{

postorder(root);
}
void Tree::postorder(TreeNode *CurrentNode)
// Workhorse traverses the subtree rooted at CurrentNode (
// which is a pointer to a node in a binary tree). The workhorse
// is declared as a private member function of Tree.
{

if(CurrentNode){
postorder(CurrentNode->LeftChild);
postorder(CurrentNode->RightChild);
cout << CurrentNode->data;

}
}
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Iterative Inorder Traversal
void Tree::NonrecInorder()
// nonrecursive inorder traversal using a stack
{

Stack<TreeNode *> s; // declare and initialize stack
TreeNode *CurrentNode = root;
while (1) {

while (CurrentNode) { // move down LeftChild fields
s.Add(CurrentNode); // add to stack
CurrentNode = CurrentNode->LeftChild;

}
if (!s.IsEmpty()) { // stack is not empty

CurrentNode = *s.Delete(CurrentNode);
cout << CurrentNode->data << endl;
CurrentNode = CurrentNode->RightChild;

}
else break;

}
}
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Level Order Traversal
 All previous mentioned schemes use stacks

 Level-order traversal uses a queue

 Level-order scheme visit the root first, then the 
root’s left child, followed by the root’s right 
child

 All the nodes at a level are visited before 
moving down to another level
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Level Order Traversal of  BT
void Tree::LevelOrder()
// Traverse the binary tree in level order
{

Queue<TreeNode *> q;
TreeNode *CurrentNode = root;
while (CurrentNode) {
cout << CurrentNode->data << endl;
if (CurrentNode->LeftChild) 
q.Add(CurrentNode->LeftChild);

if (CurrentNode->RightChild) 
q.Add(CurrentNode->RightChild);

CurrentNode = *q.Delete();
}

}

CSIEB0100 Data Structures
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Other BT Functions

 With the inorder, postorder, or preorder 
mechanisms, we can implement all 
needed binary tree functions. e.g.,
 Copying Binary Trees

 Testing Equality
 Two binary trees are equal if their topologies are 

the same and the information in corresponding 
nodes is identical.
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Program 5.9
//Copy constructor
Tree::Tree(const Tree& s) //driver
{

root = copy(s.root);
}
TreeNode* Tree::copy(TreeNode *orignode)
//Workhorse
//This function returns a pointer to an exact copy of the binary
//tree rooted at orignode.
{

if (orignode) {
TreeNode *temp = new TreeNode;
temp->data = orignode->data;
temp->LeftChild = copy(orignode->LeftChild);
temp->RightChild = copy(orignode->RightChild);
return temp;

}
else return 0;

}
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Program 5.10
//Driver-assumed to be a friend of class Tree.
int operator==(const Tree& s, const Tree& t)
{

return equal(s.root, t.root);
}
//Workhorse-assumed to be a friend of TreeNode.
int equal(TreeNode *a, TreeNode *b)
//This function returns 0 if the subtrees at a and b are not
//equivalent. Otherwise, it will return 1.
{

if((!a)&&(!b)) return 1; //both a and b are 0
if(a && b //both a and b are non-0

&& (a->data == b->data) //data is the same
&& equal(a->LeftChild, b->LeftChild) //L subtrees eql
&& equal(a->RightChild, b->RightChild)) //R subtrees eql

return 1;
return 0;

}
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Propositional Calculus Expression
 A variable is an expression.

 If x and y are expressions, then ¬x, xy, xy are 
expressions.

 Parentheses can be used to alter the normal 
order of evaluation (¬ >  > ).

 Example: x1 ∨ (x2 ∧ ¬x3)

 Satisfiability problem: Is there an assignment of 
variables to make an expression true?
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Perform Formula Evaluation
 To evaluate an expression, we can traverse its 

tree in postorder.

 To perform evaluation, can add a value
member so that each node has four fields
 LeftChild

 data

 value

 RightChild
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Satisfiability Algorithm (V1)
For all 2n possible truth value combinations for the n

variables

{

generate the next combination;

replace the variables by their values;

evaluate the formula by traversing the tree it points to

in postorder;

if (formula.rootvalue()) {cout << combination; return;}

}

cout << “no satisfiable combination”;
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Evaluating a Formula
void SatTree::PostOrderEval() // Driver
{

PostOrderEval(root);
}
void SatTree::PostOrderEval(SatNode * s) // workhorse
{

if (s) {
PostOrderEval(s->LeftChild);
PostOrderEval(s->RightChild);
switch (s->data) {

case LogicalNot: 
s->value = !s->RightChild->value;
break;

case LogicalAnd: 
s->value = s->LeftChild->value && s->RightChild->value;
break;

case LogicalOr: 
s->value = s->LeftChild->value || s->RightChild->value;
break;

case LogicalTrue: s->value = TRUE; break;
case LogicalFalse: s->value = FALSE;

}
}

}
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Threaded Binary Trees
 Too many null pointers in current 

representation of binary trees
 n: number of nodes

 number of non-null links: n-1

 total links: 2n

 null links: 2n-(n-1)=n+1

 Replace these null pointers with some useful 
“threads”.
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Threaded Binary Trees

 If ptr->left_child is null,
 replace it with a pointer to the node that 

would be visited before ptr in an inorder 
traversal (inorder predecessor)

 If ptr->right_child is null,
 replace it with a pointer to the node that 

would be visited after ptr in an inorder
traversal (inorder successor)
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A Threaded Binary Tree
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Threads
 To distinguish between normal pointers and 

threads, two boolean fields, LeftThread and 
RightThread, are added to the record in 
memory representation.
 t->LeftThread = TRUE

=> t->LeftChild is a thread

 t->LeftThread = FALSE

=> t->LeftChild is a pointer to the left child.
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Threads
 To avoid dangling threads, a head node is 

used in representing a binary tree.

 The original tree becomes the left subtree of 
the head node.

 Empty Binary Tree
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Threaded Tree of  Fig 5.20
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program 5.14
char* ThreadedInorderIterator::Next()
// Find the inorder successor of CurrentNode in a threaded 
// binary tree
{
ThreadedNode *temp = CurrentNode->RightChild;
if(!CurrentNode->RightThread)
while(!temp->LeftThread)
temp = temp->LeftChild;

CurrentNode = temp;
if(CurrentNode == t.root) return 0;
else return &CurrentNode->data;

}
program 5.15
void ThreadedInorderIterator::Inorder()
{
for(char *ch = Next(); ch ; ch = Next())
cout << *ch << endl;

}

CSIEB0100 Data Structures

Inorder travesal can be 
performaed without stack
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Inserting a Node to a TBT
 Inserting a node r as the right child of a node s.

 If s has an empty right subtree, then the insertion is 
simple and diagram in Figure 5.23(a).

 If the right subtree of s is not empty, then this right 
subtree is made the right subtree of r after insertion. 
When this is done, r becomes the inorder predecessor 
of a node that has a LeftThread==TRUE field, and 
consequently there is a thread which has to be 
updated to point to r. The node containing this thread 
was previously the inorder successor of s. Figure 
5.23(b) illustrates the insertion for this case.
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Inserting a Node to a TBT
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Inserting a Node to a TBT

CSIEB0100 Data Structures
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void ThreadedTree::InsertRight(ThreadNode *s, 
ThreadedNode *r)

// Insert r as the right child of s
{

r->RightChild = s->RightChild;
r->RightThread = s->RightThread;
r->LeftChild = s;
r->LeftThread = TRUE; // LeftChild is a thread
s->RightChild = r; // attach r to s
s->RightThread = FALSE; // RightChild is a node
if (!r->RightThread) {
// gets the inorder successor of r
ThreadedNode *temp = InorderSucc(r); 
temp->LeftChild = r;

}
}
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Priority Queues
 In a priority queue, the element to be deleted 

is the one with highest (or lowest) priority.

 An element with arbitrary priority can be 
inserted into the queue according to its 
priority.

 A data structure supports the above two 
operations is called max (min) priority queue.
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Applications of  Priority Queue
 machine service

 amount of time (min heap)

 amount of payment (max heap)
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Data Structures for Priority Queues
 Unordered linked list

 Unordered array

 Sorted linked list

 Sorted array

 Heap
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Priority Queue Representation
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Max (Min) Heap
 Heaps are frequently used to implement priority 

queues. The complexity is O(log n).

 Definition:
 A max (min) tree is a tree in which the key value in 

each node is no smaller (larger) than the key values in 
its children (if any).

 A max heap is a complete binary tree that is also a 
max tree.

 A min heap is a complete binary tree that is also a 
min tree.
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Max Heap Examples

 Property: The root of max heap contains the 
largest.

 Can you provide more examples and 
nonexamples?
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Min Heap Examples
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 Property: The root of min heap contains the 
smallest.

 Can you provide more examples and 
nonexamples?

Insertion Into a Max Heap

CSIEB0100 Data Structures Trees 64



CSIEB0100 Data Structures Lecture 6: Trees

Note 33

Insertion Into a Max Heap
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Insertion Into a Max Heap
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template <class Type>
void MaxHeap<Type>::Insert(const Element <Type> &x)
// insert x into the max heap
{

if(n == MaxSize) {HeapFull(); return;}
n++;
int i;
for(i = n; 1; ){
if(i == 1) break; // at root
if(x.key <= heap[i/2].key) break;
// move from parent to i
heap[i] = heap[i/2];
i/=2;

}
heap[i] = x;

}
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Deletion from a Max Heap
template <class Type>
Element<Type>* 
MaxHeap<Type>::DeleteMax(Element<Type>& x)
// Delete from the max heap
{
if (!n) { HeapEmpty(); return 0; }
x = heap[1];
Element<Type> k = heap[n];
n--;
int i, j;
for (i=1, j=2; j <= n;) {

// i is the tentative location of k
if (j < n) {
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if (heap[j].key < heap[j+1].key)
j++;

}
// j points to the larger child
if (k.key >= heap[j].key) break;
heap[i] = heap[j]; // move child up
i = j; j *= 2;

}
heap[i] = k;
return &x;

}
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Binary Search Tree (BST)
 Heap

 a min (max) element is deleted. O(log2n)
 deletion of an arbitrary element O(n)
 search for an arbitrary element O(n)

 Binary search tree
 Every element has a unique key.
 The keys in a nonempty left subtree (right subtree) 

are smaller (larger) than the key in the root of 
subtree.

 The left and right subtrees are also binary search 
trees.
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Binary Trees
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Searching a Binary Search Tree
 If the root is null, then this is an empty tree. 

No search is needed.

 If the root is not null, compare the x with the 
key of root.
 If x is equal to the key of the root, then it’s done.

 If x is less than the key of the root, then no 
elements in the right subtree have key value x. We 
only need to search the left subtree.

 If x is larger than the key of the root, only the right 
subtree is to be searched.
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template <class Type> //Driver
BstNode<Type>* BST<Type>::Search(const 
Element<Type>& x)
/* Search the binary search tree (*this) 
for an element with key x. If such an 
element is found, return a pointer to 
the node that contains it. */
{

return Search(root, x);
}
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template <class Type> //Workhorse
BstNode<Type>* 
BST<Type>::Search(BstNode<Type>*b,
const Element <Type>&x)
{

if(!b) return 0;
if(x.key == b->data.key) return b;
if(x.key < b->data.key) 

return Search(b->LeftChild, x);
return Search(b->RightChild, x);

}  //recursive version
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template <class Type>
BstNode<Type>* BST<Type>::IterSearch(const
Element<Type>& x)
/* Search the binary search tree for an element
with key x */
{
for(BstNode<Type> *t = root; t; )
{

if(x.key == t->data.key) return t;
if(x.key < t->data.key) t = t->LeftChild;
else t = t->RightChild;

}
return 0;

}  //Iterative version
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Search Binary Search Tree by Rank
 Search by rank: eg. Find the kth smallest

 To search a binary search tree by the ranks of 
the elements in the tree, we need additional field 
LeftSize.

 LeftSize is the number of the elements in the 
left subtree of a node plus one.

 It is obvious that a binary search tree of height h 
can be searched by key as well as by rank in 
O(h) time.
 What is the range of h?
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template <class Type>
BstNode <Type>* BST<Type>::Search(int k)
// Search the BST for the kth smallest element
{

BstNode<Type> *t = root;
while(t)
{
if (k == t->LeftSize) return t;
if (k < t->LeftSize) t = t->LeftChild;
else {
k -= t->LeftSize;
t = t->RightChild;

}
}
return 0;

}
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Example of  Searching by Rank
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Inserting a Node into a BST
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Deletion from a BST
 Deleting a node from a BST is more 

complicated.
 Two stages:

 Search the node to remove.
 If found, delete the node.

 Three cases to consider when deleting a 
node:
 When the node has no children. (trivial, exercise)
 When the node has one child. (simple)
 When the node has two children. (two alternatives)
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Note 42

Deletion from a BST – One Child
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Deletion from a BST – Two Children
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Note 43

Deletion from a BST – Two Children

 Two alternatives.  In both cases, we keep the 
node but replace its value.

 Alternative 1: Replace it with the largest value 
(say, of node N) in its left subtree.  Then delete 
N.

 Alternative 2: Replace it with the smallest value 
(say, of node N) in its right subtree.  Then delete 
N.

 We will discuss Alternative 1 and leave 
Alternative 2 for you as an exercise.
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Deletion from a BST – Two Children
 The largest value in the left subtree must be the 

right most node of the left subtree. (Why?)

 The smallest value in the right subtree must be 
the left most node of the right subtree. (Why?)
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Note 44

Deletion from a BST – Two Children
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Alternative 1 Alternative 2

Selection Trees
 Winner tree

 Loser tree
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Note 45

Winner Trees
 Complete binary tree with k external nodes 

and k - 1 internal nodes.

 External nodes represent tournament players.

 Each internal node represents a match played 
between its two children; the winner of the 
match is stored at the internal node.

 Root has overall winner.
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Winner Tree For 16 Players

player match node

CSIEB0100 Data Structures Trees 90



CSIEB0100 Data Structures Lecture 6: Trees

Note 46

Winner Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

Smaller element wins => min winner tree.

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1
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Winner Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

height is log2k (excludes player level)

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1
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Note 47

Merging Sequences with Winner Tree

 Given k ordered sequences (non-decreasing) 
called runs

 Want to merge these sequences into one
sequence (of n numbers)
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Note 48
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Analysis
 K: # of runs

 n: # of records

 setup time: O(K) (K-1)

 restructure time: O(log2K) log2(K+1)
 merge time: O(nlog2K)

 slight modification: tree of loser
 consider the parent node only (vs. sibling nodes)
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Note 49

Loser Tree

CSIEB0100 Data Structures

 Each match node stores the match loser 
rather than the match winner.

 Use the winner for matching at the next level.

 The winner at the root node is placed at an 
"extra" overall winner slot.
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Loser Tree Merge

CSIEB0100 Data Structures

run
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Note 50

Loser Tree Merge

CSIEB0100 Data Structures

run
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Only need to consider 
the parent node along 
the way to the root.

Forest
 A forest is a set of n>=0 disjoint trees.
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Note 51

Transform a Forest into a Binary Tree

 T1, T2, …, Tn: a forest of trees

 B(T1, T2, …, Tn): a binary tree corresponding to 
this forest

 Algorithm
 empty, if n=0

 has root equal to root(T1); has left subtree equal to 
B(T11,T12,…,T1m); where T11,T12,…,T1m are 
subtrees of root(T1); and has right subtree equal to 
B(T2,T3,…,Tn).
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Transform a Forest into a Binary Tree
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Note 52

Forest Traversals
 Preorder

 If F is empty, then return

 Visit the root of the first tree of F

 Traverse the subtrees of the first tree in forest 
preorder

 Traverse the remaining trees of F in forest 
preorder
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Forest Traversals
 Inorder

 If F is empty, then return

 Traverse the subtrees of the first tree in forest inorder

 Visit the root of the first tree

 Traverse the remaining trees of F in forest inorder

 Postorder
 If F is empty, then return

 Traverse the subtrees of the first tree in forest 
postorder

 Traverse the remaining trees of F in forest postorder

 Visit the root of the first tree
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Note 53

Set Representation
 S1={0, 6, 7, 8}, S2={1, 4, 9}, S3={2, 3, 5}

 Two operations considered here
 Disjoint set union S1∪ S2 = {0,6,7,8,1,4,9}

 Find(i): Find the set containing the element i.
 3 ∈ S3, 8 ∈ S1
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Disjoint Set Union
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Note 54

Data Representation of  S1, S2 and S3
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Array Representation of  S1, S2, S3

 We could use an array for the set name. Or 
the set name can be an element at the root.

 Assume set elements are numbered 0 through 
n-1.
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Note 55

SimpleFind
SimpleFind(int i)
// Find the root of the tree containing
// element i
{
while(parent[i]>=0)
i=parent[i];

return;
}
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Degenerate Tree
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Note 56

Weighting Rule
 Weighting rule for union(i, j)

 If the number of nodes in the tree with root i is less 
than the number in the tree with root j, then make j
the parent of i; otherwise make i the parent of j.

 Use the weighting rule on the union operation 
to avoid the creation of degenerate trees.
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Trees Obtained Using The Weighting 
Rule
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Note 57

Weighted Union
 Lemma 5.5: Assume that we start with a forest of 

trees, each having one node. Let T be a tree with 
m nodes created as a result of a sequence of 
unions each performed using function 
WeightedUnion. The height of T is no greater 
than log2 m  + 1

 For the processing of an intermixed sequence of 
u–1 unions and f find operations, the time 
complexity is O(u + f  log u).
 No tree has more than u nodes in it.
 We need O(n) additional time to initialize the n-tree 

forest
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Can still have unbalance trees
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Note 58

Can still have unbalance trees
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Collapsing Rule
 Collapsing rule:

 If j is a node on the path from i to its root and 
parent[j]≠root(i), then set parent[j] to root(i).

 The first run of find operation will collapse the 
tree. Therefore, each following find operation 
of the same element only goes up one link to 
find the root.
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Note 59

CollapsingFind
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CollapsingFind
CollapsingFind(int i)
{
// find root
for(int r=i; parent[r]>=0; r=parent[r]);
//collapse
while(i!=r)
{
int s=parent[i];
parent[i]=r;
i=s;

}
}
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Note 60
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Applications
 Find equivalence class i ≡ j

 Find Si and Sj such that i ∈ Si and j ∈ Sj (two 
finds)
 Si = Sj do nothing

 Si ≠ Sj union(Si , Sj)

 Example:

0 ≡ 4, 3 ≡ 1, 6 ≡ 10, 8 ≡ 9, 7 ≡ 4, 6 ≡ 8,

3 ≡ 5, 2 ≡ 11, 11 ≡ 0

{0, 2, 4, 7, 11}, {1, 3, 5}, {6, 8, 9, 10}
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Note 61

Example 5.5
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Example 5.5
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Note 62

Uniqueness of  a Binary Tree
 Suppose that we have the preorder sequence 

ABCDEFGHI and the inorder sequence 
BCAEDGHFI of the same binary tree.

 Does such a pair of sequence uniquely define 
a binary tree?
 Yes.

 How to prove it?
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Constructing a Binary Tree From Its 
Preoder and Inorder Sequences
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Note 63

Constructing a Binary Tree From Its 
Preoder and Inorder Sequences
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Distinct Binary Trees
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Note 64

Dynamic (Self-Adjusting) Tree Structures

 BST is simple and efficient on insert/delete/search 
but can be unbalanced with degraded performance.

 Dynamic (self-adjusting) tree structures can 
automatically adjust their structures to improve 
future operations.
 AVL tree:  a binary tree in which every node is balanced 

and has height O(log n).

 Red-Black tree: balanced binary tree with height h 
2log(n+1).

 Splay tree: no guarantee of balance but good amortized 
performance (any sequence of m operations take at most 
O(m log n) time on an n-node splay tree.)
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