
CSIEB0100 Data Structures Lecture 6: Trees

Note 1

CSIEB0100 Data Structures

Lecture 06 Trees

Shiow-yang Wu 吳秀陽
Department of Computer Science
and Information Engineering
National Dong Hwa University

Lecture material is partly home-grown, partly taken from slides came with the
textbook originally prepared by Professor Jiun-Long Huang of NCTU.

Language Tree
 The Proto-Indo-European language(原始印歐語
系) tree

CSIEB0100 Data Structures Trees 2

CSIEB0100 Data Structures Lecture 6: Trees

Note 2

Family Tree
 We are all familiar with family tree.

CSIEB0100 Data Structures Trees 3

Trees - Definition
 Tree: a finite set of one or more nodes such that

 a distinguished node r (root)

 zero or more nonempty (sub)trees T1, T2, …, Tk

 each of whose roots are connected by a directed edge
from r

CSIEB0100 Data Structures Trees 4

CSIEB0100 Data Structures Lecture 6: Trees

Note 3

A Sample Tree
 Assume the root is at level 1, then the level of a

node is the level of the node’s parent plus one.

 The height or the depth of a tree is the maximum
level of any node in the tree.

CSIEB0100 Data Structures

Level

Trees 5

Terminologies
 The degree of a node is the # subtrees of the node.

 The degree of A is 3; the degree of C is 1.

 The node with degree 0 is a leaf or terminal node.
 A node that has subtrees is the parent of the roots of

the subtrees.
 The roots of these subtrees are the children of the

node.
 Children of the same parent are siblings.
 The ancestors of a node are all the nodes along the

path from the root to the node.
 The descendants of a node are all nodes along the

path from the leaf node to the node.

CSIEB0100 Data Structures Trees 6

CSIEB0100 Data Structures Lecture 6: Trees

Note 4

Tree Data Structure
 In some definition, the level starts with 0.

CSIEB0100 Data Structures Trees 7

More Terminologies
 A path in a tree is a sequence of (0 or more)

connected nodes.

 The length of a path is the # nodes in the path.

 The height of a tree is the length of the longest
path from the root to a leaf.

 The depth of a node is the length of the path from
the root to that node.

 The diameter of a tree is the length of the longest
path between any tow nodes. (They must be two
leaf nodes. Why?)

CSIEB0100 Data Structures Trees 8

CSIEB0100 Data Structures Lecture 6: Trees

Note 5

Representation of Trees
 List Representation

 The root comes first, followed by a list of sub-trees

 T=(root (T1, T2,…,Tn))

CSIEB0100 Data Structures Trees 9

List Representation of Trees

CSIEB0100 Data Structures Trees 10

CSIEB0100 Data Structures Lecture 6: Trees

Note 6

Node Structure
 Possible node structure of a tree of degree k

 Lemma 5.1: If T is a k-ary tree (i.e., a tree of
degree k) with n nodes, each having a fixed size
as above, then n(k-1) + 1 of the nk child fields
are 0, n ≥ 1. (why?)

 Very wasteful of memory space!

CSIEB0100 Data Structures Trees 11

Representation of Trees
 Left Child-Right Sibling Representation

 Each node has two links (or pointers).

 Each node only has one leftmost child and one
closest right sibling.

CSIEB0100 Data Structures Trees 12

CSIEB0100 Data Structures Lecture 6: Trees

Note 7

Representation of Trees
 Rotate the

right sibling
pointers in a
left child right
sibling tree by
45 degrees to
get the left
child-right
child (or
degree two)
tree.

CSIEB0100 Data Structures Trees 13

More Examples of Tree Representations

CSIEB0100 Data Structures Trees 14

CSIEB0100 Data Structures Lecture 6: Trees

Note 8

Binary Trees
 Definition:

 A binary tree is a finite set of nodes that is either
empty or consists of a root and two disjoint binary
trees called the left subtree and the right subtree.

 There is no tree with zero nodes. But there is an
empty binary tree. (Quiz: How to modify the tree
definition to allow empty tree?)

 Binary tree distinguishes between the order of
the children while in a tree we do not.

CSIEB0100 Data Structures Trees 15

Binart Tree vs Tree

CSIEB0100 Data Structures





Trees 16

CSIEB0100 Data Structures Lecture 6: Trees

Note 9

Binary Tree Examples

CSIEB0100 Data Structures Trees 17

Properties of Binary Trees
 Lemma 5.2 [Maximum number of nodes]

 The maximum number of nodes on level i of a binary
tree is 2i-1, i ≥ 1.

 The maximum number of nodes in a binary tree of
depth k is 2k – 1, k ≥ 1.

 Lemma 5.3 [Relation between number of leaf
nodes and nodes of degree 2]: For any non-
empty binary tree, T, if n0 is the number of leaf
nodes and n2 the number of nodes of degree 2,
then n0 = n2 + 1.

 Definition: A full binary tree of depth k is a binary
tree of depth k having 2k – 1 nodes, k ≥ 0.

CSIEB0100 Data Structures Trees 18

CSIEB0100 Data Structures Lecture 6: Trees

Note 10

Nodes in Binary Trees
 The maximum number of nodes on level i of a

binary tree is 2i-1, i>=1.

 The maximum number of nodes in a binary
tree of depth k is 2k-1, k>=1.

Prove by induction

CSIEB0100 Data Structures Trees 19

Leaf Nodes & Nodes of Degree 2

 For any nonempty binary tree, T, if n0 is the
number of leaf nodes and n2 the number of
nodes of degree 2, then n0=n2+1

 Proof:
 Let n and B denote the total number of nodes &

branches in T.

 Let n0, n1, n2 represent the nodes with no children,
single child, and two children respectively.

 n= n0 + n1 + n2, B+1=n, B= n1 +2n2 ==> n1 +2n2 +1= n,

 n1 +2n2 +1= n0 + n1 + n2 ==> n0 = n2 +1

CSIEB0100 Data Structures Trees 20

CSIEB0100 Data Structures Lecture 6: Trees

Note 11

Full BT vs Complete BT
 A full binary tree of depth k is a BT of depth k

having 2k-1 nodes, k>=0

 A BT with n nodes and depth k is complete iff its
nodes correspond to the nodes numbered from 1
to n in the full binary tree of depth k.

CSIEB0100 Data Structures Trees 21

Examples of Complete BTs
 Which of the following BTs are complete BTs of

depth 4?

CSIEB0100 Data Structures Trees 22

  


Draw your own examples!!

CSIEB0100 Data Structures Lecture 6: Trees

Note 12

Array Representation of BT
 Lemma 5.4: If a complete binary tree with n

nodes is represented sequentially, then for any
node with index i, 1 ≤ i ≤ n, we have:
 parent(i) is at i / 2 if i ≠1. If i = 1, i is at the root and

has no parent.

 left_child(i) is at 2i if 2i ≤ n. If 2i > n, then i has no left
child.

 right_child(i) is at 2i + 1 if 2i + 1 ≤ n. If 2i + 1 > n, then i
has no right child.

 Position zero of the array is not used.

CSIEB0100 Data Structures Trees 23

Sequential Representation

CSIEB0100 Data Structures Trees 24

CSIEB0100 Data Structures Lecture 6: Trees

Note 13

Node Representation

CSIEB0100 Data Structures Trees 25

Linked Representation
class Tree;
class TreeNode {
friend class Tree;
private:
TreeNode *LeftChild;
char data;
TreeNode *RightChild;

};

class Tree {
public:
// Tree operations
...
private:
TreeNode *root;

};

CSIEB0100 Data Structures Trees 26

CSIEB0100 Data Structures Lecture 6: Trees

Note 14

Linked Representation for BT

CSIEB0100 Data Structures

root

For the tree in
Figure 5.10(a)

For the tree in Figure 5.10(b)

Trees 27

0000

00

Compare Two BT Representation

CSIEB0100 Data Structures Trees 28

CSIEB0100 Data Structures Lecture 6: Trees

Note 15

Binary Tree Traversal
 Let L, V, and R stand for moving left, visiting

the node, and moving right.

 There are six possible combinations of
traversal
 LVR, LRV, VLR, VRL, RVL, RLV

 Adopt the convention that we traverse left
before right, only 3 traversals remain
 LVR, LRV, VLR

 inorder, postorder, preorder

CSIEB0100 Data Structures Trees 29

Arithmetic Expression using BT

CSIEB0100 Data Structures Trees 30

CSIEB0100 Data Structures Lecture 6: Trees

Note 16

Program 5.1
void Tree::inorder()
// Driver calls workhorse for traversal of entire tree. The
// driver is declared as a public member function of Tree.
{

inorder(root);
}
void Tree::inorder(TreeNode *CurrentNode)
/* Workhorse traverses the subtree rooted at CurrentNode
(which is a pointer to a node in a binary tree). The
workhorse is declared as a private member function of Tree. */
{

if(CurrentNode){
inorder(CurrentNode->LeftChild);
cout << CurrentNode->data;
inorder(CurrentNode->RightChild);

}
}

CSIEB0100 Data Structures Trees 31

Trace Operation of Inorder Traversal

CSIEB0100 Data Structures Trees 32

CSIEB0100 Data Structures Lecture 6: Trees

Note 17

Program 5.2
void Tree::preorder(){
// Driver calls workhorse for traversal of entire tree. The
// driver is declared as a public member function of Tree.

preorder(root);
}
void Tree::preorder(TreeNode *CurrentNode)
// Workhorse traverses the subtree rooted at CurrentNode
// (which is a pointer to a node in a binary tree). The
// workhorse is declared as a private function of Tree.
{

if(CurrentNode){
cout << CurrentNode->data;
preorder(CurrentNode->LeftChild);
preorder(CurrentNode->RightChild);

}
}

CSIEB0100 Data Structures Trees 33

Program 5.3
void Tree::postorder()
// Driver calls workhorse for traversal of entire tree. The
// driver is declared as a public member function of Tree.
{

postorder(root);
}
void Tree::postorder(TreeNode *CurrentNode)
// Workhorse traverses the subtree rooted at CurrentNode (
// which is a pointer to a node in a binary tree). The workhorse
// is declared as a private member function of Tree.
{

if(CurrentNode){
postorder(CurrentNode->LeftChild);
postorder(CurrentNode->RightChild);
cout << CurrentNode->data;

}
}

CSIEB0100 Data Structures Trees 34

CSIEB0100 Data Structures Lecture 6: Trees

Note 18

Iterative Inorder Traversal
void Tree::NonrecInorder()
// nonrecursive inorder traversal using a stack
{

Stack<TreeNode *> s; // declare and initialize stack
TreeNode *CurrentNode = root;
while (1) {

while (CurrentNode) { // move down LeftChild fields
s.Add(CurrentNode); // add to stack
CurrentNode = CurrentNode->LeftChild;

}
if (!s.IsEmpty()) { // stack is not empty

CurrentNode = *s.Delete(CurrentNode);
cout << CurrentNode->data << endl;
CurrentNode = CurrentNode->RightChild;

}
else break;

}
}

CSIEB0100 Data Structures Trees 35

Level Order Traversal
 All previous mentioned schemes use stacks

 Level-order traversal uses a queue

 Level-order scheme visit the root first, then the
root’s left child, followed by the root’s right
child

 All the nodes at a level are visited before
moving down to another level

CSIEB0100 Data Structures Trees 36

CSIEB0100 Data Structures Lecture 6: Trees

Note 19

Level Order Traversal of BT
void Tree::LevelOrder()
// Traverse the binary tree in level order
{

Queue<TreeNode *> q;
TreeNode *CurrentNode = root;
while (CurrentNode) {
cout << CurrentNode->data << endl;
if (CurrentNode->LeftChild)
q.Add(CurrentNode->LeftChild);

if (CurrentNode->RightChild)
q.Add(CurrentNode->RightChild);

CurrentNode = *q.Delete();
}

}

CSIEB0100 Data Structures

+*E*D/CAB

Trees 37

Other BT Functions

 With the inorder, postorder, or preorder
mechanisms, we can implement all
needed binary tree functions. e.g.,
 Copying Binary Trees

 Testing Equality
 Two binary trees are equal if their topologies are

the same and the information in corresponding
nodes is identical.

CSIEB0100 Data Structures Trees 38

CSIEB0100 Data Structures Lecture 6: Trees

Note 20

Program 5.9
//Copy constructor
Tree::Tree(const Tree& s) //driver
{

root = copy(s.root);
}
TreeNode* Tree::copy(TreeNode *orignode)
//Workhorse
//This function returns a pointer to an exact copy of the binary
//tree rooted at orignode.
{

if (orignode) {
TreeNode *temp = new TreeNode;
temp->data = orignode->data;
temp->LeftChild = copy(orignode->LeftChild);
temp->RightChild = copy(orignode->RightChild);
return temp;

}
else return 0;

}

CSIEB0100 Data Structures Trees 39

Program 5.10
//Driver-assumed to be a friend of class Tree.
int operator==(const Tree& s, const Tree& t)
{

return equal(s.root, t.root);
}
//Workhorse-assumed to be a friend of TreeNode.
int equal(TreeNode *a, TreeNode *b)
//This function returns 0 if the subtrees at a and b are not
//equivalent. Otherwise, it will return 1.
{

if((!a)&&(!b)) return 1; //both a and b are 0
if(a && b //both a and b are non-0

&& (a->data == b->data) //data is the same
&& equal(a->LeftChild, b->LeftChild) //L subtrees eql
&& equal(a->RightChild, b->RightChild)) //R subtrees eql

return 1;
return 0;

}

CSIEB0100 Data Structures Trees 40

CSIEB0100 Data Structures Lecture 6: Trees

Note 21

Propositional Calculus Expression
 A variable is an expression.

 If x and y are expressions, then ¬x, xy, xy are
expressions.

 Parentheses can be used to alter the normal
order of evaluation (¬ >  > ).

 Example: x1 ∨ (x2 ∧ ¬x3)

 Satisfiability problem: Is there an assignment of
variables to make an expression true?

CSIEB0100 Data Structures Trees 41

CSIEB0100 Data Structures Trees 42

CSIEB0100 Data Structures Lecture 6: Trees

Note 22

Perform Formula Evaluation
 To evaluate an expression, we can traverse its

tree in postorder.

 To perform evaluation, can add a value
member so that each node has four fields
 LeftChild

 data

 value

 RightChild

CSIEB0100 Data Structures Trees 43

Satisfiability Algorithm (V1)
For all 2n possible truth value combinations for the n

variables

{

generate the next combination;

replace the variables by their values;

evaluate the formula by traversing the tree it points to

in postorder;

if (formula.rootvalue()) {cout << combination; return;}

}

cout << “no satisfiable combination”;

CSIEB0100 Data Structures Trees 44

CSIEB0100 Data Structures Lecture 6: Trees

Note 23

Evaluating a Formula
void SatTree::PostOrderEval() // Driver
{

PostOrderEval(root);
}
void SatTree::PostOrderEval(SatNode * s) // workhorse
{

if (s) {
PostOrderEval(s->LeftChild);
PostOrderEval(s->RightChild);
switch (s->data) {

case LogicalNot:
s->value = !s->RightChild->value;
break;

case LogicalAnd:
s->value = s->LeftChild->value && s->RightChild->value;
break;

case LogicalOr:
s->value = s->LeftChild->value || s->RightChild->value;
break;

case LogicalTrue: s->value = TRUE; break;
case LogicalFalse: s->value = FALSE;

}
}

}

CSIEB0100 Data Structures Trees 45

Threaded Binary Trees
 Too many null pointers in current

representation of binary trees
 n: number of nodes

 number of non-null links: n-1

 total links: 2n

 null links: 2n-(n-1)=n+1

 Replace these null pointers with some useful
“threads”.

CSIEB0100 Data Structures Trees 46

CSIEB0100 Data Structures Lecture 6: Trees

Note 24

Threaded Binary Trees

 If ptr->left_child is null,
 replace it with a pointer to the node that

would be visited before ptr in an inorder
traversal (inorder predecessor)

 If ptr->right_child is null,
 replace it with a pointer to the node that

would be visited after ptr in an inorder
traversal (inorder successor)

CSIEB0100 Data Structures Trees 47

A Threaded Binary Tree

CSIEB0100 Data Structures

dangling

Trees 48

CSIEB0100 Data Structures Lecture 6: Trees

Note 25

Threads
 To distinguish between normal pointers and

threads, two boolean fields, LeftThread and
RightThread, are added to the record in
memory representation.
 t->LeftThread = TRUE

=> t->LeftChild is a thread

 t->LeftThread = FALSE

=> t->LeftChild is a pointer to the left child.

CSIEB0100 Data Structures Trees 49

Threads
 To avoid dangling threads, a head node is

used in representing a binary tree.

 The original tree becomes the left subtree of
the head node.

 Empty Binary Tree

CSIEB0100 Data Structures Trees 50

CSIEB0100 Data Structures Lecture 6: Trees

Note 26

Threaded Tree of Fig 5.20

CSIEB0100 Data Structures Trees 51

program 5.14
char* ThreadedInorderIterator::Next()
// Find the inorder successor of CurrentNode in a threaded
// binary tree
{
ThreadedNode *temp = CurrentNode->RightChild;
if(!CurrentNode->RightThread)
while(!temp->LeftThread)
temp = temp->LeftChild;

CurrentNode = temp;
if(CurrentNode == t.root) return 0;
else return &CurrentNode->data;

}
program 5.15
void ThreadedInorderIterator::Inorder()
{
for(char *ch = Next(); ch ; ch = Next())
cout << *ch << endl;

}

CSIEB0100 Data Structures

Inorder travesal can be
performaed without stack

Trees 52

CSIEB0100 Data Structures Lecture 6: Trees

Note 27

Inserting a Node to a TBT
 Inserting a node r as the right child of a node s.

 If s has an empty right subtree, then the insertion is
simple and diagram in Figure 5.23(a).

 If the right subtree of s is not empty, then this right
subtree is made the right subtree of r after insertion.
When this is done, r becomes the inorder predecessor
of a node that has a LeftThread==TRUE field, and
consequently there is a thread which has to be
updated to point to r. The node containing this thread
was previously the inorder successor of s. Figure
5.23(b) illustrates the insertion for this case.

CSIEB0100 Data Structures Trees 53

Inserting a Node to a TBT

CSIEB0100 Data Structures Trees 54

CSIEB0100 Data Structures Lecture 6: Trees

Note 28

Inserting a Node to a TBT

CSIEB0100 Data Structures

S

r

after
Trees 55

void ThreadedTree::InsertRight(ThreadNode *s,
ThreadedNode *r)

// Insert r as the right child of s
{

r->RightChild = s->RightChild;
r->RightThread = s->RightThread;
r->LeftChild = s;
r->LeftThread = TRUE; // LeftChild is a thread
s->RightChild = r; // attach r to s
s->RightThread = FALSE; // RightChild is a node
if (!r->RightThread) {
// gets the inorder successor of r
ThreadedNode *temp = InorderSucc(r);
temp->LeftChild = r;

}
}

CSIEB0100 Data Structures Trees 56

CSIEB0100 Data Structures Lecture 6: Trees

Note 29

Priority Queues
 In a priority queue, the element to be deleted

is the one with highest (or lowest) priority.

 An element with arbitrary priority can be
inserted into the queue according to its
priority.

 A data structure supports the above two
operations is called max (min) priority queue.

CSIEB0100 Data Structures Trees 57

Applications of Priority Queue
 machine service

 amount of time (min heap)

 amount of payment (max heap)

CSIEB0100 Data Structures Trees 58

CSIEB0100 Data Structures Lecture 6: Trees

Note 30

Data Structures for Priority Queues
 Unordered linked list

 Unordered array

 Sorted linked list

 Sorted array

 Heap

CSIEB0100 Data Structures Trees 59

Priority Queue Representation

CSIEB0100 Data Structures Trees 60

CSIEB0100 Data Structures Lecture 6: Trees

Note 31

Max (Min) Heap
 Heaps are frequently used to implement priority

queues. The complexity is O(log n).

 Definition:
 A max (min) tree is a tree in which the key value in

each node is no smaller (larger) than the key values in
its children (if any).

 A max heap is a complete binary tree that is also a
max tree.

 A min heap is a complete binary tree that is also a
min tree.

CSIEB0100 Data Structures Trees 61

Max Heap Examples

 Property: The root of max heap contains the
largest.

 Can you provide more examples and
nonexamples?

CSIEB0100 Data Structures Trees 62

CSIEB0100 Data Structures Lecture 6: Trees

Note 32

Min Heap Examples

CSIEB0100 Data Structures Trees 63

 Property: The root of min heap contains the
smallest.

 Can you provide more examples and
nonexamples?

Insertion Into a Max Heap

CSIEB0100 Data Structures Trees 64

CSIEB0100 Data Structures Lecture 6: Trees

Note 33

Insertion Into a Max Heap

CSIEB0100 Data Structures Trees 65

Insertion Into a Max Heap

CSIEB0100 Data Structures Trees 66

CSIEB0100 Data Structures Lecture 6: Trees

Note 34

template <class Type>
void MaxHeap<Type>::Insert(const Element <Type> &x)
// insert x into the max heap
{

if(n == MaxSize) {HeapFull(); return;}
n++;
int i;
for(i = n; 1;){
if(i == 1) break; // at root
if(x.key <= heap[i/2].key) break;
// move from parent to i
heap[i] = heap[i/2];
i/=2;

}
heap[i] = x;

}

CSIEB0100 Data Structures Trees 67

Deletion from a Max Heap
template <class Type>
Element<Type>*
MaxHeap<Type>::DeleteMax(Element<Type>& x)
// Delete from the max heap
{
if (!n) { HeapEmpty(); return 0; }
x = heap[1];
Element<Type> k = heap[n];
n--;
int i, j;
for (i=1, j=2; j <= n;) {

// i is the tentative location of k
if (j < n) {

CSIEB0100 Data Structures Trees 68

CSIEB0100 Data Structures Lecture 6: Trees

Note 35

if (heap[j].key < heap[j+1].key)
j++;

}
// j points to the larger child
if (k.key >= heap[j].key) break;
heap[i] = heap[j]; // move child up
i = j; j *= 2;

}
heap[i] = k;
return &x;

}
CSIEB0100 Data Structures Trees 69

CSIEB0100 Data Structures Trees 70

CSIEB0100 Data Structures Lecture 6: Trees

Note 36

CSIEB0100 Data Structures Trees 71

Binary Search Tree (BST)
 Heap

 a min (max) element is deleted. O(log2n)
 deletion of an arbitrary element O(n)
 search for an arbitrary element O(n)

 Binary search tree
 Every element has a unique key.
 The keys in a nonempty left subtree (right subtree)

are smaller (larger) than the key in the root of
subtree.

 The left and right subtrees are also binary search
trees.

CSIEB0100 Data Structures Trees 72

CSIEB0100 Data Structures Lecture 6: Trees

Note 37

Binary Trees

CSIEB0100 Data Structures Trees 73

Searching a Binary Search Tree
 If the root is null, then this is an empty tree.

No search is needed.

 If the root is not null, compare the x with the
key of root.
 If x is equal to the key of the root, then it’s done.

 If x is less than the key of the root, then no
elements in the right subtree have key value x. We
only need to search the left subtree.

 If x is larger than the key of the root, only the right
subtree is to be searched.

CSIEB0100 Data Structures Trees 74

CSIEB0100 Data Structures Lecture 6: Trees

Note 38

template <class Type> //Driver
BstNode<Type>* BST<Type>::Search(const
Element<Type>& x)
/* Search the binary search tree (*this)
for an element with key x. If such an
element is found, return a pointer to
the node that contains it. */
{

return Search(root, x);
}

CSIEB0100 Data Structures Trees 75

template <class Type> //Workhorse
BstNode<Type>*
BST<Type>::Search(BstNode<Type>*b,
const Element <Type>&x)
{

if(!b) return 0;
if(x.key == b->data.key) return b;
if(x.key < b->data.key)

return Search(b->LeftChild, x);
return Search(b->RightChild, x);

} //recursive version

CSIEB0100 Data Structures Trees 76

CSIEB0100 Data Structures Lecture 6: Trees

Note 39

template <class Type>
BstNode<Type>* BST<Type>::IterSearch(const
Element<Type>& x)
/* Search the binary search tree for an element
with key x */
{
for(BstNode<Type> *t = root; t;)
{

if(x.key == t->data.key) return t;
if(x.key < t->data.key) t = t->LeftChild;
else t = t->RightChild;

}
return 0;

} //Iterative version

CSIEB0100 Data Structures Trees 77

Search Binary Search Tree by Rank
 Search by rank: eg. Find the kth smallest

 To search a binary search tree by the ranks of
the elements in the tree, we need additional field
LeftSize.

 LeftSize is the number of the elements in the
left subtree of a node plus one.

 It is obvious that a binary search tree of height h
can be searched by key as well as by rank in
O(h) time.
 What is the range of h?

CSIEB0100 Data Structures Trees 78

CSIEB0100 Data Structures Lecture 6: Trees

Note 40

template <class Type>
BstNode <Type>* BST<Type>::Search(int k)
// Search the BST for the kth smallest element
{

BstNode<Type> *t = root;
while(t)
{
if (k == t->LeftSize) return t;
if (k < t->LeftSize) t = t->LeftChild;
else {
k -= t->LeftSize;
t = t->RightChild;

}
}
return 0;

}

CSIEB0100 Data Structures Trees 79

Example of Searching by Rank

CSIEB0100 Data Structures Trees 80

CSIEB0100 Data Structures Lecture 6: Trees

Note 41

Inserting a Node into a BST

CSIEB0100 Data Structures Trees 81

Deletion from a BST
 Deleting a node from a BST is more

complicated.
 Two stages:

 Search the node to remove.
 If found, delete the node.

 Three cases to consider when deleting a
node:
 When the node has no children. (trivial, exercise)
 When the node has one child. (simple)
 When the node has two children. (two alternatives)

CSIEB0100 Data Structures Trees 82

CSIEB0100 Data Structures Lecture 6: Trees

Note 42

Deletion from a BST – One Child

CSIEB0100 Data Structures Trees 83

Deletion from a BST – Two Children

CSIEB0100 Data Structures Trees 84

CSIEB0100 Data Structures Lecture 6: Trees

Note 43

Deletion from a BST – Two Children

 Two alternatives. In both cases, we keep the
node but replace its value.

 Alternative 1: Replace it with the largest value
(say, of node N) in its left subtree. Then delete
N.

 Alternative 2: Replace it with the smallest value
(say, of node N) in its right subtree. Then delete
N.

 We will discuss Alternative 1 and leave
Alternative 2 for you as an exercise.

CSIEB0100 Data Structures Trees 85

Deletion from a BST – Two Children
 The largest value in the left subtree must be the

right most node of the left subtree. (Why?)

 The smallest value in the right subtree must be
the left most node of the right subtree. (Why?)

CSIEB0100 Data Structures Trees 86

CSIEB0100 Data Structures Lecture 6: Trees

Note 44

Deletion from a BST – Two Children

CSIEB0100 Data Structures Trees 87

Alternative 1 Alternative 2

Selection Trees
 Winner tree

 Loser tree

CSIEB0100 Data Structures Trees 88

CSIEB0100 Data Structures Lecture 6: Trees

Note 45

Winner Trees
 Complete binary tree with k external nodes

and k - 1 internal nodes.

 External nodes represent tournament players.

 Each internal node represents a match played
between its two children; the winner of the
match is stored at the internal node.

 Root has overall winner.

CSIEB0100 Data Structures Trees 89

Winner Tree For 16 Players

player match node

CSIEB0100 Data Structures Trees 90

CSIEB0100 Data Structures Lecture 6: Trees

Note 46

Winner Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

Smaller element wins => min winner tree.

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1

CSIEB0100 Data Structures Trees 91

Winner Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

height is log2k (excludes player level)

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1

CSIEB0100 Data Structures Trees 92

CSIEB0100 Data Structures Lecture 6: Trees

Note 47

Merging Sequences with Winner Tree

 Given k ordered sequences (non-decreasing)
called runs

 Want to merge these sequences into one
sequence (of n numbers)

CSIEB0100 Data Structures Trees 93

CSIEB0100 Data Structures Course Information 94

28

CSIEB0100 Data Structures Lecture 6: Trees

Note 48

CSIEB0100 Data Structures Course Information 95

Analysis
 K: # of runs

 n: # of records

 setup time: O(K) (K-1)

 restructure time: O(log2K) log2(K+1)
 merge time: O(nlog2K)

 slight modification: tree of loser
 consider the parent node only (vs. sibling nodes)

CSIEB0100 Data Structures Trees 96

CSIEB0100 Data Structures Lecture 6: Trees

Note 49

Loser Tree

CSIEB0100 Data Structures

 Each match node stores the match loser
rather than the match winner.

 Use the winner for matching at the next level.

 The winner at the root node is placed at an
"extra" overall winner slot.

Trees 97

Loser Tree Merge

CSIEB0100 Data Structures

run

Trees 98

CSIEB0100 Data Structures Lecture 6: Trees

Note 50

Loser Tree Merge

CSIEB0100 Data Structures

run

Trees 99

Only need to consider
the parent node along
the way to the root.

Forest
 A forest is a set of n>=0 disjoint trees.

CSIEB0100 Data Structures Trees 100

CSIEB0100 Data Structures Lecture 6: Trees

Note 51

Transform a Forest into a Binary Tree

 T1, T2, …, Tn: a forest of trees

 B(T1, T2, …, Tn): a binary tree corresponding to
this forest

 Algorithm
 empty, if n=0

 has root equal to root(T1); has left subtree equal to
B(T11,T12,…,T1m); where T11,T12,…,T1m are
subtrees of root(T1); and has right subtree equal to
B(T2,T3,…,Tn).

CSIEB0100 Data Structures Trees 101

Transform a Forest into a Binary Tree

CSIEB0100 Data Structures Trees 102

CSIEB0100 Data Structures Lecture 6: Trees

Note 52

Forest Traversals
 Preorder

 If F is empty, then return

 Visit the root of the first tree of F

 Traverse the subtrees of the first tree in forest
preorder

 Traverse the remaining trees of F in forest
preorder

CSIEB0100 Data Structures Trees 103

Forest Traversals
 Inorder

 If F is empty, then return

 Traverse the subtrees of the first tree in forest inorder

 Visit the root of the first tree

 Traverse the remaining trees of F in forest inorder

 Postorder
 If F is empty, then return

 Traverse the subtrees of the first tree in forest
postorder

 Traverse the remaining trees of F in forest postorder

 Visit the root of the first tree

CSIEB0100 Data Structures Trees 104

CSIEB0100 Data Structures Lecture 6: Trees

Note 53

Set Representation
 S1={0, 6, 7, 8}, S2={1, 4, 9}, S3={2, 3, 5}

 Two operations considered here
 Disjoint set union S1∪ S2 = {0,6,7,8,1,4,9}

 Find(i): Find the set containing the element i.
 3 ∈ S3, 8 ∈ S1

CSIEB0100 Data Structures Trees 105

Disjoint Set Union

CSIEB0100 Data Structures Trees 106

CSIEB0100 Data Structures Lecture 6: Trees

Note 54

Data Representation of S1, S2 and S3

CSIEB0100 Data Structures Trees 107

Array Representation of S1, S2, S3

 We could use an array for the set name. Or
the set name can be an element at the root.

 Assume set elements are numbered 0 through
n-1.

CSIEB0100 Data Structures Trees 108

CSIEB0100 Data Structures Lecture 6: Trees

Note 55

SimpleFind
SimpleFind(int i)
// Find the root of the tree containing
// element i
{
while(parent[i]>=0)
i=parent[i];

return;
}

CSIEB0100 Data Structures Trees 109

Degenerate Tree

CSIEB0100 Data Structures Trees 110

CSIEB0100 Data Structures Lecture 6: Trees

Note 56

Weighting Rule
 Weighting rule for union(i, j)

 If the number of nodes in the tree with root i is less
than the number in the tree with root j, then make j
the parent of i; otherwise make i the parent of j.

 Use the weighting rule on the union operation
to avoid the creation of degenerate trees.

CSIEB0100 Data Structures Trees 111

Trees Obtained Using The Weighting
Rule

CSIEB0100 Data Structures Trees 112

CSIEB0100 Data Structures Lecture 6: Trees

Note 57

Weighted Union
 Lemma 5.5: Assume that we start with a forest of

trees, each having one node. Let T be a tree with
m nodes created as a result of a sequence of
unions each performed using function
WeightedUnion. The height of T is no greater
than log2 m  + 1

 For the processing of an intermixed sequence of
u–1 unions and f find operations, the time
complexity is O(u + f  log u).
 No tree has more than u nodes in it.
 We need O(n) additional time to initialize the n-tree

forest

CSIEB0100 Data Structures Trees 113

Can still have unbalance trees

CSIEB0100 Data Structures Trees 114

CSIEB0100 Data Structures Lecture 6: Trees

Note 58

Can still have unbalance trees

CSIEB0100 Data Structures Trees 115

Collapsing Rule
 Collapsing rule:

 If j is a node on the path from i to its root and
parent[j]≠root(i), then set parent[j] to root(i).

 The first run of find operation will collapse the
tree. Therefore, each following find operation
of the same element only goes up one link to
find the root.

CSIEB0100 Data Structures Trees 116

CSIEB0100 Data Structures Lecture 6: Trees

Note 59

CollapsingFind

CSIEB0100 Data Structures Trees 117

CollapsingFind
CollapsingFind(int i)
{
// find root
for(int r=i; parent[r]>=0; r=parent[r]);
//collapse
while(i!=r)
{
int s=parent[i];
parent[i]=r;
i=s;

}
}

CSIEB0100 Data Structures Trees 118

CSIEB0100 Data Structures Lecture 6: Trees

Note 60

CSIEB0100 Data Structures Course Information 119

Applications
 Find equivalence class i ≡ j

 Find Si and Sj such that i ∈ Si and j ∈ Sj (two
finds)
 Si = Sj do nothing

 Si ≠ Sj union(Si , Sj)

 Example:

0 ≡ 4, 3 ≡ 1, 6 ≡ 10, 8 ≡ 9, 7 ≡ 4, 6 ≡ 8,

3 ≡ 5, 2 ≡ 11, 11 ≡ 0

{0, 2, 4, 7, 11}, {1, 3, 5}, {6, 8, 9, 10}

CSIEB0100 Data Structures Trees 120

CSIEB0100 Data Structures Lecture 6: Trees

Note 61

Example 5.5

CSIEB0100 Data Structures Trees 121

Example 5.5

CSIEB0100 Data Structures Trees 122

CSIEB0100 Data Structures Lecture 6: Trees

Note 62

Uniqueness of a Binary Tree
 Suppose that we have the preorder sequence

ABCDEFGHI and the inorder sequence
BCAEDGHFI of the same binary tree.

 Does such a pair of sequence uniquely define
a binary tree?
 Yes.

 How to prove it?

CSIEB0100 Data Structures Trees 123

Constructing a Binary Tree From Its
Preoder and Inorder Sequences

CSIEB0100 Data Structures Trees 124

CSIEB0100 Data Structures Lecture 6: Trees

Note 63

Constructing a Binary Tree From Its
Preoder and Inorder Sequences

CSIEB0100 Data Structures Trees 125

Distinct Binary Trees

CSIEB0100 Data Structures Trees 126

CSIEB0100 Data Structures Lecture 6: Trees

Note 64

Dynamic (Self-Adjusting) Tree Structures

 BST is simple and efficient on insert/delete/search
but can be unbalanced with degraded performance.

 Dynamic (self-adjusting) tree structures can
automatically adjust their structures to improve
future operations.
 AVL tree: a binary tree in which every node is balanced

and has height O(log n).

 Red-Black tree: balanced binary tree with height h 
2log(n+1).

 Splay tree: no guarantee of balance but good amortized
performance (any sequence of m operations take at most
O(m log n) time on an n-node splay tree.)

CSIEB0100 Data Structures Trees 127

