
CSIEB0100 Data Structures Lecture 7: Graphs

Note 1

CSIEB0100 Data Structures

Lecture 07 Graphs

Shiow-yang Wu 吳秀陽
Department of Computer Science
and Information Engineering
National Dong Hwa University

Lecture material is partly home-grown, partly taken from slides came with the
textbook originally prepared by Professor Jiun-Long Huang of NCTU.

The City of Konigsberg

CSIEB0100 Data Structures Graphs 2

CSIEB0100 Data Structures Lecture 7: Graphs

Note 2

Konigsberg Bridge Problem

CSIEB0100 Data Structures

 Can the seven bridges of the city of Königsberg
be traversed in a single trip without doubling back
(the trip ends in the same place it began).

Graphs 3

Euler’s Graph
 The resolution of the problem by Leonhard

Euler in 1736 laid the foundations of graph
theory and prefigured the idea of topology.

 Degree of a vertex: no. edges incident to it.
 Euler showed that there is a walk starting at any

vertex, going through each edge exactly once
and terminating at the start vertex iff the degree
of each vertex is even. This is called an Eulerian
walk(Eulerian cycle).

 No Eulerian walk of the Konigsberg bridge
problem since all four vertices are of odd edges.

CSIEB0100 Data Structures Graphs 4

CSIEB0100 Data Structures Lecture 7: Graphs

Note 3

The Rise of Social Media
 Social media is one of the greatest invention of

21st century. (Facebook, YouTube, WhatsApp,
Instagram, WeChat, TikTok, Twitter, …)

 More than 4.7 billion people (~60% of the world’s
population) use social media. (2023)

 Many services on social media are based on
analyzing and exploring the social relationships
among users.

 Social relationships are best represented by
social graph. (next slide)

CSIEB0100 Data Structures Graphs 5

Social Graph
 A social graph is a diagram that represents the

social relationships between entities.

CSIEB0100 Data Structures Graphs 6

(https://cn.depositphotos.com/vector-images/social-networks.html)

CSIEB0100 Data Structures Lecture 7: Graphs

Note 4

Application of Graphs
 Analysis of electrical circuits

 Finding shortest routes

 Project planning

 Identification of chemical compounds

 Statistical mechanics

 Genetics

 Cybernetics

 Linguistics

 Social Sciences

CSIEB0100 Data Structures Graphs 7

Big Graph Analytics
 Real-world

graphs can
be HUGE !!

 Big graph
analytics is
a hot area
of research.

 Even used
in fighting
terrorism!

CSIEB0100 Data Structures Graphs 8

CSIEB0100 Data Structures Lecture 7: Graphs

Note 5

Definition of a Graph
 A graph, G=(V, E), consists of two sets, V and E.

 V is a finite, nonempty set of vertices.
 E is set of pairs of vertices called edges.

 The vertices of a graph G can be represented as V(G).
 Likewise, the edges of a graph, G, can be represented

as E(G).
 Graphs can be either undirected graphs or directed

graphs.
 For a undirected graph, a pair of vertices (u, v) or (v, u)

represent the same edge.
 For a directed graph, a directed pair <u, v> has u as the

tail and the v as the head. Therefore, <u, v> and <v, u>
represent different edges.

CSIEB0100 Data Structures Graphs 9

Three Sample Graphs

CSIEB0100 Data Structures Graphs 10

CSIEB0100 Data Structures Lecture 7: Graphs

Note 6

Graph Restrictions
 A graph may not have an edge from a vertex

back to itself
 (v, v) or <v, v> are called self edge or self loop.

 A graph may not have multiple occurrences of
the same edge
 Without this restriction, it is called a multigraph.

CSIEB0100 Data Structures Graphs 11

Terminologies of Graph
 Graph: G=(V, E)

 V: a set of vertices (vertex set)

 E: a set of edges (edge set)

 Edge (arc): A pair (v,w), where v, w∈ V

 Directed graph (Digraph): A graph with ordered
pairs (directed edge)

 Adjacent: w is adjacent to v if (v,w)∈ E

 Undirected graph: If (v,w)∈ E, (v,w)=(w,v)

CSIEB0100 Data Structures Graphs 12

CSIEB0100 Data Structures Lecture 7: Graphs

Note 7

Terminologies of Graph
 Path: a sequence of vertices w1, w2, w3,…, wN

where (wi, wi+1)∈ E, ∀ 1≤ i ≤ N.

 Length of a path: number of edges on the path.

 Simple path: a path where all vertices are distinct
except the first and last.

 Cycle in a directed graph: a path such that w1=
wN

 Acyclic graph (DAG): a directed graph with no
cycle.

CSIEB0100 Data Structures Graphs 13

Paths (Examples)
 In the following graph, both {(A,B), (B, E)} and

{(A,B), (B, C), (C, D), (D, E)} are paths.

CSIEB0100 Data Structures Graphs 14

CSIEB0100 Data Structures Lecture 7: Graphs

Note 8

Simple Paths
 In the following graph, the path on the left is a

simple path while the path on the right is not a
simple path.

CSIEB0100 Data Structures

B C

ED

A

B C

ED

A

簡單路徑 不為簡單路徑Simple path Not a simple path

Graphs 15

Cycles
 Here are some examples of cycles and non-

cycles.

CSIEB0100 Data Structures

Simple path
Cycle

Simple path
Cycle

Simple path
Not a cycle

Graphs 16

CSIEB0100 Data Structures Lecture 7: Graphs

Note 9

Terminologies of Graph
 Connected (for an undirected graph): if there is a

path from every vertex to every vertex.

 Strongly connected (for a directed graph): if there
is a path from every vertex to every vertex.

 Complete graph: a graph in which there is an
edge between every pair of vertices. (next slide)

 The density of a graph is the ratio between the
number of edges and the maximum possible
edges. i.e.

(density) = (# edges) / (# possible edges)

CSIEB0100 Data Structures Graphs 17

Complete Graphs
 The number of distinct unordered pairs (u, v) with

u≠v in a graph with n vertices is n(n-1)/2.

 A complete undirected graph is an undirected
graph with exactly n(n-1)/2 edges.

 A complete directed graph is a directed graph
with exactly n(n-1) edges.

CSIEB0100 Data Structures

B C

ED

A

B C

ED

A

Graphs 18

CSIEB0100 Data Structures Lecture 7: Graphs

Note 10

Subgraphs
 A subgraph of G is a graph G’ such that

V(G’)⊆V(G) and E(G’)⊆E(G).

CSIEB0100 Data Structures Graphs 19

Connected Components
 A connected component, H, of an undirected

graph is a maximal connected subgraph.
 By maximal, we mean that G contains no other

subgraph that is both connected and properly contains
H.

 G4 below is a graph with two connected components.

CSIEB0100 Data Structures Graphs 20

CSIEB0100 Data Structures Lecture 7: Graphs

Note 11

Strongly Connected Components
 A directed graph G is said to be strongly

connected iff for each pair of distinct vertices u
and v in V(G), there is a directed path from u to v
and also from v to u.

 A strongly connected component is a maximal
subgraph that is strongly connected.

CSIEB0100 Data Structures

G3

Strongly Connected
Components of G3

Graphs 21

Degree of a Vertex
 The degree of a vertex is the number of edges

incident to that vertex.

 If G is a directed graph, then we define
 In-degree of a vertex: is the number of edges for

which vertex is the head.

 Out-degree of a vertex: is the number of edges for
which the vertex is the tail.

 For a graph G with n vertices and e edges, if di is
the degree of a vertex i in G, then the number of
edges of G is

CSIEB0100 Data Structures Graphs 22

CSIEB0100 Data Structures Lecture 7: Graphs

Note 12

Degree of a Vertex
 The degree of node A

is 4.

 The in-degree of node
A is 1 while the out-
degree is 3.

CSIEB0100 Data Structures

B C

ED

A

B C

ED

A

Graphs 23

Abstract Data Type of Graphs
class Graph
{
/* objects: A nonempty set of vertices and a set of

undirected edges where each edge is a pair of vertices */
public:
Graph(); // Create an empty graph
void InsertVertex(Vertex v);
void InsertEdge(Vertex u, Vertex v);
void DeleteVertex(Vertex v);
void DeleteEdge(Vertex u, Vertex v);
Boolean IsEmpty(); //if graph has no vertices return TRUE
List<List> Adjacent(Vertex v);
// return a list of all vertices that are adjacent to v

};

CSIEB0100 Data Structures Graphs 24

CSIEB0100 Data Structures Lecture 7: Graphs

Note 13

Adjacency Matrix Representation

 Space: Θ(|V|2), good for dense, not for sparse

 Undirected graph: symmetric matrix (why?)

CSIEB0100 Data Structures Graphs 25

Adjacency List Representation

 Space: O(|V|+|E|), good for sparse graphs

CSIEB0100 Data Structures Graphs 26

CSIEB0100 Data Structures Lecture 7: Graphs

Note 14

Adjacency Lists (Examples)

CSIEB0100 Data Structures Graphs 27

Sequential Representation of Graph G4

CSIEB0100 Data Structures

end

Graphs 28

CSIEB0100 Data Structures Lecture 7: Graphs

Note 15

Sequential Representation of Graph G4

CSIEB0100 Data Structures

end

Graphs 29

Sequential Representation of Graph G4

CSIEB0100 Data Structures

end

Graphs 30

CSIEB0100 Data Structures Lecture 7: Graphs

Note 16

Inverse Adjacency Lists for G3

 Adjacency list
 Out-degree

 Inverse adjacency list
 In-degree

CSIEB0100 Data Structures Graphs 31

Adjacency Multilists
 In the adjacency-list representation of an

undirected graph, each edge (u, v) is represented
by two entries.

 Multilists: To be able to determine the second
entry for a particular edge and mark that edge as
having been examined, we use a structure called
multilists (where nodes may be shared among
several lists).
 Each edge is represented by one node.

 Each node will be in two lists.

CSIEB0100 Data Structures Graphs 32

CSIEB0100 Data Structures Lecture 7: Graphs

Note 17

Adjacency Multilists
 Each edge is represented by a node with the

following structure

CSIEB0100 Data Structures

Marked Bit V1 V2 Link1 Link2

One bit mark to
represent
whether the edge
has been
examined or not.

Starting
vertex

Ending
vertex

Next edge
node of the
starting vertex
or NIL if none.

Next edge
node of the
ending vertex
or NIL if none.

Graphs 33

Adjacency Multilists for G1

CSIEB0100 Data Structures Graphs 34

CSIEB0100 Data Structures Lecture 7: Graphs

Note 18

Weighted Edges
 Very often the edges of a graph have weights

associated with them.
 Distance from one vertex to another

 Cost of going from one vertex to an adjacent
vertex

 To represent weight, we need additional field,
weight, in each entry.

 A graph with weighted edges is called a
network.

CSIEB0100 Data Structures Graphs 35

Graph Operations

 A general operation on a graph G is to
visit all vertices in G that are reachable
from a vertex v.
 Depth-first search

 Breadth-first search

 Both search methods work on directed
and undirected graphs.

CSIEB0100 Data Structures Graphs 36

CSIEB0100 Data Structures Lecture 7: Graphs

Note 19

Depth-First Search
 Depth First Search(DFS): generalization of

preorder traversal

 Starting from vertex v, process v & then
recursively traverse all vertices adjacent to v.
 Using stack

 To avoid cycles, mark visited vertices

CSIEB0100 Data Structures Graphs 37

DFS on Graph G(Adjacency Lists)

CSIEB0100 Data Structures Graphs 38

CSIEB0100 Data Structures Lecture 7: Graphs

Note 20

Analysis of DFS
 If G is represented by its adjacency lists, the

DFS time complexity is O(e).
 There are 2e list nodes in the adjacency lists

 If G is represented by its adjacency matrix,
then the time complexity to complete DFS is
O(n2).

CSIEB0100 Data Structures Graphs 39

Breadth-First Search
 Breadth-First search (BFS): level order tree

traversal

 BFS algorithm: using queue

 To avoid cycles, mark visited vertices

 If G is represented by its adjacency lists, the
BFS time complexity is O(e).

 If G is represented by its adjacency matrix,
then the time complexity to complete BFS is
O(n2).

CSIEB0100 Data Structures Graphs 40

CSIEB0100 Data Structures Lecture 7: Graphs

Note 21

Breadth-First Search

CSIEB0100 Data Structures Graphs 41

Find Connected Components
 If G is an undirected graph, its connected

components can be determined by calling
DFS or BFS

 Check if there is any unvisited vertex

 Program 6.3 (pp.344) (next slide)

CSIEB0100 Data Structures Graphs 42

CSIEB0100 Data Structures Lecture 7: Graphs

Note 22

procedure COMP(G,n)
//connected components of G. G has n ≧ 1 vertices.
VISITED is now a local array.//
for i = 1 to n do

VISITED(i) = 0 //mark all vertices as unvisited//
end
for i = 1 to n do

if VISITED(i) == 0 then
call DFS(i); //find a component//
output all newly visited vertices together
with all edges incident to them

end
end COMP

CSIEB0100 Data Structures Graphs 43

Connected Components (contd.)
 If G is represented by adjacency lists, the time

complexity is O(n+e)
 O(e) for DFS

 O(n) for for loops

 If G is represented by adjacency matrix, the
time complexity is O(n2)

CSIEB0100 Data Structures Graphs 44

CSIEB0100 Data Structures Lecture 7: Graphs

Note 23

Spanning Trees
 Any tree consisting solely of edges in G and

including ALL vertices in G is called a spanning
tree.
 Can be obtained by using either DFS or BFS.

 A spanning tree is a minimal subgraph, G’, of G
such that V(G’) = V(G), and G’ is connected.
(Minimal subgraph is defined as one with the
fewest number of edges).

 Any connected graph with n vertices must have
at least n-1 edges, and all connected graphs with
n–1 edges are trees. Therefore, a spanning tree
has n–1 edges.

CSIEB0100 Data Structures Graphs 45

A Complete Graph and Its Spanning
Trees

CSIEB0100 Data Structures Graphs 46

CSIEB0100 Data Structures Lecture 7: Graphs

Note 24

Depth-First and Breadth-
First Spanning Trees

CSIEB0100 Data Structures Graphs 47

Biconnected Components
 A vertex v of G is an articulation point iff the

deletion of v, together with the deletion of all
edges incident to v, leaves behind a graph that
has at least two connected components.
 e.g., vertices 1, 3, 5, 7 of Figure 6.20(a) (next slide)

 A biconnected graph is a connected graph that
has no articulation points.

 A biconnected component of a connected graph
G is a maximal biconnected subgraph H of G.
 G contains no other subgraph that is both biconnected

and properly contains H.

CSIEB0100 Data Structures Graphs 48

CSIEB0100 Data Structures Lecture 7: Graphs

Note 25

A Connected Graph and Its
Biconnected Components

CSIEB0100 Data Structures Graphs 49

Biconnected Components
 Two biconnected components of the same

graph can have at most one vertex in common.

 The biconnected components of G partition the
edges of G.
 No edge can be in two or more biconnected

components (why?)

 The biconnected components of a connected,
undirected graph G can be found by using any
depth-first spanning tree of G.

CSIEB0100 Data Structures Graphs 50

CSIEB0100 Data Structures Lecture 7: Graphs

Note 26

Biconnected Components
 Edge (u,v) is a tree edge if v was first

discovered by exploring edge (u,v)

 A nontree edge (u, v) is a back edge with
respect to a spanning tree T iff either u is an
ancestor of v or v is an ancestor of u

 A nontree edge that is not a back edge is
called a cross edge.

 In a DFS of an undirected graph G, every
edge of G is either a tree edge or a back edge
(why ?)

CSIEB0100 Data Structures Graphs 51

Tree Edge & Back Edge in a DFS Tree

CSIEB0100 Data Structures Graphs 52

CSIEB0100 Data Structures Lecture 7: Graphs

Note 27

Biconnected Components (contd.)
 The root of the depth-first spanning tree is an

articulation point iff it has at least two children.

 dfn(w) is defined as the order that w is
discovered by DFS.

 Define low(w) as the lowest depth-first number
that can be reached from w using a path of
descendants followed by, at most, one back
edge.

 low(w) = min{dfn(w), min{low(x) | x is a child of
w}, min{dfn(x) | (w, x) is a back edge}}

CSIEB0100 Data Structures Graphs 53

dfn and low Values for the Spanning
Tree

CSIEB0100 Data Structures Graphs 54

CSIEB0100 Data Structures Lecture 7: Graphs

Note 28

Biconnected Components (contd.)
 A vertex u is an articulation point iff

 u is either the root of the spanning tree and has two or
more children, or

 u is not the root and u has a child w such that low(w) ≥
dfn(u).

CSIEB0100 Data Structures Graphs 55

One Usage of Biconnected
Components
 Ad-hoc network

CSIEB0100 Data Structures Graphs 56

CSIEB0100 Data Structures Lecture 7: Graphs

Note 29

One Usage of Biconnected
Components (contd.)

CSIEB0100 Data Structures Graphs 57

Minimum Cost Spanning Tree
 A minimum-cost spanning tree is a spanning

tree of least cost
 Cost: the sum of the costs (weights) of the edges

in the spanning tree

 Three greedy-method algorithms available to
obtain a minimum-cost spanning tree
 Kruskal’s algorithm

 Prim’s algorithm

 Sollin’s algorithm

CSIEB0100 Data Structures Graphs 58

CSIEB0100 Data Structures Lecture 7: Graphs

Note 30

Minimal Cost Spanning Tree (contd.)

 Constraints
 Must use only edges within the graph.

 Must use exactly n-1 edges.

 May not use edges that produce a cycle.

CSIEB0100 Data Structures Graphs 59

Kruskal’s Algorithm
 Kruskal’s algorithm builds a minimum-cost

spanning tree T by adding edges to T one at a
time.

 The algorithm selects the edges for inclusion in T
in non-decreasing order of their cost.

 An edge is added to T if it does not form a cycle
with the edges that are already in T.

 Theorem 6.1 (Kruskal’s algorithm is correct)

 Time complexity: O(e log e)

CSIEB0100 Data Structures Graphs 60

CSIEB0100 Data Structures Lecture 7: Graphs

Note 31

Stages in Kruskal’s Algorithm

CSIEB0100 Data Structures Graphs 61

Stages in Kruskal’s Algorithm (Cont.)

CSIEB0100 Data Structures Graphs 62

CSIEB0100 Data Structures Lecture 7: Graphs

Note 32

Stages in Kruskal’s Algorithm (Cont.)

CSIEB0100 Data Structures Graphs 63

Prim’s Algorithm
 The set of selected edges forms a tree at all

times when using Prim’s algorithm
 In Prim’s algorithm, a least-cost edge (u, v) is

added to T such that T∪{(u, v)} is also a tree. This
repeats until T contains n-1 edges.

 Time complexity
 O(n2)

 A faster implementation is possible when
Fibonacci heap is used

CSIEB0100 Data Structures Graphs 64

CSIEB0100 Data Structures Lecture 7: Graphs

Note 33

Stages in Prim’s Algorithm

CSIEB0100 Data Structures Graphs 65

Stages in Prim’s Algorithm (Cont.)

CSIEB0100 Data Structures Graphs 66

CSIEB0100 Data Structures Lecture 7: Graphs

Note 34

Sollin’s Algorithm
 Contrast to Kruskal’s and Prim’s algorithms,

Sollin’s algorithm selects multiple edges at
each stage

 At the beginning, all the n vertices form a
spanning forest

 During each stage, a minimum-cost edge is
selected for each tree in the forest.
 The edges selected by vertices 0, 1, …, 6 are,

respectively, (0,5), (1,6), (2,3), (3,2), (4,3), (5,0)

CSIEB0100 Data Structures Graphs 67

Sollin’s Algorithm (contd.)
 It’s possible that two trees in the forest to

select the same edge. Only one should be
used.

 Also, it’s possible that the graph has multiple
edges with the same cost. So, two trees may
select two different edges that connect them
together. Again, only one should be retained.

CSIEB0100 Data Structures Graphs 68

CSIEB0100 Data Structures Lecture 7: Graphs

Note 35

Stages in Sollin’s Algorithm

CSIEB0100 Data Structures Graphs 69

Graph and Shortest Paths From Vertex
0 to All Destinations

CSIEB0100 Data Structures Graphs 70

CSIEB0100 Data Structures Lecture 7: Graphs

Note 36

Single Source All Destinations:
Nonnegative Edge Costs
 Let S denote the set of vertices (including v0)

to which the shortest paths have already been
found.
 If the next shortest path is to vertex u, then the

path begins at v0, ends at u, and goes through
only vertices that are in S.

 The destination of the next path generated must
be the vertex u that has the minimum distance
among all vertices not in S.

 Select u to become a member of S.

CSIEB0100 Data Structures Graphs 71

Diagram for Example 6.5

CSIEB0100 Data Structures Graphs 72

CSIEB0100 Data Structures Lecture 7: Graphs

Note 37

CSIEB0100 Data Structures Course Information 73

Action of Shortest Path

CSIEB0100 Data Structures Graphs 74

CSIEB0100 Data Structures Lecture 7: Graphs

Note 38

Single Source All Destinations:
Nonnegative Edge Costs (contd.)

 The algorithm is first given by Edsger Dijkstra.
Therefore, it’s sometimes called Dijkstra
Algorithm.

 Time complexity
 Adjacency matrix, adjacency list: O(n2)

 Using Fibonacci heap: O(nlogn+e)

CSIEB0100 Data Structures Graphs 75

Directed Graphs

CSIEB0100 Data Structures Graphs 76

CSIEB0100 Data Structures Lecture 7: Graphs

Note 39

Single Source All Destinations: General
Weights
 When there are no cycles of negative length, there is

a shortest path between any two vertices of an n-
vertex graph that has at most n-1 edges on it.
 If the shortest path from v0 to u with at most k, k>1, edges

has no more than k–1 edges, then

distk[u]=distk-1[u].

 If the shortest path from v0 to u with at most k, k>1, edges
has exactly k edges, then it is comprised of a shortest path
from v0 to some vertex i followed by the edge <i, u>. The
path from v0 to i has k–1 edges, and its length is distk-1[i].
(figure on next slide)

CSIEB0100 Data Structures Graphs 77

Single Source All Destinations:
General Weights (contd.)
 The distance can be computed in recurrence by

the following:

distk[u] = min{ distk-1[u], min{distk-1[i] +length[i][u]} }

 The algorithm is also referred to as the Bellman-
Ford Algorithm.

 Time complexity:
 Adjacency matrix: O(n3)

 Adjacency list: O(ne)

CSIEB0100 Data Structures Graphs 78

v0

<= k-1 edges

k-1 edges

i

u

CSIEB0100 Data Structures Lecture 7: Graphs

Note 40

Shortest Paths with Negative Edge
Lengths

CSIEB0100 Data Structures Graphs 79

CSIEB0100 Data Structures Course Information 80

5 -2

CSIEB0100 Data Structures Lecture 7: Graphs

Note 41

Shortest Paths with Negative
Edge Lengths (contd.)

CSIEB0100 Data Structures Graphs 81

0 5

3

All-Pairs Shortest Paths
 Floyd-Warshall algorithm

 Notations
 A-1[i][j]: is just the length[i][j]

 An-1[i][j]: the length of the shortest i-to-j path in G

 Ak[i][j]: the length of the shortest path from i to j going
through no intermediate vertex of index greater
than k.

CSIEB0100 Data Structures Graphs 82

CSIEB0100 Data Structures Lecture 7: Graphs

Note 42

All-Pairs Shortest Paths (contd.)
 How to determine the value of Ak[i][j]
 Ak[i][j] = min{Ak-1[i][j], Ak-1[i][k] + Ak-1[k][j] }, k ≥ 0

 Time complexity
 O(n3)

CSIEB0100 Data Structures Graphs 83

Example for All-Pairs Shortest-Paths
Problem

CSIEB0100 Data Structures Graphs 84

CSIEB0100 Data Structures Lecture 7: Graphs

Note 43

Transitive Closure
 Definition: The transitive closure matrix, denoted

A+, of a graph G, is a matrix such that A+[i][j] = 1
if there is a path of length > 0 from i to j;
otherwise, A+[i][j] = 0.

 Definition: The reflexive transitive closure
matrix, denoted A*, of a graph G, is a matrix such
that A*[i][j] = 1 if there is a path of length >= 0
from i to j; otherwise, A*[i][j] = 0.

CSIEB0100 Data Structures Graphs 85

Graph G and Its Adjacency Matrix A,
A+, A*

CSIEB0100 Data Structures

1

Graphs 86

CSIEB0100 Data Structures Lecture 7: Graphs

Note 44

Activity-on-Vertex (AOV) Networks
 Definition: Activity-On-Vertex network or AOV

network
 A directed graph G
 the vertices represent tasks or activities
 the edges represent precedence relations between tasks.

 Definition: Vertex i in an AOV network G is a
predecessor of vertex j iff there is a directed path
from vertex i to vertex j.
 i is an immediate predecessor of j iff <i, j> is an edge in G.
 If i is a predecessor of j, then j is a successor of i.
 If i is an immediate predecessor of j, then j is an immediate

successor of i.

CSIEB0100 Data Structures Graphs 87

AOV Networks (contd.)

 Definition: A topological order is a linear
ordering of the vertices of a graph such that,
for any two vertices i and j, if i is a
predecessor of j in the network, then i
precedes j in the linear ordering. (i.e. a linear
order which is consistent with all precedence
relationships.)

CSIEB0100 Data Structures Graphs 88

CSIEB0100 Data Structures Lecture 7: Graphs

Note 45

An AOV Network of Courses

CSIEB0100 Data Structures Graphs 89

An AOV Network (Fig 6.36)

CSIEB0100 Data Structures Graphs 90

CSIEB0100 Data Structures Lecture 7: Graphs

Note 46

Action of Program 6.11(Topological
Sorting) on an AOV Network(Fig 6.37)

CSIEB0100 Data Structures Graphs 91

Using Adjacency List

CSIEB0100 Data Structures

Initialized to the in-
degree of vertex

Graphs 92

CSIEB0100 Data Structures Lecture 7: Graphs

Note 47

An AOE Network

CSIEB0100 Data Structures Graphs 93

Weight: duration

AOE Network
 A path of the longest length is a critical path

 The earliest time that an event i can occur is the
length of the longest path from the start vertex 0
to the vertex i

 The earliest time an event can occur determines
the earliest start time for all activities represented
by edges leaving vertex i. (denoted by e(i))

 For every activity ai, let the latest time that an
activity may start without increasing the project
duration be l(i).

CSIEB0100 Data Structures Graphs 94

CSIEB0100 Data Structures Lecture 7: Graphs

Note 48

AOE Network (contd.)
 All activities for which e(i)=l(i) are called critical

activities

 For event j :
 Earliest event occurrence time: ee[j]

 Latest event occurrence time: le[j]

 If activity ai is represented by edge <k,l>, we
can compute:
 e(i) = ee[k]

 l(i) = le[l] - duration of activity ai

CSIEB0100 Data Structures Graphs 95

k

l

ai

AOE Network (contd.)
 Calculation of ee[j] and le[j]

 P(j) is the set of all vertices adjacent to vertex j

 S(j) is the set of all vertices adjacent from vertex j

 Using topological order

CSIEB0100 Data Structures Graphs 96

j

S(j)P(j)

CSIEB0100 Data Structures Lecture 7: Graphs

Note 49

Adjacency Lists for Figure 6.38 (a)

CSIEB0100 Data Structures Graphs 97

Adjacency Lists for Figure 6.38 (a)

CSIEB0100 Data Structures Graphs 98

CSIEB0100 Data Structures Lecture 7: Graphs

Note 50

Computation of ee

CSIEB0100 Data Structures

In topological sorting, the
vertices with in-degree=0
are placed in stack

Graphs 99

16

Critical Path Analysis
 AOE graph

CSIEB0100 Data Structures Graphs 100

CSIEB0100 Data Structures Lecture 7: Graphs

Note 51

Critical Path Analysis (cont.)
 Earliest completion times: longest path

 computed by topological order

 EE1=0

 EEw=max(EEv+Dv,w)

CSIEB0100 Data Structures Graphs 101

Critical Path Analysis (cont.)
 Latest completion times:

 latest time without affecting final completion time

 computed by reverse topological order

 LE10=EE10

 LEv=min(LEw - Dv,w)

CSIEB0100 Data Structures Graphs 102

9

CSIEB0100 Data Structures Lecture 7: Graphs

Note 52

Critical Path Analysis (cont.)
 Slack time(w) = LEw - EEw

 Critical path = zero slack time

CSIEB0100 Data Structures Graphs 103

Social Network Analysis (SNA)
 Social network analysis (SNA) is to discover

patterns underlying social network.

 Replies on networks and graph theory.

 It can be used to analyze the social structure,
relationships, interactions, … even the roles of
actors(nodes) in the network.

 SNA has emerged as a key technique in modern
sociology, economics, communication studies,
organizational studies, …

 Even in fighting terrorism!

CSIEB0100 Data Structures Graphs 104

CSIEB0100 Data Structures Lecture 7: Graphs

Note 53

SNA – Centrality Measures
 To analyze which nodes(actors) are more

important (or most important) in the network.

 Degree centrality – # edges connected to a node

 Closeness centrality – measure how close a
node is to other nodes.

 Betweenness centrality – measure the fraction of
paths that connect all pairs and include the node.

 Eigenvector centrality – mearue not only the
connection degree but also the quality of
connections.

CSIEB0100 Data Structures Graphs 105

SNA –
Centrality
Measure

CSIEB0100 Data Structures Graphs 106

