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The City of  Konigsberg
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Konigsberg Bridge Problem

CSIEB0100 Data Structures

 Can the seven bridges of the city of Königsberg 
be traversed in a single trip without doubling back 
(the trip ends in the same place it began).

Graphs 3

Euler’s Graph
 The resolution of the problem by Leonhard 

Euler in 1736 laid the foundations of graph 
theory and prefigured the idea of topology.

 Degree of a vertex: no. edges incident to it.
 Euler showed that there is a walk starting at any 

vertex, going through each edge exactly once 
and terminating at the start vertex iff the degree
of each vertex is even. This is called an Eulerian 
walk(Eulerian cycle).

 No Eulerian walk of the Konigsberg bridge 
problem since all four vertices are of odd edges.
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The Rise of  Social Media
 Social media is one of the greatest invention of 

21st century. (Facebook, YouTube, WhatsApp, 
Instagram, WeChat, TikTok, Twitter, …)

 More than 4.7 billion people (~60% of the world’s 
population) use social media. (2023)

 Many services on social media are based on 
analyzing and exploring the social relationships 
among users.

 Social relationships are best represented by 
social graph. (next slide)
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Social Graph
 A social graph is a diagram that represents the 

social relationships between entities.
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Application of  Graphs
 Analysis of electrical circuits

 Finding shortest routes

 Project planning

 Identification of chemical compounds

 Statistical mechanics

 Genetics

 Cybernetics

 Linguistics

 Social Sciences
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Big Graph Analytics
 Real-world 

graphs can 
be HUGE !!

 Big graph 
analytics is 
a hot area 
of research.

 Even used 
in fighting 
terrorism!
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Definition of  a Graph
 A graph, G=(V, E), consists of two sets, V and E.

 V is a finite, nonempty set of vertices.
 E is set of pairs of vertices called edges.

 The vertices of a graph G can be represented as V(G).
 Likewise, the edges of a graph, G, can be represented 

as E(G).
 Graphs can be either undirected graphs or directed

graphs.
 For a undirected graph, a pair of vertices (u, v) or (v, u) 

represent the same edge.
 For a directed graph, a directed pair <u, v> has u as the 

tail and the v as the head. Therefore, <u, v> and <v, u> 
represent different edges.
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Three Sample Graphs
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Graph Restrictions
 A graph may not have an edge from a vertex 

back to itself
 (v, v) or <v, v> are called self edge or self loop.

 A graph may not have multiple occurrences of 
the same edge
 Without this restriction, it is called a multigraph.
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Terminologies of  Graph
 Graph: G=(V, E)

 V: a set of vertices (vertex set)

 E: a set of edges (edge set)

 Edge (arc): A pair (v,w), where v, w∈ V

 Directed graph (Digraph): A graph with ordered 
pairs (directed edge)

 Adjacent: w is adjacent to v if (v,w)∈ E

 Undirected graph: If (v,w)∈ E, (v,w)=(w,v)
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Terminologies of  Graph
 Path: a sequence of vertices w1, w2, w3,…, wN

where (wi, wi+1)∈ E, ∀ 1≤ i ≤ N.

 Length of a path: number of edges on the path.

 Simple path: a path where all vertices are distinct 
except the first and last.

 Cycle in a directed graph: a path such that w1= 
wN

 Acyclic graph (DAG): a directed graph with no 
cycle.
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Paths (Examples)
 In the following graph, both {(A,B), (B, E)} and 

{(A,B), (B, C), (C, D), (D, E)} are paths.
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Simple Paths
 In the following graph, the path on the left is a 

simple path while the path on the right is not a 
simple path.
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簡單路徑 不為簡單路徑Simple path Not a simple path
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Cycles
 Here are some examples of cycles and non-

cycles.
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Simple path
Cycle

Simple path
Cycle

Simple path
Not a cycle
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Terminologies of  Graph
 Connected (for an undirected graph): if there is a 

path from every vertex to every vertex.

 Strongly connected (for a directed graph): if there 
is a path from every vertex to every vertex.

 Complete graph: a graph in which there is an 
edge between every pair of vertices. (next slide)

 The density of a graph is the ratio between the 
number of edges and the maximum possible 
edges. i.e.

(density) = (# edges) / (# possible edges)
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Complete Graphs
 The number of distinct unordered pairs (u, v) with 

u≠v in a graph with n vertices is n(n-1)/2.

 A complete undirected graph is an undirected 
graph with exactly n(n-1)/2 edges.

 A complete directed graph is a directed graph 
with exactly n(n-1) edges.
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Subgraphs
 A subgraph of G is a graph G’ such that 

V(G’)⊆V(G) and E(G’)⊆E(G).
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Connected Components
 A connected component, H, of an undirected

graph is a maximal connected subgraph.
 By maximal, we mean that G contains no other 

subgraph that is both connected and properly contains
H.

 G4 below is a graph with two connected components.
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Strongly Connected Components
 A directed graph G is said to be strongly 

connected iff for each pair of distinct vertices u 
and v in V(G), there is a directed path from u to v 
and also from v to u.

 A strongly connected component is a maximal 
subgraph that is strongly connected.

CSIEB0100 Data Structures

G3

Strongly Connected 
Components of G3
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Degree of  a Vertex
 The degree of a vertex is the number of edges 

incident to that vertex.

 If G is a directed graph, then we define
 In-degree of a vertex: is the number of edges for 

which vertex is the head.

 Out-degree of a vertex: is the number of edges for 
which the vertex is the tail.

 For a graph G with n vertices and e edges, if di is 
the degree of a vertex i in G, then the number of 
edges of G is
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Degree of  a Vertex
 The degree of node A 

is 4.

 The in-degree of node 
A is 1 while the out-
degree is 3.
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Abstract Data Type of  Graphs
class Graph
{
/* objects: A nonempty set of vertices and a set of 

undirected edges where each edge is a pair of vertices */
public:
Graph(); // Create an empty graph
void InsertVertex(Vertex v);
void InsertEdge(Vertex u, Vertex v);
void DeleteVertex(Vertex v);
void DeleteEdge(Vertex u, Vertex v);
Boolean IsEmpty(); //if graph has no vertices return TRUE
List<List> Adjacent(Vertex v);
// return a list of all vertices that are adjacent to v

};
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Adjacency Matrix Representation

 Space: Θ(|V|2), good for dense, not for sparse

 Undirected graph: symmetric matrix (why?)
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Adjacency List Representation

 Space: O(|V|+|E|), good for sparse graphs
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Adjacency Lists (Examples)

CSIEB0100 Data Structures Graphs 27

Sequential Representation of  Graph G4

CSIEB0100 Data Structures

end

Graphs 28



CSIEB0100 Data Structures Lecture 7: Graphs

Note 15

Sequential Representation of  Graph G4

CSIEB0100 Data Structures

end
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Sequential Representation of  Graph G4

CSIEB0100 Data Structures

end
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Inverse Adjacency Lists for G3

 Adjacency list
 Out-degree

 Inverse adjacency list
 In-degree
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Adjacency Multilists
 In the adjacency-list representation of an 

undirected graph, each edge (u, v) is represented 
by two entries.

 Multilists: To be able to determine the second 
entry for a particular edge and mark that edge as 
having been examined, we use a structure called 
multilists (where nodes may be shared among 
several lists).
 Each edge is represented by one node.

 Each node will be in two lists.

CSIEB0100 Data Structures Graphs 32



CSIEB0100 Data Structures Lecture 7: Graphs

Note 17

Adjacency Multilists
 Each edge is represented by a node with the 

following structure

CSIEB0100 Data Structures

Marked Bit V1 V2 Link1 Link2

One bit mark to 
represent 
whether the edge 
has been 
examined or not.

Starting
vertex

Ending 
vertex

Next edge 
node of the 
starting vertex 
or NIL if none.

Next edge 
node of the 
ending vertex 
or NIL if none.
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Adjacency Multilists for G1
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Weighted Edges
 Very often the edges of a graph have weights

associated with them.
 Distance from one vertex to another

 Cost of going from one vertex to an adjacent 
vertex

 To represent weight, we need additional field, 
weight, in each entry.

 A graph with weighted edges is called a 
network.
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Graph Operations

 A general operation on a graph G is to 
visit all vertices in G that are reachable 
from a vertex v.
 Depth-first search

 Breadth-first search

 Both search methods work on directed 
and undirected graphs.
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Depth-First Search
 Depth First Search(DFS): generalization of 

preorder traversal

 Starting from vertex v, process v & then 
recursively traverse all vertices adjacent to v.
 Using stack

 To avoid cycles, mark visited vertices
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DFS on Graph G(Adjacency Lists)

CSIEB0100 Data Structures Graphs 38



CSIEB0100 Data Structures Lecture 7: Graphs

Note 20

Analysis of  DFS
 If G is represented by its adjacency lists, the 

DFS time complexity is O(e).
 There are 2e list nodes in the adjacency lists

 If G is represented by its adjacency matrix, 
then the time complexity to complete DFS is 
O(n2).
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Breadth-First Search
 Breadth-First search (BFS): level order tree 

traversal

 BFS algorithm: using queue

 To avoid cycles, mark visited vertices

 If G is represented by its adjacency lists, the 
BFS time complexity is O(e).

 If G is represented by its adjacency matrix, 
then the time complexity to complete BFS is 
O(n2).
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Breadth-First Search
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Find Connected Components
 If G is an undirected graph, its connected 

components can be determined by calling 
DFS or BFS

 Check if there is any unvisited vertex

 Program 6.3 (pp.344) (next slide)
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procedure COMP(G,n)
//connected components of G. G has n ≧ 1 vertices.
VISITED is now a local array.//
for i = 1 to n do

VISITED(i) = 0 //mark all vertices as unvisited//
end
for i = 1 to n do

if VISITED(i) == 0 then
call DFS(i); //find a component//
output all newly visited vertices together
with all edges incident to them

end
end COMP
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Connected Components (contd.)
 If G is represented by adjacency lists, the time 

complexity is O(n+e)
 O(e) for DFS

 O(n) for for loops

 If G is represented by adjacency matrix, the 
time complexity is O(n2)
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Spanning Trees
 Any tree consisting solely of edges in G and 

including ALL vertices in G is called a spanning 
tree.
 Can be obtained by using either DFS or BFS.

 A spanning tree is a minimal subgraph, G’, of G 
such that V(G’) = V(G), and G’ is connected. 
(Minimal subgraph is defined as one with the 
fewest number of edges).

 Any connected graph with n vertices must have 
at least n-1 edges, and all connected graphs with 
n–1 edges are trees. Therefore, a spanning tree 
has n–1 edges.
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A Complete Graph and Its Spanning
Trees
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Depth-First and Breadth-
First Spanning Trees
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Biconnected Components
 A vertex v of G is an articulation point iff the 

deletion of v, together with the deletion of all 
edges incident to v, leaves behind a graph that 
has at least two connected components.
 e.g., vertices 1, 3, 5, 7 of Figure 6.20(a) (next slide)

 A biconnected graph is a connected graph that 
has no articulation points.

 A biconnected component of a connected graph 
G is a maximal biconnected subgraph H of G.
 G contains no other subgraph that is both biconnected 

and properly contains H.
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A Connected Graph and Its
Biconnected Components
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Biconnected Components
 Two biconnected components of the same 

graph can have at most one vertex in common.

 The biconnected components of G partition the 
edges of G.
 No edge can be in two or more biconnected 

components (why?)

 The biconnected components of a connected, 
undirected graph G can be found by using any 
depth-first spanning tree of G.
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Biconnected Components
 Edge (u,v) is a tree edge if v was first 

discovered by exploring edge (u,v)

 A nontree edge (u, v) is a back edge with 
respect to a spanning tree T iff either u is an 
ancestor of v or v is an ancestor of u

 A nontree edge that is not a back edge is 
called a cross edge.

 In a DFS of an undirected graph G, every 
edge of G is either a tree edge or a back edge 
(why ?)
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Tree Edge & Back Edge in a DFS Tree
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Biconnected Components (contd.)
 The root of the depth-first spanning tree is an 

articulation point iff it has at least two children.

 dfn(w) is defined as the order that w is 
discovered by DFS.

 Define low(w) as the lowest depth-first number 
that can be reached from w using a path of 
descendants followed by, at most, one back 
edge.

 low(w) = min{dfn(w), min{low(x) | x is a child of 
w}, min{dfn(x) | (w, x) is a back edge}}
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dfn and low Values for the Spanning
Tree
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Biconnected Components (contd.)
 A vertex u is an articulation point iff

 u is either the root of the spanning tree and has two or 
more children, or

 u is not the root and u has a child w such that low(w) ≥ 
dfn(u).

CSIEB0100 Data Structures Graphs 55

One Usage of  Biconnected
Components
 Ad-hoc network
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One Usage of  Biconnected
Components (contd.)
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Minimum Cost Spanning Tree
 A minimum-cost spanning tree is a spanning 

tree of least cost
 Cost: the sum of the costs (weights) of the edges 

in the spanning tree

 Three greedy-method algorithms available to 
obtain a minimum-cost spanning tree
 Kruskal’s algorithm

 Prim’s algorithm

 Sollin’s algorithm
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Minimal Cost Spanning Tree (contd.)

 Constraints
 Must use only edges within the graph.

 Must use exactly n-1 edges.

 May not use edges that produce a cycle.

CSIEB0100 Data Structures Graphs 59

Kruskal’s Algorithm
 Kruskal’s algorithm builds a minimum-cost 

spanning tree T by adding edges to T one at a 
time.

 The algorithm selects the edges for inclusion in T 
in non-decreasing order of their cost.

 An edge is added to T if it does not form a cycle 
with the edges that are already in T.

 Theorem 6.1 (Kruskal’s algorithm is correct)

 Time complexity: O(e log e)
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Stages in Kruskal’s Algorithm
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Stages in Kruskal’s Algorithm (Cont.)
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Stages in Kruskal’s Algorithm (Cont.)
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Prim’s Algorithm
 The set of selected edges forms a tree at all 

times when using Prim’s algorithm
 In Prim’s algorithm, a least-cost edge (u, v) is 

added to T such that T∪{(u, v)} is also a tree. This 
repeats until T contains n-1 edges.

 Time complexity
 O(n2)

 A faster implementation is possible when 
Fibonacci heap is used
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Stages in Prim’s Algorithm
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Stages in Prim’s Algorithm (Cont.)
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Sollin’s Algorithm
 Contrast to Kruskal’s and Prim’s algorithms, 

Sollin’s algorithm selects multiple edges at 
each stage

 At the beginning, all the n vertices form a 
spanning forest

 During each stage, a minimum-cost edge is 
selected for each tree in the forest.
 The edges selected by vertices 0, 1, …, 6 are, 

respectively, (0,5), (1,6), (2,3), (3,2), (4,3), (5,0)
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Sollin’s Algorithm (contd.)
 It’s possible that two trees in the forest to 

select the same edge. Only one should be 
used.

 Also, it’s possible that the graph has multiple 
edges with the same cost. So, two trees may 
select two different edges that connect them 
together. Again, only one should be retained.
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Stages in Sollin’s Algorithm
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Graph and Shortest Paths From Vertex 
0 to All Destinations
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Single Source All Destinations:
Nonnegative Edge Costs
 Let S denote the set of vertices (including v0) 

to which the shortest paths have already been 
found.
 If the next shortest path is to vertex u, then the 

path begins at v0, ends at u, and goes through 
only vertices that are in S.

 The destination of the next path generated must 
be the vertex u that has the minimum distance 
among all vertices not in S.

 Select u to become a member of S.
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Diagram for Example 6.5
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Action of  Shortest Path
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Single Source All Destinations:
Nonnegative Edge Costs (contd.)

 The algorithm is first given by Edsger Dijkstra. 
Therefore, it’s sometimes called Dijkstra 
Algorithm.

 Time complexity
 Adjacency matrix, adjacency list: O(n2)

 Using Fibonacci heap: O(nlogn+e)
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Directed Graphs
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Single Source All Destinations: General 
Weights
 When there are no cycles of negative length, there is 

a shortest path between any two vertices of an n-
vertex graph that has at most n-1 edges on it.
 If the shortest path from v0 to u with at most k, k>1, edges 

has no more than k–1 edges, then 

distk[u]=distk-1[u].

 If the shortest path from v0 to u with at most k, k>1, edges 
has exactly k edges, then it is comprised of a shortest path 
from v0 to some vertex i followed by the edge <i, u>. The 
path from v0 to i has k–1 edges, and its length is distk-1[i]. 
(figure on next slide)
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Single Source All Destinations: 
General Weights (contd.)
 The distance can be computed in recurrence by 

the following:

distk[u] = min{ distk-1[u], min{distk-1[i] +length[i][u]} }

 The algorithm is also referred to as the Bellman-
Ford Algorithm.

 Time complexity:
 Adjacency matrix: O(n3)

 Adjacency list: O(ne)
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Shortest Paths with Negative Edge 
Lengths

CSIEB0100 Data Structures Graphs 79
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Shortest Paths with Negative
Edge Lengths (contd.)

CSIEB0100 Data Structures Graphs 81

0 5

3

All-Pairs Shortest Paths
 Floyd-Warshall algorithm

 Notations
 A-1[i][j]: is just the length[i][j]

 An-1[i][j]: the length of the shortest i-to-j path in G

 Ak[i][j]: the length of the shortest path from i to j going 
through no intermediate vertex of index greater 
than k.
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All-Pairs Shortest Paths (contd.)
 How to determine the value of Ak[i][j]
 Ak[i][j] = min{Ak-1[i][j], Ak-1[i][k] + Ak-1[k][j] }, k ≥ 0

 Time complexity
 O(n3)
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Example for All-Pairs Shortest-Paths 
Problem
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Transitive Closure
 Definition: The transitive closure matrix, denoted 

A+, of a graph G, is a matrix such that A+[i][j] = 1 
if there is a path of length > 0 from i to j; 
otherwise, A+[i][j] = 0.

 Definition: The reflexive transitive closure 
matrix, denoted A*, of a graph G, is a matrix such 
that A*[i][j] = 1 if there is a path of length >= 0
from i to j; otherwise, A*[i][j] = 0.
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Graph G and Its Adjacency Matrix A, 
A+, A*
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Activity-on-Vertex (AOV) Networks
 Definition: Activity-On-Vertex network or AOV

network
 A directed graph G
 the vertices represent tasks or activities
 the edges represent precedence relations between tasks.

 Definition: Vertex i in an AOV network G is a 
predecessor of vertex j iff there is a directed path 
from vertex i to vertex j.
 i is an immediate predecessor of j iff <i, j> is an edge in G.
 If i is a predecessor of j, then j is a successor of i.
 If i is an immediate predecessor of j, then j is an immediate 

successor of i.
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AOV Networks (contd.)

 Definition: A topological order is a linear 
ordering of the vertices of a graph such that, 
for any two vertices i and j, if i is a 
predecessor of j in the network, then i
precedes j in the linear ordering. (i.e. a linear 
order which is consistent with all precedence 
relationships.)
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An AOV Network of  Courses
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An AOV Network (Fig 6.36)
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Action of  Program 6.11(Topological 
Sorting) on an AOV Network(Fig 6.37)
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Using Adjacency List
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Initialized to the in-
degree of vertex
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An AOE Network
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Weight: duration

AOE Network
 A path of the longest length is a critical path

 The earliest time that an event i can occur is the 
length of the longest path from the start vertex 0 
to the vertex i

 The earliest time an event can occur determines 
the earliest start time for all activities represented 
by edges leaving vertex i. (denoted by e(i) ) 

 For every activity ai, let the latest time that an 
activity may start without increasing the project 
duration be l(i).
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AOE Network (contd.)
 All activities for which e(i)=l(i) are called critical 

activities

 For event j :
 Earliest event occurrence time: ee[j]

 Latest event occurrence time: le[j]

 If activity ai is represented by edge <k,l>, we 
can compute: 
 e(i) = ee[k]

 l(i) = le[l] - duration of activity ai
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k

l

ai

AOE Network (contd.)
 Calculation of ee[j] and le[j]

 P(j) is the set of all vertices adjacent to vertex j

 S(j) is the set of all vertices adjacent from vertex j

 Using topological order
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Adjacency Lists for Figure 6.38 (a)
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Adjacency Lists for Figure 6.38 (a)
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Computation of  ee

CSIEB0100 Data Structures

In topological sorting, the 
vertices with in-degree=0 
are placed in stack

Graphs 99
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Critical Path Analysis
 AOE graph
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Note 51

Critical Path Analysis (cont.)
 Earliest completion times: longest path

 computed by topological order

 EE1=0

 EEw=max(EEv+Dv,w)
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Critical Path Analysis (cont.)
 Latest completion times:

 latest time without affecting final completion time

 computed by reverse topological order

 LE10=EE10

 LEv=min(LEw - Dv,w)
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Note 52

Critical Path Analysis (cont.)
 Slack time(w) = LEw  - EEw

 Critical path = zero slack time
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Social Network Analysis (SNA)
 Social network analysis (SNA) is to discover 

patterns underlying social network.

 Replies on networks and graph theory.

 It can be used to analyze the social structure, 
relationships, interactions, … even the roles of 
actors(nodes) in the network.

 SNA has emerged as a key technique in modern 
sociology, economics, communication studies, 
organizational studies, …

 Even in fighting terrorism!
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Note 53

SNA – Centrality Measures
 To analyze which nodes(actors) are more 

important (or most important) in the network.

 Degree centrality – # edges connected to a node

 Closeness centrality – measure how close a 
node is to other nodes.

 Betweenness centrality – measure the fraction of 
paths that connect all pairs and include the node.

 Eigenvector centrality – mearue not only the 
connection degree but also the quality of 
connections.

CSIEB0100 Data Structures Graphs 105

SNA –
Centrality 
Measure

CSIEB0100 Data Structures Graphs 106


