
CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 1

CSIEB0100 Data Structures

Lecture 08 Sorting I :
Internal Sorting

Shiow-yang Wu 吳秀陽
Department of Computer Science
and Information Engineering
National Dong Hwa University

Lecture material is mostly home-grown, partly taken from slides came with
the textbook originally prepared by Professor Jiun-Long Huang of NCTU.

Sorting
 Sorting is one of the most commonly used

operations in computer systems.
 Arrange things in order

 Ranking

 Search for things (?)

 Sorting of n elements is to rearrange elements
into ascending or descending order.
 7, 3, 6, 2, 1 1, 2, 3, 6, 7

CSIEB0100 Data Structures Sorting I – Internal Sorting 2

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 2

Sorting (more specifically)
 A list is a collection of records.

 Each record has one or more fields.

 The fields used to distinguish among records are
known as keys.

 Sorting is to rearrange records in order based on
key values.

 Example: A telephone directory is a list or
records with three fields: name, address and
phone number. Any one of them can be used
as key, depending on the application or need.

CSIEB0100 Data Structures Sorting I – Internal Sorting 3

Why Sorting
 To search for a record with the specified key, we

may examine the record one by one until the one
with the matching key is found. (SeqSeach)

 Sequential search is costly and slow when the list
is large. (average # comparisons = (n+1)/2 =
O(n))

 We can do much better (O(logn)) using binary
search (Charter 1) if the list is sorted.

 It is beneficial to sort and store the list if it is to be
searched repeatedly.

CSIEB0100 Data Structures Sorting I – Internal Sorting 4

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 3

Elements of a List
 Normally, we define element class to represent

records of a list.
class Element
{

public:
int getKey() const {return key;};
void setKey(int k) {key = k;};
…

private:
int key;
// other records
…

}

CSIEB0100 Data Structures Sorting I – Internal Sorting 5

Sequential Search
 Searching records one by one is known as

sequential search.
int SeqSearch (Element *f, const int n, const int k)
/* Search a list f with key values f[1].key, …, f[n].key.
Return i such that f[i].key == k. If there is no such record,
return 0 */
{

int i = n;
f[0].setKey(k);
while (f[i].getKey() != k)

i--;
return i;

}

CSIEB0100 Data Structures Sorting I – Internal Sorting 6

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 4

Sequential Search (contd.)
 The number of comparisons for a record key i is

n–i+1.

 The average number of comparisons for a
successful search is

which is O(n).

 Binary search is much better than sequential
search.

CSIEB0100 Data Structures Sorting I – Internal Sorting 7

Binary Search on Ordered List
 A binary search takes O(log n) time to search an

ordered list with n records. (see Chapter 1)

 However, humans do not search a phone
directory in either sequential or binary way.

 To search for “Wu”, we will look directly at near
the end of the directory.

 This is actually an interpolation scheme.

 Both binary search and interpolation scheme rely
on the target list to be in order.

 Sorting is therefore a very important operation.

CSIEB0100 Data Structures Sorting I – Internal Sorting 8

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 5

Sorting in Applications
 Another example use of order lists is to compare

elements in different lists.

 Sorting is used in many other applications. It is
estimated that 25% of all computing time is spent
on sorting.

 There is no ideal sorting method for all initial
orderings of the target list.

 We therefore need to study different sorting
algorithms and know when to use them.

CSIEB0100 Data Structures Sorting I – Internal Sorting 9

The Sorting Problem
 Given a list of n records (R1, R2, …, Rn), each Ri

has key value Ki.

 The sorting problem is to find a permutation, σ,
such that Kσ(i) ≤ Kσ(i+1). 1 ≤ i ≤ n-1.

 The original list is rearranged into a sorted list
(Rσ(1), Rσ(2), …, Rσ(n)).

 When the list has several key values that are
identical, the permutation, σ, is not unique.

CSIEB0100 Data Structures Sorting I – Internal Sorting 10

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 6

Stable Sort
 We distinguish the permutation, σs, from the

other as the one with the following properties:

 Kσ(i) ≤ Kσ(i+1), 1 ≤ i ≤ n-1

 If i<j and Ki==Kj in the input list, then Ri precedes
Rj in the sorted list. (i.e. keep the order of records
in the original list)

 A sorting method that generates the permutation
σs is stable.

 In most cases, we prefer (or even require) stable
sorting methods.

CSIEB0100 Data Structures Sorting I – Internal Sorting 11

In-Place Sorting
 A sorting algorithm is said to be in-place if it

requires very little additional space besides the
initial space holding the records that are to be
sorted.

 Normally “very little” is taken to mean that for
sorting n elements, no more than O(log n) extra
space is required.

 If memory space is rare (eg. embedded
systems), then in-place sorting algorithms may
be required.

CSIEB0100 Data Structures Sorting I – Internal Sorting 12

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 7

Categories of Sorting Methods
 Internal sorting: Methods used when the list to be

sorted is small enough so that the entire list and
sorting can be carried out in the main memory.
 Insertion sort, quick sort, merge sort, heap sort and

radix sort.

 External sorting: Methods used on larger lists
that don’t fit into main memory.
 Only a portion of data can be loaded into main

memory at a time.

 The entire list must still be sorted.

CSIEB0100 Data Structures Sorting I – Internal Sorting 13

Insert into a Sorted List
 A basic operation of sorting is to insert an

element into a sorted list.
void insert(const Element e, Element* list, int i)
{

while (e.getKey() < list[i].getKey())
{

list[i+1] = list[i]; // Shift larger elements
i--;

}
list[i+1] = e; // put e into the right place

}

CSIEB0100 Data Structures

O(i)

Sorting I – Internal Sorting 14

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 8

Insertion Sort
 Simply insert elements one by one into a sorted

list (initially empty) of already inserted elements.
void InsertSort(Element* list, const int n)
/* Sort list in nondecreasing order of key */
{

list[0].setKey(MININT);
for (int j = 2; j <= n; j++)

insert(list[j], list, j-1);
}

 In the worst case, insert(e, a, i) takes i+1
comparisons. Hence the complexity above.

CSIEB0100 Data Structures Sorting I – Internal Sorting 15

Insertion Sort Illustrated

 n <= 1 already sorted. So, assume n > 1.

 a[0:n-2] is sorted recursively.

 a[n-1] is inserted into the sorted a[0:n-2].

 Complexity is O(n2).

 Usually implemented nonrecursively (see text).

CSIEB0100 Data Structures

a[0] a[n-1]a[n-2]

Sorting I – Internal Sorting 16

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 9

Insert Sort Example 1
 Record Ri is left out of order (LOO) iff

 The insert step is only needed for LOO records.

 Example 7.1: Assume n = 5 and the input key
sequence is 5, 4, 3, 2, 1

CSIEB0100 Data Structures Sorting I – Internal Sorting 17

Insert Sort Example 2
 Example 7.2: Assume n = 5 and the input key

sequence is 2, 3, 4, 5, 1

CSIEB0100 Data Structures Sorting I – Internal Sorting 18

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 10

Insert Sort Variations
 Binary insertion sort:
 Using binary search to reduce the number of

comparisons in an insertion sort.

 The number of records moves remains the same.

 Linked insertion sort:
 Use a linked list rather than array to represent the list

of elements.

 The number of record moves becomes zero because
only the link fields require adjustment.

 Do both at home.

CSIEB0100 Data Structures Sorting I – Internal Sorting 19

Other O(n2) Sorting Algorithms
 Selection sort (next slide)
 Chapter 1

 Bubble sort

 Do both at home.

CSIEB0100 Data Structures Sorting I – Internal Sorting 20

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 11

Selection Sort Illustrated

 n <= 1 already sorted. So, assume n > 1.

 Move the largest element to the right end of the
list.

 Recursively sort the remaining n-1 elements
a[0:n-2].

 Complexity is O(n2).

 Usually implemented nonrecursively.

CSIEB0100 Data Structures

a[0] a[n-1]a[n-2]

Sorting I – Internal Sorting 21

Quick Sort
 Developed by C. A. R. Hoare.

 Has the best average case performance.

 The basic idea:
1. Select a pivot record p from the list.

2. Reorder the list so that for all records to the left of the
p, say l, l.key p.key; and for all records to the right of
the p, say r, r.key > p.key.

3. Recursively Quick Sort the left and right sublists
independently.

 Easily parallelizable due to the independent sort
of the sublists.

CSIEB0100 Data Structures Sorting I – Internal Sorting 22

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 12

Quick Sort Illustrated

CSIEB0100 Data Structures

6 2 8 5 11 10 4 1 9 7 3

Use 6 as the pivot.

2 85 11104 1 973 6

Sort left and right segments recursively.

Sorting I – Internal Sorting 23

Quick Sort Function
void QuickSort(Element *list, const int left, const int right)
{

if (left < right) {
int i = left, j = right + 1, pivot = list[left].getKey();
do {

do i++; while (list[i].getKey() <= pivot);
do j--; while (list[j].getKey() > pivot);
if (i < j) InterChange(list, i, j);

} while (i < j);
InterChange(list, left, j);

QuickSort(list, left, j-1);
QuickSort(list, j+1, right);

}
}

CSIEB0100 Data Structures Sorting I – Internal Sorting 24

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 13

Quick Sort Example
 Example 7.3: The input list has 10 records with

keys (26, 5, 37, 1, 61, 11, 59, 15, 48, 19).

CSIEB0100 Data Structures Sorting I – Internal Sorting 25

Choice of Pivot
 Pivot is leftmost element in list that is to be

sorted.
 When sorting a[6:20], use a[6] as the pivot.

 Textbook implementation does this.

 Randomly select one of the elements to be
sorted as the pivot.

 When sorting a[6:20], generate a random number
r in the range [6, 20]. Use a[r] as the pivot.

CSIEB0100 Data Structures Sorting I – Internal Sorting 26

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 14

Choice of Pivot: Median-of-Three
 From the leftmost, middle and rightmost

elements, select the one with median key as
pivot, i.e. pivot = median{Kl, K(l+r)/2, Kr}.
 When sorting a[6:20], examine a[6], a[13] ((6+20)/2),

and a[20]. Select the element with median (i.e.,
middle) key.

 If a[6].key = 30, a[13].key = 2, and a[20].key = 10,
a[20] becomes the pivot.

 If a[6].key = 3, a[13].key = 2, and a[20].key = 10, a[6]
becomes the pivot.

 If a[6].key = 30, a[13].key = 25, and a[20].key = 10,
a[13] becomes the pivot.

CSIEB0100 Data Structures Sorting I – Internal Sorting 27

Analysis of Quick Sort
 In QuickSort(), list[n+1] has been set to have a

key at least as large as the remaining keys.
 QuickSort complexity
 The worst case is O(n2)
 If each time a record is correctly positioned, the left

and right sublists are of the same size. Assume T(n)
is the time taken to sort a list of size n:
T(n) ≤ cn + 2T(n/2), for some constant c
≤ cn + 2(cn/2 +2T(n/4))
≤ 2cn + 4T(n/4)
…
≤ cn log2n + T(1) = O(n log n)

 Quick sort is unstable. (why?)
CSIEB0100 Data Structures Sorting I – Internal Sorting 28

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 15

Average Complexity of Quick Sort

 Lemma 7.1: Let Tavg(n) be the expected time for
function QuickSort to sort a list with n records.
Then there exists a constant k such that Tavg(n) ≤
kn logen for n ≥ 2.

 This means that the average time complexity of
Quick Sort is O(n log n).

 The lemma can be proved by induction. (read
details in the textbook)

CSIEB0100 Data Structures Sorting I – Internal Sorting 29

Space Complexity of Quick Sort
 While insertion sort only needs additional space for a record,

quick sort needs stack space for recursion.

 If the lists split evenly (best case), the maximum recursion
depth would be log n and the stack space is of O(log n).

 The worst case is when the lists split into a left sublist of size
n–1 and a right sublist of size 0 at each level of recursion. In
this case, the recursion depth is n, the stack space of O(n).

 The worst case stack space can be reduced by a factor of 4
since right sublists of size less than 2 need not be stacked.

 Asymptotic reduction in stack space can be achieved by
sorting smaller sublists first. In this case the additional stack
space is at most O(log n).

CSIEB0100 Data Structures Sorting I – Internal Sorting 30

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 16

C++ STL sort Function
 The performance of Quick Sort can be improved

by stopping recursion when segment size is
small (say <= 15) and sort these small segments
using insertion sort.

 The C++ STL sort function uses Quick Sort but
 Switch to heap sort when number of subdivisions

exceeds some constant times log2n.

 Switch to insertion sort when segment size becomes
small.

CSIEB0100 Data Structures Sorting I – Internal Sorting 31

How Fast can We Sort ?
 So far both insertion sorting and quick sorting

have worst-case complexity of O(n2).

 If we restrict the question to sorting algorithms in
which the only operations permitted on keys are
comparisons and interchanges, then O(n log n) is
the best possible time.

 This can be shown by using a tree that describes
the sorting process. Each vertex of the tree
represents a key comparison, and the branches
indicate the result.

 Such a tree is called decision tree.

CSIEB0100 Data Structures Sorting I – Internal Sorting 32

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 17

Decision Tree for Insertion Sort
 Apply insertion sort on R1, R2, R3

CSIEB0100 Data Structures Sorting I – Internal Sorting 33

Decision Tree Analysis of Sorting
 Theorem 7.1: Any decision tree that sorts n

distinct elements has a height of at least
log2(n!)+1
 When sorting n elements, there are n! different

possible results (permutations).

 Thus, every decision tree for sorting must have at
least n! leaves.

 A decision tree is also a binary tree, which can have at
most 2k-1 leaves if its height is k = log2(2k-1)+1.

 The height must be at least log2(n!)+1.

CSIEB0100 Data Structures Sorting I – Internal Sorting 34

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 18

Decision Tree Analysis of Sorting
 Corollary: Any algorithm that sorts only by

comparisons must have a worst-case computing
time of Ω(n log n).
 By Theorem 7.1, there is a path of length log2(n!)

 n!=n(n-1)…(2)(1) ≥ (n/2)n/2

 log2(n!) ≥ (n/2)log2(n/2) = Ω(n log n)

CSIEB0100 Data Structures Sorting I – Internal Sorting 35

Merge Sort
 Partition the n > 1 elements into two smaller

instances.
 First ceil(n/2) elements define one of the smaller

instances; remaining floor(n/2) elements define
the second smaller instance.

 Each of the two smaller instances is sorted
recursively.

 The sorted smaller instances are combined using
a process called merge.

 Complexity is O(n log n).
 Usually implemented nonrecursively.

CSIEB0100 Data Structures Sorting I – Internal Sorting 36

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 19

Merging Two Sorted Lists
Merge two lists stored in initList[l:m] and iniList[m+1:n] and

produce the result in mergedList[l:n].
void merge(Element *initList, Element *mergedList,

const int l, const int m, const int n)
{
for (int i1 = l, i2 = m+1, iResult = l; i1 <= m && i2 <= n; iResult++)
if (initList[i1].getKey() <= initList[i2].getKey()) {
mergedList[iResult] = initList[i1];
i1++;

}
else {
mergedList[iResult] = initList[i2];
i2++;

}
if (i1 > m) // copy remaining elements of the second list
for (int t = i2; t <= n; t++) mergedList[iResult+t-i2] = initList[t];

else // copy remaining elements of the first list
for (int t = i1; t <= m; t++) mergedList[iResult+t-i1] = initList[t];

}

CSIEB0100 Data Structures

O(n – l + 1)

Sorting I – Internal Sorting 37

Merge Example
 Merge two sorted lists (1, 5, 26, 77) and (11, 15,

59, 61)

CSIEB0100 Data Structures Sorting I – Internal Sorting 38

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 20

Merge Example

CSIEB0100 Data Structures Sorting I – Internal Sorting 39

Analysis of Simple Merging
 If an array is used, additional space for n–l+1

records is needed.
 n-l+1 = the number of elements to be merged

 Time complexity of SimpleMerge is linear.

 If linked list is used instead, then additional space
for n–l+1 links is needed.

CSIEB0100 Data Structures Sorting I – Internal Sorting 40

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 21

Iterative Merge Sort
 Treat the input as n sorted lists, each of length 1.

 Lists are merged by pairs to obtain n/2 lists, each
of size 2 (if n is odd, the one list is of length 1).

 The n/2 lists are then merged by pairs, and so on
until we are left with only one list.

CSIEB0100 Data Structures Sorting I – Internal Sorting 41

Merge Tree
 Input list = (26, 5, 77, 1, 61, 11, 59, 15, 48, 19)

CSIEB0100 Data Structures Sorting I – Internal Sorting 42

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 22

Merge Pass Function
void MergePass(Element *initList, Element *resultList,
const int n, const int l)
/* One pass of merge sort. Adjacent pairs of sublists of
length l are merged from initList to resultList. n is the
number of records in initList */
{
int i;
for (i = 1; i <= n - 2*l + 1; i += 2*l)
merge(initList, resultList, i, i+l-1, i+2*l-1);

// merge remaining list of length < 2*l
if ((i+l-1) < n) // merge remaining two sublists
merge(initList, resultList, i, i+l-1, n);

else // copy the remaining one sublist
for (int t = i; t <= n; t++)
resultList[t] = initList[t];

}

CSIEB0100 Data Structures Sorting I – Internal Sorting 43

Merge Pass Illustrated
 Each pass merges successive pairs of lists of

length l from start (1) to end (n).

CSIEB0100 Data Structures Sorting I – Internal Sorting 44

1+l -1
1

1+l 1+2l -1
n

l

 It’s easy to understand the loop index setting by
starting from the lowest index(1), extending it to i
and taking care of the end(n). (figure it out!!)

l

n - 2l + 1

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 23

Iterative Merge Sort
void MergeSort(Element *list, const int n)
{
Element *tempList = new Element[n+1];
// l is the length of the sublist
for (int l = 1; l < n; l *= 2) {
MergePass(list, tempList, n, l);
l *= 2;
MergePass(tempList, list, n, l);

}
delete [] tempList;

}

CSIEB0100 Data Structures Sorting I – Internal Sorting 45

Analysis of Iterative MergeSort
 Total of log2n passes are made over the data.

Each pass of merge sort takes O(n) time.

 The total of computing time is O(n log n).

 MergeSort is stable. (Why ?)

CSIEB0100 Data Structures Sorting I – Internal Sorting 46

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 24

Recursive Merge Sort
 Recursive merge sort divides the list to be sorted

into two roughly equal parts:
 the left sublist [left : (left+right)/2]

 the right sublist [(left+right)/2 +1 : right]

 These sublists are sorted recursively, and the
sorted sublists are merged.

 To avoid copying, the use of a linked list (integer
instead of real link) for sublist is desirable.

 The recursive merge sort is stable.

CSIEB0100 Data Structures Sorting I – Internal Sorting 47

Sublist Partitioning for Recursive
Merge Sort

CSIEB0100 Data Structures Sorting I – Internal Sorting 48

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 25

Merging for Recursive Merge Sort

CSIEB0100 Data Structures Sorting I – Internal Sorting 49

Merging Two Linked Lists
int ListMerge(Element *list, const int start1, const int start2)
// Sorted linked lists indexed by start1 and start2 are merged. The index of
// the sorted list is returned. Integer links are used.
{
int i1, i2, iResult = 0;
for (i1 = start1, i2 = start2; i1 && i2;)
if (list[i1].key <= list[i2].key) {
list[iResult].link = i1;
iResult = i1; i1 = list[i1].link;

}
else {
list[iResult].link = i2;
iResult = i2; i2 = list[i2].link;

}
// chain the remaining list of elements
if (i1 == 0) list[iResult].link = i2;
else list[iResult].link = i1;
return list[0].link;

}

CSIEB0100 Data Structures Sorting I – Internal Sorting 50

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 26

Recursive Merge Sort
int rMergeSort(Element *list, const int left, const
int right)
// List (list[left],... ,list[right]) is to be sorted.
// The link field in each record that is initially 0.
// Return the index of the 1st element of sorted list.
// list[0] is for intermediate results in ListMerge.
{

if (left >= right) return left;
int mid = (left + right)/2;
return ListMerge(list, rMergeSort(list, left, mid),

rMergeSort(list, mid+1, right));
}

CSIEB0100 Data Structures

O(n log n)

Sorting I – Internal Sorting 51

Natural Merge Sort
 Natural merge sort takes advantage of the

prevailing order within the list before performing
merge sort.

 It runs an initial pass over the data to determine
the sublists of records that are in order.

 Then it uses the sublists for the merge sort.

 It is natural because we do not artificially break
the sublists that are already in order.

CSIEB0100 Data Structures Sorting I – Internal Sorting 52

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 27

Natural Merge Sort Example
 With input list (26, 5, 77, 1, 61, 11, 59, 15, 48, 19)

CSIEB0100 Data Structures Sorting I – Internal Sorting 53

Heap Sort
 Merge sort needs additional storage space

proportional to the number of records in the file
being sorted, even though its computing time is
O(n log n).

 O(1) space merge only needs O(1) space but the
sorting algorithm is much slower.

 We will see that heap sort only requires a fixed
amount of additional storage and achieves worst
case and average computing time O(n log n).

 Heap sort uses the max-heap structure.
 Heap sort is unstable.

CSIEB0100 Data Structures Sorting I – Internal Sorting 54

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 28

Heap Sort (contd.)
 The n records are first inserted into an initially

empty max heap.

 Next, the records are extracted from the max
heap one at a time to form the sorted list.

 A special function adjust() is used to create the
initial heap faster than from an empty max heap.

CSIEB0100 Data Structures Sorting I – Internal Sorting 55

Adjusting Max Heap
void adjust(Element *tree, const int root, const int n)
// Adjust the binary tree with root root into heap.
// The left and right subtrees already satisfy the heap property.
// No node has index greater than n.
{

Element e = tree[root];
int j, k = e.getKey();
for (j = 2*root; j <= n; j *= 2)
{ // first find max of left and right child

if (j < n) if (tree[j].getKey() < tree[j+1].getKey()) j++;
// compare max child with k. If k is max, then done
if (k >= tree[j].getKey()) break;
tree[j/2] = tree[j]; // move jth record up the tree

}
tree[j/2] = e;

}

CSIEB0100 Data Structures Sorting I – Internal Sorting 56

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 29

Heap Sort
void HeapSort(Element *list, const int n)
/* The list list = (list[1], ... , list[n]) is sorted
into nondecreasing order of the field key. */
{

for (int i = n/2; i >= 1; i--) // heapify, n/2 is the
adjust(list, i, n); // parent of the last

for (int i = n-1; i >= 1; i--) // sort
{
Element t = list[i+1]; // swap the first and last
list[i+1] = list[1];
list[1] = t;
adjust(list, 1, i); // recreate heap

}
}

CSIEB0100 Data Structures Sorting I – Internal Sorting 57

Analysis of Heap Sort
 Time complexity of the first for loop

 In the next for loop, adjust is called n - 1 times
with max tree depth log2(n+1). The swap is
done n - 1 times.

 Therefore, the total complexity is O(n log n).

 The only additional space needed is the one
element for swapping.

CSIEB0100 Data Structures Sorting I – Internal Sorting 58

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 30

Heap Sort Example 1
 We represent the input list (26, 5, 77, 1, 61, 11,

59, 15, 48, 19) as a binary tree. The first for loop
turns it into the initial max heap.

CSIEB0100 Data Structures Sorting I – Internal Sorting 59

Heap Sort Example 2
 The first two passes of the sort phase

CSIEB0100 Data Structures Sorting I – Internal Sorting 60

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 31

Summary of Comparison Sort

CSIEB0100 Data Structures Sorting I – Internal Sorting 61

Sorting on Several Keys
 A list of records are said to be sorted with respect

to the keys K1, K2, …, Kr iff for every pair of
records i and j, i < j and (K1

i, K2
i, …, Kr

i) ≤ (K1
j,

K2
j, …, Kr

j).

 The r-tuple (x1, x2, …, xr) is less than or equal to
the r-tuple (y1, y2, …, yr) iff either xi = yi, 1 ≤ i ≤ j,
and xj+1 < yj+1 for some j < r or xi = yi, 1 ≤ i ≤ r.

 Example: sorting a deck of cards: suite and face
value (i.e. two keys).
 K1 : Club < Diamond < Heart < Spade

 K2 : 2 < 3 < … < 10 < J < Q < K < A

CSIEB0100 Data Structures Sorting I – Internal Sorting 62

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 32

Sorting Several Keys
 Two popular ways to sort on multiple keys.
 Most-Significant-Digit-first (MSD) sort: Sort on the

most significant key K1 into multiple piles (each having
the same value for K1). For each pile, sort on the
second significant key K2, and so on. Then piles are
combined.

 Least-Significant-Digit-first (LSD) sort: The other way
is to sort on the least significant digit first, and so on.
(Not exactly the same way as MSD. Figure it out!)

 LSD is simpler since the piles and subpiles do
not need to be sorted independently. (Why?)

CSIEB0100 Data Structures Sorting I – Internal Sorting 63

Sorting Several Keys (contd.)
 LSD and MSD only define the order in which the

keys are to be sorted.

 They do not specify how each key is sorted.

 LSD and MSD can be used even when there is
only one key.
 E.g., if the keys are numeric, then each decimal digit

may be regarded as a subkey. => Radix sort.

CSIEB0100 Data Structures Sorting I – Internal Sorting 64

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 33

Radix Sort
 In Radix Sort, we decompose the sort key using

some radix r.
 In a Radix-r Sort, the number of bins needed is r.

 Assume the records R1, R2, …, Rn to be sorted
based on a radix of r. Each key has d digits in the
range of 0 to r-1. (Thus, r bins.)

CSIEB0100 Data Structures Sorting I – Internal Sorting 65

Radix Sort (contd.)
 Assume each record has a link field.

 Then the records in the same bin are linked
together into a chain:
 f[i], 0 ≤ i < r (the pointer to the first record in bin i)

 e[i], (the pointer to the end record in bin i)

 The chain will operate as a queue.

 Each record object is assumed to have a public
attribute array key[d], 0 ≤ key[i] < r, 0 ≤ i < d. (the keys)

CSIEB0100 Data Structures Sorting I – Internal Sorting 66

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 34

RadixSort Function
void RadixSort(Element *list, const int d, const int n)
// Sort list=(list[1],...,list[n]) on the keys key[0],... ,key[d-1] (d digits)
// The range of each key is 0<=key[i]<radix. radix is a constant.
// Sorting within a key is done using a bin sort.
{

int i, j, e[radix], f[radix]; // queue pointers
for (i = 1; i < n; i++) list[i].link = i+1; // link into a chain
list[n].link = 0; int current = 1; // starting at current element
for (i = d-1; i >= 0; i--) // sort on key key[i]
{
for (j = 0; j < radix; j++) f[j] = 0; // initialize bins to empty
for (; current; current = list[current].link) {
// put all records into queues
int k = list[current].key[i]; // ith key of the current element
if (f[k] == 0) f[k] = current; // empty queue, current is the first
else list[e[k]].link = current; // otherwise, link current to the end
e[k] = current; // adjust the end pointer

}

CSIEB0100 Data Structures Sorting I – Internal Sorting 67

RadixSort Function (contd.)
for (j = 0; f[j] == 0; j++); // find first nonempty queue
current = f[j]; int last = e[j];

for (int k = j+1; k < radix; k++) {
// concatenate remaining nonempty queues into new list
if (f[k]) {
list[last].link = f[k];
last = e[k];

}
}
list[last].link = 0;
// print the sorted keys after each pass
for (int q = current; q; q= list[q].link) {
for (int p = 0; p < d; p++)
cout << list[q].key[p] << " , ";

cout << endl;
}

}
}

CSIEB0100 Data Structures Sorting I – Internal Sorting 68

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 35

RadixSort Example

CSIEB0100 Data Structures Sorting I – Internal Sorting 69

Initial input

RadixSort Example (contd.)

CSIEB0100 Data Structures Sorting I – Internal Sorting 70

Second path

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 36

RadixSort Example (contd.)

CSIEB0100 Data Structures Sorting I – Internal Sorting 71

Third path

Summary of Internal Sorting
 No one method is best for all conditions.
 Insertion sort is good when the list is already partially

ordered. And it is best for small n (number of records).

 Merge sort has the best worst-case behavior but
needs more storage than heap sort.

 Quick sort has the best average behavior, but its
worst-case behavior is O(n2).

 The behavior of radix sort depends on the size of the
keys and the choice of r.

CSIEB0100 Data Structures Sorting I – Internal Sorting 72

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 37

Average Time Comparison

CSIEB0100 Data Structures

0

1

2

3

4

5

0 1000 2000 3000 4000 5000

Insertion Sort

Heap Sort
Merge Sort

Quick Sort

500

Sorting I – Internal Sorting 73

Remarks (Wiki)
 Sorting in-place is possible but is very

complicated, and will offer little performance
gains in practice, even if the algorithm runs in
O(n log n) time.

 In these cases, algorithms like heapsort usually
offer comparable speed, and are far less
complex.

CSIEB0100 Data Structures Sorting I – Internal Sorting 74

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 38

Sort with Linked Lists
 Apart from radix and recursive merge sort, all sorting

methods above require excessive data movement.
 When the amount of data is large, data movement

tends to slow down the process.
 It is desirable to minimize the data movement.
 Methods such as insertion sort or merge sort can

work with linked lists rather than sequential lists.
Instead of movement, link field is used to reflect the
change in the position of records in the list.

 Perform linked-list sort and then physically rearrange
the records according to the order specified in the
list.

CSIEB0100 Data Structures Sorting I – Internal Sorting 75

Table Sort
 The list-sort technique is not well suited for quick

sort and heap sort.

 One can maintain an auxiliary table, t, with one
entry per record. The entries serve as an indirect
reference to the records.

 Initially, t[i] = i. When interchanges are required,
only the table entries are exchanged.

 It may be necessary to physically rearrange the
records according to the permutation specified by
t sometimes.

CSIEB0100 Data Structures Sorting I – Internal Sorting 76

CSIEB0100 Data Structures Lecture 8: Sorting I – Internal Sorting

Note 39

Table Sort (contd.)
 The function to rearrange records corresponding

to the permutation t[1], t[2], …, t[n] can be
considered as an application of a theorem from
mathematics:
 Every permutation is made up of disjoint cycles.

 The cycle for any element i is made up of i, t[i], t2[i], …,
tk[i], where tj[i]=t[tj-1[i]], t0[i]=i, tk[i]=i.

 Details in the textbook.

CSIEB0100 Data Structures Sorting I – Internal Sorting 77

