
CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 1

CSIEB0100 Data Structures

Lecture 09 Sorting II –
External Sorting

Shiow-yang Wu 吳秀陽
Department of Computer Science
and Information Engineering
National Dong Hwa University

Lecture material is mostly home-grown, partly taken from slides came with
the textbook originally prepared by Professor Jiun-Long Huang of NCTU.

External Sorting
 Some lists are too large to fit in the memory of a

computer. So internal sorting is not possible.

 Some records are stored in the disk. System
retrieves a block of data from a disk at a time. A
block contains multiple records.

 The most popular method for sorting on external
storage devices is merge sort.
 Segments of the input list are sorted.

 Sorted segments (called runs) are written onto
external storage.

 Runs are merged until only one run is left.

CSIEB0100 Data Structures Sorting II – External Sorting 2

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 2

External Sorting Example (7.12)
 Consider a computer which is capable of sorting 750

records is used to sort 4500 records.
 6 runs are generated with each run sorting 750

records.
 Allocate three 250-record blocks of internal memory

for performing merging runs. Two for input runs and
the last one is for output.

 Three factors contributing to the read/write time of
disk:
 Seek time: move read/write head to the right cylinder.
 Latency time: time until the right sector is under the head.
 Transmission time: time to transmit data to/from disk

CSIEB0100 Data Structures Sorting II – External Sorting 3

Example 7.12 (contd.)

CSIEB0100 Data Structures Sorting II – External Sorting 4

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 3

Example 7.12 (contd.)
 tIO = ts + tl +trw

 ts = maximum seek time

 tl = maximum latency time

 trw = time to read/write on block of 250 records

 tIS = time to internal sort 750 records

 ntm = time to merge n records from input buffers
to the output buffer

CSIEB0100 Data Structures Sorting II – External Sorting 5

Example 7.12 (contd.)
 Computing time of the external sort

CSIEB0100 Data Structures Sorting II – External Sorting 6

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 4

K-Way Merging
 To merge m runs via 2-way merging will need

log2m + 1 passes where m is the number of
runs

 With k-way merge on m runs, we need logkm
passes over the data.

 If we use higher order merge, the number of
passes as well as input/output time would be
reduced.

CSIEB0100 Data Structures Sorting II – External Sorting 7

K-Way Merging
 But is it always true that the higher order of

merging, the less computing time we will have?
 Not necessary!

 k-1 comparisons are needed to determine the next
output.

 The number of key comparisons is n(k-1)logkm

 If loser tree is used to reduce the number of
comparisons, we can achieve O(n log2m) complexity

 The data block size reduced as k increases. Reduced
block size implies the increase of data passes (seek
and latency times)

CSIEB0100 Data Structures Sorting II – External Sorting 8

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 5

Buffer Handling for Parallel Operation
 To achieve better performance, multiple input

buffers and two output buffers are used to avoid
idle time.

 Evenly distributing input buffers among all runs
may still have idle time problem. Buffers should
be dynamically assigned to whoever needs to
retrieve more data to avoid halting the computing
process.

 We should take advantage of task overlapping
and keep computing process busy and avoid idle
time.

CSIEB0100 Data Structures Sorting II – External Sorting 9

Optimal Merging of Runs
 The runs may not be of the same size. Since the merge time

is linear to the run size, we optimize the merging of runs.

CSIEB0100 Data Structures Sorting II – External Sorting 10

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 6

Optimal Merging of Runs (contd.)
 The cost of a k-way merge of n runs of length qi,

1≤i≤n, is minimized by using a merge tree of
degree k that has minimum weighted external
path length.

 A good solution to the problem above has been
given by D. Huffman. (next slide)

CSIEB0100 Data Structures Sorting II – External Sorting 11

Huffman Code
 Assume we want to obtain an optimal set of codes

for messages M1, M2, …, Mn+1. Each code is a binary
string that will be used for transmission of the
corresponding message.

 At receiving end, a decode tree is used to decode
the binary string and get back the message.

 A zero is interpreted as a left branch and a one as a
right branch. These codes are called Huffman
codes.

 The cost of decoding a code word is proportional to
the number of bits in the code. This number is equal
to the distance of the corresponding external node
from the root node.

CSIEB0100 Data Structures Sorting II – External Sorting 12

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 7

Huffman Code (contd.)
 If qi is the relative frequency with which message

Mi will be transmitted, then the expected
decoding time is

where di is the distance of the external node for
message Mi from the root node.

CSIEB0100 Data Structures Sorting II – External Sorting 13

Huffman Code (contd.)
 The expected decoding time is minimized by

choosing code words resulting in a decode tree
with minimal weighted external path length.

CSIEB0100 Data Structures Sorting II – External Sorting 14

Code Message

1 M4

01 M3

001 M2

000 M1

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 8

BinaryTree Class
class BinaryTreeNode {
friend BinaryTree;
private:

int weight;
BinaryTreeNode *LeftChild, *RightChild;

};

class BinaryTree {
public:

int weight();
BinaryTree(BinaryTree bt1, BinaryTree bt2) {

root->LeftChild = bt1.root;
root->RightChild = bt2.root;
root->weight = bt1.root->weight + bt2.root->weight;

};
private:

BinaryTreeNode *root;
}

CSIEB0100 Data Structures Sorting II – External Sorting 15

Huffman Function
void huffman(List<BinaryTree> l)
// l is a list of single node binary trees
{

int n = l.Size(); // number of binary trees in l
for (int i = 0; i < n-1 ; i++) { // loop n-1 times

BinaryTree first = l.DeleteMinWeight();
BinaryTree second = l.DeleteMinWeight();
BinaryTree *bt = new BinaryTree(first, second);
l.Insert(bt);

}
}

CSIEB0100 Data Structures Sorting II – External Sorting 16

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 9

Huffman Code Example
 Input text:

ABBABCCDDE…

 Scan the text to calculate the number of
appearances of each character

A: 2, B: 3, C: 5, D: 7, E: 9, F: 13

 Build Huffman tree

 Encode text

1000 1001 1001 …

CSIEB0100 Data Structures Sorting II – External Sorting 17

Huffman Code Example
{(A: 2), (B: 3), (C: 5), (D: 7), (E: 9), (F: 13)}

{(A, B: 5), (C: 5), (D: 7), (E: 9), (F: 13)}

{(D: 7), (E: 9), (A,B,C: 10), (F: 13)}

CSIEB0100 Data Structures Sorting II – External Sorting 18

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 10

Huffman Code Example
{(D: 7), (E: 9), (A,B,C: 10), (F: 13)}

{(A,B,C: 10), (F: 13), (D, E: 16)}

CSIEB0100 Data Structures Sorting II – External Sorting 19

{(D, E: 16), (A,B,C,F: 23)}

Huffman Code Example
{(D, E: 16), (A,B,C,F: 23)}

CSIEB0100 Data Structures Sorting II – External Sorting 20

{(A, B, C, D, E, F: 39)}

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 11

Huffman Code Example
 The code table

CSIEB0100 Data Structures Sorting II – External Sorting 21

Symbol Code

A 1000

B 1001

C 101

D 00

E 01

F 11

A B

C

D E F

Optimal Merging with Huffman Tree

 We can use Huffman Code Method to get the
optimal merging order.

 Consider the run length qi as the weight of run Ri.

 Combine all runs into a list.

 Call the Huffman function (p.16)

 The final tree is the optimal merge pattern.

 Try to devise an example and test it.

 It is more efficient to use a min-heap instead of a
list. (how?)

CSIEB0100 Data Structures Sorting II – External Sorting 22

CSIEB0100 Data Structures Lecture 9: Sorting II – External Sorting

Note 12

Complexity Analysis
 In each iteration, two DeleMin and one Insert is

performed. The total time is

T(n) = O(n-1) max(O(DelMin), O(Insert))

 If list is not sorted, then O(DelMin)=O(n),
O(Insert)=1, so T(n) = (n-1) n = O(n2).

 If list is sorted in an array, then O(DelMin)=O(1),
O(Insert)=O(n), so T(n) = (n-1) n = O(n2).

 If list is organized as a min-heap, then
O(DelMin)=O(1), O(Insert)=O(logn), so T(n) = (n-
1) logn = O(nlogn).

CSIEB0100 Data Structures Sorting II – External Sorting 23

