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External Sorting
 Some lists are too large to fit in the memory of a 

computer. So internal sorting is not possible.

 Some records are stored in the disk. System 
retrieves a block of data from a disk at a time.  A 
block contains multiple records.

 The most popular method for sorting on external 
storage devices is merge sort.
 Segments of the input list are sorted.

 Sorted segments (called runs) are written onto 
external storage.

 Runs are merged until only one run is left.
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External Sorting Example (7.12)
 Consider a computer which is capable of sorting 750 

records is used to sort 4500 records.
 6 runs are generated with each run sorting 750 

records.
 Allocate three 250-record blocks of internal memory 

for performing merging runs. Two for input runs and 
the last one is for output.

 Three factors contributing to the read/write time of 
disk:
 Seek time: move read/write head to the right cylinder.
 Latency time: time until the right sector is under the head.
 Transmission time: time to transmit data to/from disk
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Example 7.12 (contd.)
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Example 7.12 (contd.)
 tIO = ts + tl +trw

 ts = maximum seek time

 tl = maximum latency time

 trw = time to read/write on block of 250 records

 tIS = time to internal sort 750 records

 ntm = time to merge n records from input buffers 
to the output buffer
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Example 7.12 (contd.)
 Computing time of the external sort 
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K-Way Merging
 To merge m runs via 2-way merging will need 

log2m + 1 passes where m is the number of 
runs

 With k-way merge on m runs, we need logkm
passes over the data.

 If we use higher order merge, the number of 
passes as well as input/output time would be 
reduced.
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K-Way Merging
 But is it always true that the higher order of 

merging, the less computing time we will have?
 Not necessary!

 k-1 comparisons are needed to determine the next 
output.

 The number of key comparisons is n(k-1)logkm

 If loser tree is used to reduce the number of 
comparisons, we can achieve O(n log2m) complexity

 The data block size reduced as k increases. Reduced 
block size implies the increase of data passes (seek 
and latency times)
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Buffer Handling for Parallel Operation
 To achieve better performance, multiple input 

buffers and two output buffers are used to avoid 
idle time.

 Evenly distributing input buffers among all runs 
may still have idle time problem. Buffers should 
be dynamically assigned to whoever needs to 
retrieve more data to avoid halting the computing 
process.

 We should take advantage of task overlapping 
and keep computing process busy and avoid idle 
time.
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Optimal Merging of  Runs
 The runs may not be of the same size.  Since the merge time 

is linear to the run size, we optimize the merging of runs.
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Optimal Merging of  Runs (contd.)
 The cost of a k-way merge of n runs of length qi, 

1≤i≤n, is minimized by using a merge tree of 
degree k that has minimum weighted external 
path length.

 A good solution to the problem above has been 
given by D. Huffman. (next slide)
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Huffman Code
 Assume we want to obtain an optimal set of codes 

for messages M1, M2, …, Mn+1. Each code is a binary 
string that will be used for transmission of the 
corresponding message.

 At receiving end, a decode tree is used to decode 
the binary string and get back the message.

 A zero is interpreted as a left branch and a one as a 
right branch. These codes are called Huffman 
codes.

 The cost of decoding a code word is proportional to 
the number of bits in the code. This number is equal 
to the distance of the corresponding external node 
from the root node.
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Huffman Code (contd.)
 If qi is the relative frequency with which message 

Mi will be transmitted, then the expected 
decoding time is

where di is the distance of the external node for 
message Mi from the root node.
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Huffman Code (contd.)
 The expected decoding time is minimized by 

choosing code words resulting in a decode tree 
with minimal weighted external path length.
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Code Message

1 M4

01 M3

001 M2

000 M1
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BinaryTree Class
class BinaryTreeNode {
friend BinaryTree;
private:

int weight;
BinaryTreeNode *LeftChild, *RightChild;

};

class BinaryTree {
public:

int weight();
BinaryTree(BinaryTree bt1, BinaryTree bt2) {

root->LeftChild = bt1.root;
root->RightChild = bt2.root;
root->weight = bt1.root->weight + bt2.root->weight;

};
private:

BinaryTreeNode *root;
}
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Huffman Function
void huffman(List<BinaryTree> l)
// l is a list of single node binary trees
{

int n = l.Size(); // number of binary trees in l
for (int i = 0; i < n-1 ; i++) { // loop n-1 times

BinaryTree first = l.DeleteMinWeight();
BinaryTree second = l.DeleteMinWeight();
BinaryTree *bt = new BinaryTree(first, second);
l.Insert(bt);

}
}
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Huffman Code Example
 Input text:

ABBABCCDDE…

 Scan the text to calculate the number of 
appearances of each character

A: 2, B: 3, C: 5, D: 7, E: 9, F: 13

 Build Huffman tree

 Encode text

1000 1001 1001 …
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Huffman Code Example
{(A: 2), (B: 3), (C: 5), (D: 7), (E: 9), (F: 13)}

{(A, B: 5), (C: 5), (D: 7), (E: 9), (F: 13)}

{(D: 7), (E: 9), (A,B,C: 10), (F: 13)}
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Huffman Code Example
{(D: 7), (E: 9), (A,B,C: 10), (F: 13)}

{(A,B,C: 10), (F: 13), (D, E: 16)}
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{(D, E: 16), (A,B,C,F: 23)}

Huffman Code Example
{(D, E: 16), (A,B,C,F: 23)}
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{(A, B, C, D, E, F: 39)}
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Huffman Code Example
 The code table
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Symbol Code

A 1000

B 1001

C 101

D 00

E 01

F 11

A B

C

D E F

Optimal Merging with Huffman Tree

 We can use Huffman Code Method to get the 
optimal merging order.

 Consider the run length qi as the weight of run Ri.

 Combine all runs into a list.

 Call the Huffman function (p.16)

 The final tree is the optimal merge pattern.

 Try to devise an example and test it.

 It is more efficient to use a min-heap instead of a 
list. (how?)
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Complexity Analysis
 In each iteration, two DeleMin and one Insert is 

performed. The total time is 

T(n) = O(n-1)  max(O(DelMin), O(Insert))

 If list is not sorted, then O(DelMin)=O(n), 
O(Insert)=1, so T(n) = (n-1)  n = O(n2).

 If list is sorted in an array, then O(DelMin)=O(1), 
O(Insert)=O(n), so T(n) = (n-1)  n = O(n2).

 If list is organized as a min-heap, then 
O(DelMin)=O(1), O(Insert)=O(logn), so T(n) = (n-
1)  logn = O(nlogn).
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