
 1

CSIEB0100 Data Structures, Fall 2014
Midterm Exam

ID: __________________ Dept:_________________ Name: _______________

1. (5%) Given an algorithm that solves a problem in three phases. The first phase

takes O(100n) to input the data of size n. The second phase takes O(n log n) to

process the data. The third phase takes O(log n) to output the data.

(a) What is the complexity of the algorithm?

(b) If the data size is 10, which phase is most likely to take the longest time to

execute?

2. (10%) For each of the complexity expression below, determine its overall

complexity. For example, given expression 2n + 3n, the overall complexity

should be O(n).

(a) 2n2 – 3n

(b) n! + 2n

(c) 5n2 + n log n

(d) n1.001 + n log n

(e) 5n3 – 3n2 log n + 2n

 2

3. (15%) Given an array of integers A[0,…,n-1], write C++ functions to compute

the prefix sum of A in the following ways.

(a) Output the prefix sum to a new array B. In other words, B[0]=A[0],

B[1]=A[0]+A[1], B[2]= A[0]+A[1]+A[2], etc.

(b) Save the prefix sum in A itself.

 3

4. (15%) A triple-ended queue is similar to an ordinary queue, except that it allows

you to insert and delete on the front, rear and middle.

(a) Design an ADT to represent a triple-ended queue.

(b) Write a C++ class to implement the triple-ended queue ADT.

 4

5. (30%) Extend the template class List discussed in the class with the following

functions. You don’t need to write out the entire class. Just the definitions of

the new public functions.

(a) int length(); // Return the length (number of elements) of the list.

(b) void insertNth(int, Type); // Insert an element at the nth position.

Remember to check for valid n (0≦n≦length).

(c) void deleteAll(Type); // Delete ALL occurrences of an element.

(d) void shift(Type, char); // Shift all elements by one position to the right

if char is ‘R’ or to the left if char is ‘L’. Note that the shifting should be

performed in a circular way.

 5

6. (15%) Write a string function int myStringCompare(const char* s1,

const char* s2) with the following behavior. Returns -1 if s1 is shorter than

s2 or s1 comes before s2 in dictionary order when they are of the same length.

Returns 0 when s1 and s2 are the same. Returns 1 otherwise. Note that the

function is semantically different from the strcmp function.

 6

7. (10%) Given a linked list, write a function to determine if the list is symmetric.

A list [l1, l2, …, ln] is symmetric if l1= ln, l2=ln-1, etc. Note that n must be an

even number. (Hint: use a stack.)

