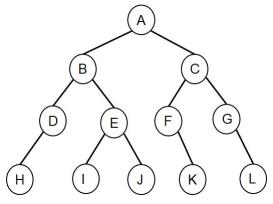
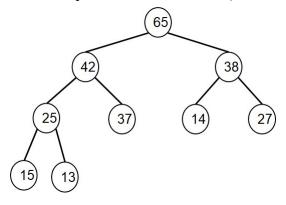
CSIEB0100 Data Structures, Fall 2022 Midterm Exam


ID: _	Dept:	Name:
	(30 points) Based on the problem type in parenthese	· · · · · · ·
	in the Blank (FIB, 2 points), or briefly answer (ANS, 4 points)), answer the	
1-1	following questions. What does "Algorithms + Data Structures = Programs" mean?	
		(ANS)
1-2		
	efficiency of algorithms?	(FIB)
1-3	3 In problem solving, why is the asymptotic impr important than the increase in processor speed?	ovement on algorithms more
	1 1 1	
		(ANS)
1-4	4 When $f(n) = \Omega(g(n))$, then $f(n) \ge g(n)$ for all n .	(True/False)
1-5	5 Give an example of a function $f(n)$ such that $f(n)$ =	$= \Theta(n \log n).$
		(FIB)
1-6	6 What is the big-O complexity of the expression 1	
		(FIB)
1-7		
	n^3 , 2^n , $n \log n$, n^2 , $n!$, c , 3^n , $n^2 \log n$,	-
		(FIB)
1-8	8 What are the main differences between arrays and	d linked lists?
		(ANS)
1-9	9 A complete binary tree is also a full binary tree.	(True/False)
1-1(10 What is the smallest and largest number of node	s of a max heap of height 5?
	Can you generalize it to a max heap of height k?	
		(ANS)
1-1		
	for the pattern "aabaabaadaabaadc".	-
		(ANS)
		(/113)

- 2. (10 points) For each of the complexity expression below, determine its overall complexity. For example, given expression 2n + 3n, the overall complexity should be O(n). Briefly explain why.
 - (a) $100^n + n^{100} + 2n!$
 - (b) $5n + 100n \log n + 3n^2$
 - (c) $n^{1.001} + n \log n + 100 \log^2 n$


- 3. (10 points) Given two arrays of integers A[0..n-1], B[0..m-1] with no repetition as two sets. Write C++ functions to do the following things. (Note: It doesn't have to be optimal. Correct implementation is good enough.)
 - (a) A function to compute and return the array as the **union** of A and B.
 - (b) A function to compute and return the array as the **intersection** of A and B.
 - (c) Write a main program to test your functions.

- 4. (20 points) Extend the template class List discussed in the class with the following functions. Write a main program to test your class properly. (Note: Don't need to write the complete template. Just the extended functions and the main program.)
 - (a) int count(Type); // Count the number of occurrences of the argument in this list.
 - (b) **Boolean exist(Type);** // Return TRUE if the argument exists in this list and FALSE otherwise.
 - (c) **int replaceALL(Type, Type);** // Search this list and replace every occurrence of the first argument with the second. Return the number of replacements.
 - (d) List<Type> subList(int, int); // Return the portion of this list between(inclusive) the first and the second arguments as node indexes (the first node has index 0).
 - (e) Write a main program to test your functions

- 5. (10 points) Given the following binary tree, show the results of traversal in various order.
 - (a) Inorder traversal
 - (b) Preorder traversal
 - (c) Postorder traversal
 - (d) Level order traversal

 (10 points) On the following max heap, DRAW the resulting max heap after EACH of the following operations: delete, delete, insert 55, insert 35, delete. For delete operations, also show the number that is deleted. (Note: You should draw 5 max heaps and show 3 numbers.)

7. (10 points) All linear data structures we studied in class have their pitfalls. Arrays are efficient on indexed access but have size limit and slow on insertion/deletion. Linked lists, stacks and queues are flexible with fast access but only at the end(s). Outline the design of a data structure (to represent a list of items) that is both flexible (with no size limit) and efficient on access/insert/delete operations (at most O(log n).) Answer by drawing your design and explain how the access/insert/delete operations are performed. (Note: No need for C++ code!!)