
CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

CSIE52400/CSIEM0140
Distributed Systems

Lecture 03
Architectures and Models

Shiow-yang Wu (吳秀陽)
Department of Computer Science and Information Engineering

National Dong Hwa University

CSIE52400/CSIEM0140 Distributed Systems 1

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Architectural Styles
 An architectural style is formulated by:
 (replaceable) components with well-defined interfaces
 the way that components are connected to each other
 the data exchanged between components
 how these components and connectors are jointly configured

into a system.
 Connector: A mechanism that mediates communication,

coordination, or cooperation among components. Example:
facilities for (remote) procedure call, messaging, or streaming.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 2

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

System Models
 Use models to capture and discuss the properties and design

issues of distributed systems.
 Types of models
 Physical models – Describe a system by its hardware

composition of computers and networks.
 Architectural models – Describe a system by its

computational and communication tasks performed by its
computational elements.

 Fundamental models – Describe a system from an abstract
perspective to examine individual aspects.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 3

REMINDERS FOR
THIS CLASS

Physical Models
 An abstract representation of the hardware elements of a

distributed system.
 Baseline physical model: a set of computer nodes

interconnected by a network and coordinated by passing
messages.

 Three generations of distributed systems: (next slide)
 Early
 Internet-scale
 Contemporary(當代的)

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 4

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 5

Generations of Distributed Systems

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Architectural Models
 System architecture is the fundamental organization of a

system, embodied in its components, their relationships to
each other and the environment, and the principles governing
its design and evolution.

 Describe architectural models from three perspectives
 Architectural elements
 Architectural patterns
 Middlewares

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 6

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Architectural Elements
 Communicating entities – Basic elements
 Communication paradigm – How do elements comm.
 Roles and responsibilities of elements.
 Placement – How are they mapped on to the physical

infrastructure?

CSIE52400/CSIEM0140 Distributed Systems
Architectures & Models 7

REMINDERS FOR
THIS CLASS

GALLERY 01

Communicating Entities and
Communication Paradigms

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 8

Agents

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Roles and Responsibilities
 Entities can take on different roles in a distributed system.
 These roles are fundamental in establishing the overall

architecture.
 Two examples of architectural styles with distinctive roles:
 Client-server
 Peer-to-peer (P2P)

CSIE52400/CSIEM0140 Distributed Systems
Architectures & Models 9

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Client-Server Architecture

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 10

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Client-Server Interaction
 General interaction (request-reply behavior)

between a client and a server.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 11

REMINDERS FOR
THIS CLASS

ACTIVITY TIME!

Multiple Servers Architecture

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 12

Server

Server

Server

Service

Client

Client

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REPRESENTING MOLECULES

Peer-to-peer Architecture

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 13

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Peer-to-Peer Systems
 Each component is symmetric in

functionality
 Servent: Combination of server-

client
 How does a node find the other?
 No “well-known” centralized server

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 14

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

Overlay Network
 A logical network consisting of participant components

(processes/machines)
 Built on top of physical network

 Can be thought of as a graph
 Nodes are processes/machines, links are communication

channels (e.g., TCP connections)

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 15

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Types of P2P Systems
 Unstructured: Built in a random manner
 Each node can end up with any sets of neighbors, any part

of application data
 E.g.: Gnutella, Kazaa

 Structured: Built in a deterministic manner
 Each node has well-defined set of neighbors, handles specific

part of application data
 E.g.: CAN, Chord, Pastry

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 16

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Unstructured P2P Architectures
 Each node has a list of neighbors to which it is connected
 Communication to other nodes in the network happens

through neighbors
 Neighbors are discovered in a random manner
 Exchange information with other nodes to maintain neighbor

lists
 Application data is randomly spread across the nodes
 Flooding: To search for a specific item

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 17

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Structured P2P Architectures
 Nodes and data are organized deterministically
 Distributed Hash Tables (DHT)
 Each node has a well-defined ID
 Each data item also has a key
 A data item resides in the node with nearest key

 Each node has information about neighbors in the ID space
 Searching for a data item:
 Routing through the DHT overlay network

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 18

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Super-peer Networks

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 19

REMINDERS FOR
THIS CLASS

GALLERY 01

Collaboration: BitTorrent
 Principle: search for a file F
 Lookup file at a global directory⇒ returns a torrent file

 Torrent file contains reference to tracker: a server keeping an
accurate account of active nodes that have (chunks of) F

 P can join swarm, get a chunk for free, and then trade a copy of that
chunk for another one with a peer Q also in the swarm.

CSIE52400/CSIEM0140 Distributed Systems Introduction 20

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Placement
 The mapping of entities on to physical infrastructure.
 Where to place different entities?
 Placement is crucial in determining the properties such as
 Performance
 Reliability
 Security

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 21

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Proxy Servers and Cache
Architecture

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 22

Client

Proxy

Web

server

Web

server

server
Client

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

Web Applets

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 23

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code

Client

b) client interacts with the applet

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 24

Mobile Code/Agent

Server Server

Server

Server

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Architectural Patterns
 Composite structures on top of architectural

elements
 Some patterns have been shown to work well in

given circumstances
 Not necessarily complete solutions but offer partial

insights.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 25

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Layered Architecture

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 26

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

Service, Interface, Protocol

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 27

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Software/Hardware Layers

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 28

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

Layering
 Can also think about layering in terms of dependencies:
 A layer A is above layer B if changes to the interfaces

provided by layer A do not require changes to the code of
layer B.

Why layer?
Flexible — You can add functionality without changing

underlying layers.

Reuse — Many applications can use Java jars, for example.

Reduce complexity — Too hard to hold everything in
your head at once.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 29

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Two-tier and
three-tier
architectures

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 30

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 31

Alternative
Architectures

 Alternative client-server organizations (a) – (e).

1-29

REMINDERS FOR
THIS CLASS

GALLERY 01

Examples of Alternative
Architectures

 (a): server-side has some control over UI.
 (c): form checking.
 (d): banking application just uploads transaction.
 (e): Local caching

 Also known as multitiered architectures.
 What’s good about moving things out to desktop machines?
 What’s bad?

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 32

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Three-tiered Architecture
 Note that the application server acts as client when requesting to

the database server.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 33

1-30

REMINDERS FOR
THIS CLASS

Logical Architecture vs.
Physical Architecture

 Physical architecture may or may not match the logical
architecture.

 The simplest organization is to have only two types of
machines:
 A client machine containing only the programs implementing

(part of) the user-interface level
 A server machine containing the rest,

• the programs implementing the processing and data level

 Or could have other partitioning methods.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 34

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Application Layering
 Client-server applications are usually constructed with a

distinction between three levels:
 User-interface level
 Processing level
 Data level

 Clients implement the user-interface level.
 Servers implement the rest.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 35

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Example: Search Engine
 The simplified organization of an Internet search engine

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 36

1-28

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

Example: Network File System
 Each NFS server provides a standardized view of its local file system:

each server supports the same model, regardless the implementation of
the file system.

 The NFS remote access model:

 NFS is a typical upload/download model. The same can be said for
systems like Dropbox.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 37

Remote access Upload/download

REMINDERS FOR
THIS CLASS

NFS Architecture

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 38

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Example: Simple Web Server
 Traditional Web server:

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 39

 Simple Web server:
 A website consisted as a collection of HTML files

 HTML files could be referred to each other by a hyperlink

 A Web server essentially needed only a hyperlink to fetch a file

 A browser took care of properly rendering the content of a file

REMINDERS FOR
THIS CLASS

GALLERY 01

Example: Less simple Web
 More dynamic Web with CGI and database

 More dynamic Web:
 A website was built around a database with content
 A Webpage could still be referred to by a hyperlink
 A Web server essentially needed only a hyperlink to fetch a file
 A separate program (Common Gateway Interface) composed a page
 A browser took care of properly rendering the content of a file

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 40

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 41

Thin Client Architecture

Thin
Client

Application
Process

Network computer or PC
Compute server

network

user
interface

only

execute
applications
on remote

server

REMINDERS FOR
THIS CLASS

Web Service Architecture

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 42

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Object-based Architecture
 Components are objects, connected to each other through method calls.

Objects may be placed on different machines; calls can thus execute
across a network.

 Objects are said to encapsulate data and offer methods on that data
without revealing the internal implementation

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 43

REMINDERS FOR
THIS CLASS

GALLERY 01

RESTful Architecture
 View a distributed system as a collection of resources,

managed by components, and may be added, removed,
retrieved, and modified by applications.
 Resources identified through a single naming scheme (URI)

and usually represented by JSON or XML
 All services offer the same interface (uniform interface)
 Messages sent to or from a service are fully self-described
 After executing an operation, that component forgets

everything about the caller (stateless)

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 44

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

RESTful Interface

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 45

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Example: Amazon’s Simple Storage
Service (S3)

 Objects (i.e., files) are placed into buckets (i.e., directories).

 Buckets cannot be placed into buckets.

 Operations on ObjectName in bucket BucketName require the identifier:
http://BucketName.s3.amazonaws.com/ObjectName

 All operations are carried out by sending HTTP requests:

 Create a bucket/object: PUT, along with the URI

 Listing objects: GET on a bucket name

 Reading an object: GET on a full URI

CSIE52400/CSIEM0140 Distributed Systems Introduction 46

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

Why RESTful ?
 RESTful architecture is popular because the interface is so

simple. The catch is that much needs to be done in the parameter
space.

 As a comparison, the Amazon S3 SOAP interface

CSIE52400/CSIEM0140 Distributed Systems Introduction 47

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

RESTful vs SOAP
 Assume an interface bucket offering an operation create, requiring an

input string such as mybucket, for creating a bucket “mybucket”

SOAP

import bucket

bucket.create("mybucket")

RESTful
PUT "https://mybucket.s3.amazonsws.com/"

CSIE52400/CSIEM0140 Distributed Systems Introduction 48

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

Event-based Architecture
 The event-based architectural style

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 49

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Shared Data-space Architecture
 The shared data-space architectural style.
 Processes communicate through a shared repository.
 WebDAV, Linda, tuple-space.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 50

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Temporal & Referential Coupling

Temporally
Coupled

Temporally
Decoupled

Referentially
Coupled

Direct Mailbox

Referentially
Decoupled

Event-based Shared data space

CSIE52400/CSIEM0140 Distributed Systems
Architectures & Models 51

REMINDERS FOR
THIS CLASS

Example: Linda Tuple Space
 Three simple operations
 in(t): remove a tuple matching template t

 rd(t): obtain copy of a tuple matching template t

 out(t): add tuple t to the tuple space

 Calling out(p) twice in a row, leads to storing two copies of tuple p ⇒ a
tuple space is modeled as a multiset.

 Both in and rd are blocking operations: the caller will be blocked until a
matching tuple is found, or has become available.

 A system based on the shared data-space architecture.

CSIE52400/CSIEM0140 Distributed Systems Introduction 52

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Publish and Subscribe
 An architecture style with publishers and subscribers.
 Publishers generate and publish data events.
 Subscribers subscribe to desired events.
 Mechanisms of matching/notification of events:
 Assume events are described by (attribute,value) pairs

 Topic-based subscription: specify a “attribute = value” series

 Content-based subscription: specify a “attribute ∈ range” series

CSIE52400/CSIEM0140 Distributed Systems Introduction 53

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Cloud Service Architecture

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 54

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

Cloud Computing

CSIE52400/CSIEM0140 Distributed Systems Introduction 55

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Introduction 56

Cloud Architecture
 Distinction between four layers:
 Hardware: Processors, routers, power and cooling systems.

Customers normally never get to see these.
 Infrastructure: Deploys virtualization techniques. Evolves around

allocating and managing virtual storage devices and virtual servers.
 Platform: Provides higher-level abstractions for storage and such.

Example: Amazon S3 storage system offers an API for (locally
created) files to be organized and stored in so-called buckets.

 Application: Actual applications, such as office suites (text
processors, spreadsheet applications, presentation applications).
Comparable to the suite of apps shipped with OSes.

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

Edge-server Architecture
 Systems deployed on the Internet where servers are placed at

the edge of the network.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 57

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Edge Advantages
 Latency and bandwidth: Especially important for certain real-time

applications, such as augmented/virtual reality applications. Many
people underestimate the latency and bandwidth to the cloud.

 Reliability: The connection to the cloud is often assumed to be
unreliable, which is often a false assumption. There may be critical
situations in which extremely high connectivity guarantees are needed.

 Security and privacy: The implicit assumption is often that when assets
are nearby, they can be made better protected. Practice shows that this
assumption is generally false. However, securely handling data
operations in the cloud may be trickier than within your own
organization.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 58

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Edge Orchestration
 Managing resources at the edge may be trickier than in the cloud
 Resource allocation: we need to guarantee the availability of the resources

required to perform a service.

 Service placement: we need to decide when and where to place a service.
This is notably relevant for mobile applications.

 Edge selection: we need to decide which edge infrastructure should be used
when a service needs to be offered. The closest one may not be the best one.

 There is still a lot of buzz about edge infrastructures and computing, yet
whether all that buzz makes any sense remains to be seen.

Architectures & Models 59

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Microservice Architecture 1
 An application is structured as a collection of collaborating

services that are:
 Small, independent, and loosely coupled
 Highly maintainable and testable
 Independently deployable
 Persisting their own data or external state
 Organized around business capabilities
 Communicate with others by using well-defined APIs
 Owned by a small team
 Support polyglot programming (can use different langs, technology

stack, libraries, or framework)

CSIE52400/CSIEM0140 Distributed Systems
Architectures & Models 60

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Microservice Architecture 2
 Typical components and organization
 Management/Orchestration: placing services, identifying

failures, rebalancing services, etc.
 API Gateway: entry point for clients, forwards client call to

appropriate services

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 61

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Blockchains
 Principle working of a

blockchain system

 Blocks are organized into
an unforgeable append-
only chain

 Each block in the
blockchain is immutable
⇒ massive replication

 The real snag lies in who
is allowed to append a
block to a chain

Architectures & Models 62

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Appending a block: distributed
consensus

 Centralized solution: A single entity decides on which validator can
go ahead and append a block.

 Does not fit the design goals of blockchains

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 63

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Appending a block

 Distributed solution (permissioned)

 A selected, relatively small group of servers jointly reach consensus on
which validator can go ahead.

 None of these servers needs to be trusted, as long as roughly two-thirds
behave according to their specifications.

 In practice, only a few tens of servers can be accommodated.

Architectures & Models 64

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

Appending a block
 Decentralized solution (permisionless)

 Participants collectively engage in a leader election. Only the elected
leader is allowed to append a block of validated transactions.

 Large-scale, decentralized leader election that is fair, robust, secure,
and so on, is far from trivial.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 65

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Middleware: OS of distributed
systems

 Middleware
 Provide higher-level

abstraction
 Hide the heterogeneity
 Promote interoperability

and portability
 Often based on the

corresponding
architectural models

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 66

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

Middleware: How
 Can use legacy to build. But the interfaces of legacy

components are most likely not suitale for all applications.
 Solution: A wrapper or adapter offers an interface acceptable to a

client application. Its functions are transformed into those available at
the component.

CSIE52400/CSIEM0140 Distributed Systems Introduction 67

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Introduction 68

Organizing Wrappers
 Two solutions: 1-on-1 or through a broker

 Complexity with N applications

 1-on-1: requires N ×(N − 1) = O(N2) wrappers

 broker: requires 2N = O(N) warppers

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

Adaptable Middleware
 Middleware contains

solutions that are good for
most applications.

 May want to adapt its
behavior for specific
applications.

 Example: Can intercept the
usual flow of control

CSIE52400/CSIEM0140 Distributed Systems Introduction 69

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Categories of Middleware

 Distributed objects
 Distributed components
 Publish-subscribe
 Message queues
 Web services
 Peer-to-peer

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 70

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Categories of Middleware

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 71

Models of
Distributed Systems

CSIE52400/CSIEM0140 Distributed Systems 72

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 73

Fundamental Models

 Abstract models to discuss individual aspects of a distributed
system

 Focus on three aspects:
 Interaction model: Addresses communication and

coordination between processes
 Failure model: Defines and classifies faults and methods of

recovery or tolerance
 Security model: Defines security threats and mechanisms for

resisting them

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Interaction Model
 Distributed systems are composed of interacting processes.
 Behaviors of processes are captured by distributed algorithms

describing the computing steps and message transmission of
processes.

 The rate of each process and the timing of message
transmission cannot in general be predicted.

 Each process can only access its own state.
 No direct access to the global state of the system.
 No global time.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 74

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Communication Channels
 Channels can be modeled in various ways
 Streams
 Message passing networks

 Performance characteristics
 Latency – The delay between the start of message

transmission and the beginning of reception.
 Bandwidth – The total amount of info that can be

transmitted over a given time.
 Jitter – The variation in message delivering time.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 75

REMINDERS FOR
THIS CLASS

GALLERY 01

Clocks and Timing Events
 Each computer has its own clock.
 Different clocks have different drift rates (the rate a clock

deviates from a perfect clock).
 Clock synchronization is to synchronize the clocks of a set of

computers.
 In most cases, relative ordering of events is more important

than absolute timing.
 It is possible to construct logical clocks for process

synchronization.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 76

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

Two Variants of Interaction
 Synchronous distributed systems – Systems in which the

following bounds are defined:
 Each execution step has known lower & upper bounds.
 Each message transmission is received within known bound.
 Each process has a local clock with known bound on drift

rate.
 In a synchronous system, it is possible to use timeouts in

distributed system design.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 77

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Two Variants of Interaction
 Asynchronous distributed systems – Systems with

no bounds on:
 Process execution speeds
 Message transmission delays
 Clock drift rates

 Actual distributed systems are very often asynchronous.
 Internet is exactly an asynchronous system.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 78

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 79

Event Ordering
send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive

m2

m1

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 80

Failure Models
 A failure model defines the ways in which failure may occur
 Omission Failures - process or channel fails to perform the right

actions (more on next slide)
 process omission failure
 channel omission failure

 Arbitrary (Byzantine) Failures
 Timing Failures: fail to meet the time bound
 We want to mask failures, i.e. to construct reliable services

from components that may exhibit failures.

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Processes and Channels

CSIE52400/CSIEM0140 Distributed Systems
Architectures & Models 81

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Omission and Arbitrary Failures

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 82

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 83

Timing Failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.

Performance Process Process exceeds the bounds on the interval

between two steps.

Performance Channel A message’s transmission takes longer than the

stated bound.

REMINDERS FOR
THIS CLASS

Masking Failures
 Failures are unavoidable.
 We can only mask failures
 By hiding it altogether
 By converting it into a more acceptable type of failure

 Examples of techniques for masking failures
 Message checksums
 Retransmission
 Replication
 … (more in later chapters)

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 84

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Security Models

Threats:
 threats to processes
 threats to communication channels
denial of service
Protection:
cryptography and shared secrets
authentication

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 85

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Objects and Principals
 Access rights: who can invoke the operations
 Principal: the authority on which an invocation or result is

issued.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 86

Network

invocation

result
Client

Server

Principal (user) Principal (server)

ObjectAccess rights

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 87

The Enemy

Communication channel

Copy of m

Process p Process qm

The enemy
m’

REMINDERS FOR
THIS CLASS

GALLERY 01

Secure Channels
 Processes know each others
 Ensure the privacy and integrity of the data transmission
 No message replayed or reordered

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 88

Principal A

Secure channelProcess p Process q

Principal B

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Security Threats
 Security threats can come from any place.
 Two interesting examples
 Denial of service (DOS) – Enemy interferes with the

activities of authorized users by making excessive and
pointless accesses in a network.

 Mobile code
• Mobile code raises new and interesting security problems.
• Can easily play a Trojan horse role.
• Can be carried in many ways: emails, Web pages, applets,

Active X, …

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 89

REMINDERS FOR
THIS CLASS

HW 1: Byzantine Generals Problem

 This is a classic problem in distributed system design.
 In a distributed system, failed components can send

conflicting information.
 Different parts of the system receive different

information.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 90

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 91

Attack or Retreat ?

How to reach the same agreement among loyal generals?

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

The Classic Problem
 Each division of the Byzantine army are directed by its own

general.
 Some of the generals may be traitors.
 Generals communicate with each other by reliable messengers.
 Requirements:
 All loyal generals decide upon the same plan of action.
 A small number of traitors cannot cause the loyal generals to

adopt a bad plan.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 92

CSIE52400/CSIEM0140 Distributed Systems Lecture 03: Architectures and Models

REMINDERS FOR
THIS CLASS

GALLERY 01

Variations and Impossibility
 How many traitors does it take to make the agreement among

loyal generals impossible ?
 What if the messengers were not reliable ?

 There are several variant problems. Can you think out a
different one by yourself ?

 Do not try to look for answer from the net or AI. It will loose
all the fun of this assignment.

 You may do that AFTER thinking about the problem thoroughly
and propose your answers.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 93

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Reference
 Lamport, L., Shostak, R., Pease, M. “The Byzantine Generals

Problem”. ACM TOPLAS. Vol 4. Num. 3, July, 1982.
 There are several variant problems based on the classic

problem.
 Due date: Mar 19, 2024
 Submit through the NDHU e-learning (東華e學苑). My email and

disk quota is almost full and therefore not reliable.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 94

