CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

o}

M

CSIE52400/CSIEM0140
° Distributed Systems

. 7/

€ Lecture 03
Architectures and Models

Shiow-yang Wu (£ %)
artment of Computer Science and Information Engineering I
National Dong Hwa University

d"
On.
i

CSIE52400 SIEMO0140 D.stnbutLtems ‘ I I I I I ArchitecturesJModelsz

f
—6 Architectural Styles

® An architectural style is formulated by:
> (replaceable) components with well-defined interfaces
> the way that components are connected to each other
» the data exchanged between components
» how these components and connectors are jointly configured
into a system.
® Connector: A mechanism that mediates communication,

coordination, or cooperation among components. Example:
facilities for (remote) procedure call, messaging, or streaming.

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

System Models

se models to capture and discuss the properties and design
issues of distributed systems.

® Types of models

> Physical models - Describe a system by its hardware
composition of computers and networks.

> Architectural models - Describe a system by its
computational and communication tasks performed by its
computational elements.

> Fundamental models - Describe a system from an abstract
perspective to examine individual aspects. ~?

[Ta

CSIE5S2400/CSIEMO0140 Distributed Systems " Architectures & Models 3

Physical Models

‘® An abstract representation of the hardware elements of a
distributed system.

® Baseline physical model: a set of computer nodes
interconnected by a network and coordinated by passing

messages.
® Three generations of distributed systems: (next slige)
> Early \ 7
» Internet-scale
I O

> Contemporary (‘& {thy)

o \o

CSIES2400/CSIEM0140 Distributed Systems Architectures & Modgls 4

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

| Q
a voogtnas
D Distributed systems: Early Internet-scale Contemporary
Scale Small Large Ultra-large
Haterogenelty Limited (typically Significant in terms of i?ii≫f:ilﬁgfn
relatively homogenous platforms, languages ; ; g
amnEar o) and middleware radically different styles of
gur architecture
Openness Significant priority Major research challenge
Not a priority withrange of standards Wil caditiug tandands uo)
siitfodiiced yet able to embrace
complex systems
Quality of service Significant priotity Major research challenge
In its infancy with range of services A R e
i yet able to embrace
introduced)
complex systems
's
CSIES2400/CSIEM0140 Distributed Systems Architectures & Models 5

Architectural Models

[System architecture is the fundamental organization of

its design and evolution.
® Describe architectural models from three perspective\

» Architectural elements

» Architectural patterns £

» Middlewares

CSIESZ‘}Q?/QS,Q‘_M% 40 Distributed Systems Architectures & Models

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Architectural Elements 7 _

o/ "\
® Communicating entities — Basic elements

® Communication paradigm - How do elements comm.
® Roles and responsibilities of elements.

® Placement - How are they mapped on to the physical
infrastructure?

] ‘ ; ~r‘ v s fiis
CSIES2400fCSIEM0140 Distribute stems .
HI I Y I I I I Architectures JModeIs 7

Communicating Entities and
Communication Paradigms

Communicating entities Communication paradigms
(what is communicating) (how they communicate)
System-oriented Problem- Interprocess Remote Indirect
entities oriented entities communication invocation communication
Nodes Objects Message Request- Group
e Components passing reply communication
ek, senviices Sockets RPC Publish-subscribe
Agents Multicast RMI Message queues

Tuple spaces

DSM .//

CSIES2400/CSIEMO0140 Distributed Systems ’*’""Architectures & Models 8

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Roles and Responsibilities \ 7 __

o "\
® Entities can take on different roles in a distributed system.

® These roles are fundamental in establishing the overall
architecture.

® Two examples of architectural styles with distinctive roles:
> Client-server
> Peer-to-peer (P2P)

o]

invocation

p—
\

Key:
Process: O Computer:

At /
QS|E5(2400/CS|EM014 strb)d Systems k A M

N\

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

Client-Server Interaction [
/
® General interaction (request-reply behavior) /
between a client and a server. I,’
°
/ s
Wait for result [—_—
Client \‘
—
Request
Server -—-—-—-——-——-—-—- ¢
Provide service Time ——™
CSIESZ400/(_;§QJ\{AO 49"§:j§tributed Systems Architectures & Models

Multiple ServersArchitectufe

Service :
g y r— - - —— e \
| F
| <

\

m

csnz4oo/c5|EM014o Distributed Systems Architectures & Mode

s 12

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Peer-to-peer Architecture

Sharable
objects

Peers4 N

CSIES 24OOISIEM0140 Distributelystems I I I I

Peer-to-Peer Systems (9]

® Each component is symmetric in
functionality T

» Servent: Combination of server-
client

® How does a node find the other?
> No “well-known” centralized server

CSIE52400/CSIEMO0140 Distributed Systems ctures & Models 14

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Overlay Network

oA logical network consisting of participant components
(processes/machines)

> Built on top of physical network
® Can be thought of as a graph
» Nodes are processes/machines, links are communication
channels (e.g., TCP connections) o
\ l

o \O

CSIES2400/CSIEMO0140 Distributed Systems Architectures & Models 15

¢ Types of P2P Systems

(e]

® Unstructured: Built in @ random manner

» Each node can end up with any sets of neighbors, any part
of application data

> E.g.: Gnutella, Kazaa
® Structured: Built in a deterministic manner

» Each node has well-defined set of neighbors, handles specific
part of application data

» E.g.: CAN, Chord, Pastry

LTy * :_ o ™ 7 'l
CSIE52400lSIEM014O DistributIstems ‘ I I I I I Architectures &Iode s 16

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Unstructured P2P Architectures

® Each node has a list of neighbors to which it is connected

» Communication to other nodes in the network hap
through neighbors /Qﬁn\\
» Neighbors are discovered in a random manner

» Exchange information with other nodes tg"'main
lists

® Application data is randomly spread across the/nhodes
» Flooding: To search for a specific item

CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 17,

® Nodes and data are organized deterministically
® Distributed Hash Tables (DHT)

» Each node has a well-defined ID

» Each data item also has a key

> A data item resides in the node with nearest key \
® Each node has information about neighbors in the ID space

® Searching for a data item: y
» Routing through the DHT overlay network

CSIE52400/g59|}l\{(l\%4,&1@jstributed Systems Architectures & Models 1

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

e
CSIES2400/CSIEMO014QMDistribued Systems Cctures &

) Collaboration: BitTorrent

@ _Principle: search for a file F
» Lookup file at a global directory = returns a torrent file

» Torrent file contains reference to tracker: a server keeping an
accurate account of active nodes that have (chunks of) F

» P can join swarm, get a chunk for free, and then trade a copy of that
chunk for another one with a peer Q also in the swarm.

Client node
K out of N nodes
<
Cfl_ookup(F) Node 1
ABitTorrent torrent file List of nodes | Node 2
Web page or > tor il F » with-(chunks of)
search engine file F
Web server File server Tracker

Node N i
CSIE52400/CSIEMO0140 Distributed Systems A Introduction 20

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Placement

® The mapping of entities on to physical infrastructure.

® \Where to place different entities?

® Placement is crucial in determining the propertm
> Performance
> Reliability
» Security

CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 2

—« Proxy Servers and Cache
° Architecture

‘\’ PrOXy
server
v

/
server

-
CSIE524OOISIEM014O DistributI,tems I I I I

I Architectures & Iode s 22

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Web Applets

a) client request results in the downloading of applet code

server

Applet code

b) client interacts with the applet

Web S
Hy Applet server —

_ \

O

CSIES2400/CSIEMO0140 Distributed Systems Architectures & Models 23

\ | 'S) _
-~ Mobile Code/Agent .

@)

CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 24

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

Architectural Patterns

® Composite structures on top of architectural
elements

® Some patterns have been shown to work well in
given circumstances

insights.

CSIESZZ}Q(‘)/‘(‘;_S_Q"M(% &Q@;_strlbuted Systems

® Not necessarily complete solutions but offer partial

Architectures & Models

K -
e Layered Architecture
¢ Request/Response
downcall One-way call
—p E——
| Layer N | | Layer N | I Layer N |
| Layer N-1 | | Layer N-1 I Layer N-1 l
T Handlel TUpcall
¢ l Layer N-2 |
| Layer 2 | I
I | Layer N-3 I
I Layer 1 | I
(a) (b) (c)
CSIE524OOISIEM014O DistributeISystems I I I I I I

I Architectures & Iode s 26

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

ervice, Interface, Protocol

Party A Party B
} | o
Layer N § RS ———————; » Layer N
7 T

l Interface Service l
o J

- ! I | —
Layer N-1 . seesessessssasessssssssananes > Layer N-1
Y Protocol

¢ v

CSIES2400/CSIEM0140 Distributed Systems Y/:&rchitectures & Models 27

oftware/Hardware Layers
.

Applications, services

7/
Middleware /

] x l’
™N
Operating system k\
Platform
Computer and network hardware /l

L5
CSIE52400/CSIEM014QfDistribued Systems Areffitectures &

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Layering

‘® Can also think about layering in terms of dependencies:

> A layer A is above layer B if changes to the interfaces

provided by layer A do not require changes to the code of
layer B.

® Why layer?

> Flexible — You can add functionality without ¢fanging
underlying layers. \ /

» Reuse — Many applications can use Java jars, for example: 8]

» Reduce complexity — Too hard to hold eyeryphing{n
your head at once. b yh \ 5

CSIES2400/CSIEMO0140 Distributed Systems Architectures & Models 29

- a) Personal computers
Two-tier and == -
~ User view, - ~ Application

three-tier e QLS
architectures ...

controls and |
*data manipulation

~ Application
{and data management)

Tier 1 Tier 2
|
b) Personal computers Application server "
or mobile devices
"Us_er"\ | —u Database server
[viewand — Ap||JIicgtion \
\._controls ./ ___logic >
manager |
“User - e :
[viewand \— (" Application / d
._controls »_logic -
Tier 1 Tier2 Tier 3

CSIE52400/§59M%9'§j$tributed Systems \ Architectures & Models l)

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

N /O Alternative
o Architectures

® Alternative client-server organizations (a) — (e).

€,

Client machine

nter[qggl ‘ User interface‘ ‘User inteﬁace‘ ‘ User inten‘ace‘ ‘User interface|

‘ Useri
1

P
-

pIicati?’n_‘J ‘ Application ‘ ‘ Application |

NP ‘ Ap|
————— $‘“‘——~-<_<_‘____$__ __//é’ Database
User interface N ¢M—“—-“‘"“‘-—-$ ________

-

‘ Application | ‘ Application ‘ \ Application /,/’ y /}\
‘ Database | ‘ Database ‘ ‘ Database ‘ ‘ Database ‘ - ’Database ‘ \
Server machine X 3 \’
2
(a) (b) (©) (d) (e)
CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 31

Examples of Alternative
Architectures

'0/(a): server-side has some control over UI.

® (c): form checking.

® (d): banking application just uploads transaction.
® (e): Local caching

® Also known as multitiered architectures.
® What's good about moving things out to desktop machines?
® What's bad? ol

CSIES2400/CSIEM0140 Distributed Systems '\'n;‘rchitectures & Models 32

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

“Three-tiered Architecture

y _/ .
® Nofe that the application server acts as client when requesting to
e database server.

User interface Wait for result "

(presentation)
Return
result

Request
operation

Wait for data

’
Application e o e~ p— o __
server ><\
/ﬁ
Request data
T) !
Database

¢« bdldbdse ________________ - — — — —
e .. server »
Time
CSIE42400/CS|EMOI4Jstr|buId Systems \' ctures &

Logical Architecture vs.
Physical Architecture

® Physical architecture may or may not match the logical
architecture.

® The simplest organization is to have only two types of

machines:

» A client machine containing only the programs |mplement|ng
(part of) the user-interface level

» A server machine containing the rest, \ /4

« the programs implementing the processing and data lexels ©
® Or could have other partitioning methods.

O

CSIES2400/CSIEM0140 Distributed Systems Architectures & Models 34

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Application Layering

® Client-server applications are usually constructed with a

distinction between three levels:

» User-interface level /\
> Processing level
» Data level

® Clients implement the user-interface level.
® Servers implement the rest.

CSIES

CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 3
N :
_.—¢ Example: Search Engine

o

® The simplified organization of an Internet search engine

' User-interface
User interface level

HTML page
Keyword expression containing list

HTML
generator Processing

Query ‘F Ranked list level
generator

of page titles
Ranking

algorithm

Database queries

Web page titles

with meta-information

Database Data level

with Web pages

24OOISIEM014O DistributeISystems I I I I I I I Architectures & Iode s 36

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

ample: Network File System

ach NFS server provides a standardized view of its local file system:
each server supports the same model, regardless the implementation of
the file system.

® The NFS remote access model:

1. File moved to client

Client Server Client Server
< = Old file
< > \ / \T
Requests from /
client to access File stays 2. Accesses are . .
remote file on server done on client 3. When client Is done,

file is returned to
server

Remote access Upload/download

® NFSis a typical upload/download model. The same can be said
systems like Dropbox.

CSIES2400/CSIEMO0140 Distributed Systems © Architectures & Models 37

NFS Architecture

Client Server
System call layer System call layer
Virtual file system Virtual file system
(VFS) layer (VFS) layer
Local file . Local file
system interface NFS client NFS server system interface
v 4 ,
RPC client RPC server
stub stub
I O

N J
Network \
O

CSIES2400/CSIEMO0140 Distributed Systems Architectures & Models 38

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Example: Simple Web Serv?r\\

2. Server fetches

iti . Cli i Serv i r
® Traditional Web server: llent machine orver machine document from
Browser Web server / @

4 A

/\\ 3. Response JJ

1. Get document request (HTTP)

oS

® Simple Web server:

> A website consisted as a collection of HTML files q 3

» HTML files could be referred to each other by a hyperlink
» A Web server essentially needed only a hyperlink to fetch a file
» A browser took care of properly rendering the content of a fi

CSIE52400/(__:SQMO 40 Distributed Systems Architectures & Models

Example: Less simple Web
re dynamic Web with CGI and database

2. Start process to fetch document

— > HTTP \ cal 3. Database interaction
< request |_ program
5. Return result handler \
4. HTML document
creaed |

Web server CGil process Database server

® More dynamic Web:
» A website was built around a database with content
» A Webpage could still be referred to by a hyperlink
> A Web server essentially needed only a hyperlink to fetch a file
» A separate program (Common Gateway Interface) composed a page
> A browser took care of properly rendering the content of a file

CSIES2400/CSIEMO0140 Distributed Systems ¥ Architectures & Models 40

CSIE52400/CSIEMO0140 Distributed Systems

| Q
/ - - - / \ /
Thin Client Architecture: |
\ %
D O
(Compute server
Network computer or PC
Process
_user execute
interface applications
only on remote
server
CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 41

Web Service Architecture

Service
Requester

Service /
Provider N

e\

O

CSIES2400/CSIEM0140 Distributed Systems Architectures & Models 42

Lecture 03: Architectures and Models

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

— Object-based Architecture,

o Components are objects, connected to each other through method calls.
Objects may be placed on different machines; calls can thus execute

across a network.
® Objects are said to encapsulate data and offer methods on that data
without revealing the internal implementation

State

Method

. Interface :
CSIE524001$IEM014O DistributeI;stems I I I T Architectures & Iode s 43

RESTful Architecture

@ Miew a distributed system as a collection of resources,
managed by components, and may be added, removed,
retrieved, and modified by applications.

» Resources identified through a single naming scheme (URI)
and usually represented by JSON or XML

> All services offer the same interface (uniform interface)
» Messages sent to or from a service are fully self-described

> After executing an operation, that component forgets
everything about the caller (stateless)

CSIES2400/CSIEM0140 Distributed Systems \?;rchitectures & Models 44

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

/ 7, ~ RESTful Interface

&
& 4
<~ ./ Method Operation performed on server Quality »
<
GET Read a resource. Safe
: : "
PUT Insert a new resource or update if the resource already exists. = Idempotent
POST Insert a new resource. Also can be used to update an existing N/A
resource. -
/—\ DELETE Delete a resource . Idempotent \
/ . ». OPTIONS List the allowed operations on a resource. Safe

: w HEAD Return only the response headers and no response body. Safe
CSIE42400/CS|EM014J%stribu d Systems Ctures &

Example: Amazon’s Simple Stor ge'\
Service (S3)

® Objects (i.e., files) are placed into buckets (i.e., directories).
@® Buckets cannot be placed into buckets. °

® Operations on ObjectName in bucket BucketName require thg identiffer:
http://BucketName.s3.amazonaws.com/ObjectName

® All operations are carried out by sending HTTP requests: \
» Create a bucket/object: PUT, along with the URI

> Listing objects: GET on a bucket name
» Reading an object: GET on a full URI

Csl E52400/C£M%9'wstributed Systems Introduction

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Why RESTful ?

‘® RESTful architecture is popular because the interface is so
simple. The catch is that much needs to be done in the parameter
space.

® As a comparison, the Amazon S3 SOAP interface

Bucket operations Object operations

ListAIIMyBuckets PutObjectInline

CreateBucket PutObject 0]

DeleteBucket CopyObject

ListBucket GetObject l
GetBucketAccessControlPolicy GetObjectExtended

SetBucketAccessControlPolicy DeleteObject o
GetBucketlLoggingStatus GetObjectAccessControlPolicy —
SetBucketlLoggingStatus SetObjectAccessControlPolicy

Introduction 47

CSIE52400/CSIEMO0140 Distributed Systems

RESTful vs SOAP NP
o/ "\

® Assume an interface bucket offering an operation create, requiringan
input string such as mybucket, for creating a bucket “mybucket”

SOAP
import bucket

©

o]

bucket.create("mybucket")
RESTful
PUT "https.//mybucket.s3.amazonsws.com/"

CSIE524OHISIEM014O D|str|but¥stems I I I I I Intrluction 48

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Event-based Architecture
‘® The event-based architectural style
Component Component
Subscribe ! T E T (I;Ioltii\fication
v v » elvery S
< Event bus >

|

? Publish £ ©
Compbnent P 4 \
O

CSIES2400/CSIEMO0140 Distributed Systems Architectures & Models 49

Shared Data-space Architecture —

® The shared data-space architectural style.
» Processes communicate through a shared repository.
» WebDAV, Linda, tuple-space.

Component Component
! A
Publish Subscribe ! galt,a
v elivery o
— P I 3

Shared (persistent) data space

CSIE52499/<}.§Q EMOLS 40 Distributed Systems Architectures & Models

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Temporal & Referential Couplihg

Mailbox

Direct

Event-based Shared data space !

D
CSIE5240HISIEM014O D'stribute!ystems | | I I ‘ | | Architectures & lodels 51

O

3 xample: Linda Tuple Space

O

® Three simple operations
» in(t): remove a tuple matching template t
» rd(t): obtain copy of a tuple matching template t
» out(t): add tuple t to the tuple space

® Calling out(p) twice in a row, leads to storing two copies of tuple p = a
tuple space is modeled as a multiset.

@)
® Both in and rd are blocking operations: the caller will be N:ke(ﬂwtil a
matching tuple is found, or has become available.

® A system based on the shared data-space architecture. _‘

\o

Introduction 52

CSIES2400/CSIEMO0140 Distributed Systems

CSIE52400/CSIEMO0140 Distributed Systems

/
(o}
. . . T
Publish/subscribe middleware Match
CSIES2 istributed Systems ‘ Introduction

Publish and Subscribe /—

® An architecture style with publishers and subscribers. ,/
® Publishers generate and publish data events. / ‘
® Subscribers subscribe to desired events. I/

/

® Mechanisms of matching/notification of events: ., .
» Assume events are described by (attribute,value) pairs [—_—
» Topic-based subscription: specify a “attribute = value” series \‘
» Content-based subscription: specify a “attribute € range” series L —

Publisher Subscriber Subscriber

Read/Delivery

Dataitem @ Subscription O 0

Notification

ﬁIE!MOO/CSIEMOM istribued Systems \

, 9
. . =Xy
Laptops Appllcatlon Desktops /

= Collaboration

Content Communication

Platform

L DS

Runtime Database

Infrastructure

Compute
ock Storage

Tablets

"‘N\/,f
o 7
DA

Arefiitectures &

Lecture 03: Architectures and Models

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Cloud Computing

Google docs
9 - imedi ; Gmail
T 2 Web services, multimedia, business apps)
2 ({é YouTube, Flickr
A C Application
MS Azure
-------------- - Software framework (Java/Python/.Net) Google App engine
£ o Storage (databases)
g @ Platforms
5 8 Amazon S3
e Computation (VM), storage (block, file) Amazon EC2
Infrastructure

Datacenters 4
. o
. Introduction 55

Infrastructure
aa Svc

CSIE52400/CSIEMO0140 Distributed Systems

\ | 'S _
— Cloud Architecture

\

~ Distinction between four layers:

» Hardware: Processors, routers, power and cooling systems.
Customers normally never get to see these.

> Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual servers.

> Platform: Provides higher-level abstractions for storage and such.
Example: Amazon S3 storage system offers an API for (locally
created) files to be organized and stored in so-called buckets.

» Application: Actual applications, such as office suites (text
processors, spreadsheet applications, presentation applic
Comparable to the suite of apps shipped with OSes.

CSIE52400/CSIEM0140 Distributed Systems Introduction 56

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

CSIES

»") | Edge-server Architecture

' ® Systems deployed on the Internet where servers are placed at

the edge of the network.

Cloud
1
Cloud network
Cloud network

L1 Edge server

Enterprise network

2400/CSIEMO0140 Distributed Systems "z';&rchitectures & Mode|

[1 Edge server
Enterprise network

s 57

CSIES

Edge Advantages

® [atency and bandwidth: Especially important for certain real-time
applications, such as augmented/virtual reality applications. Many

people underestimate the latency and bandwidth to t:?ua‘.’_‘\
® Reliability: The connection to the cloud is often assumed to be

unreliable, which is often a false assumption. Thepe may bes
situations in which extremely high connectivity

arantgés are needed.

® Security and privacy: The implicit assumption ig oftenthat when assets A

are nearby, they can be made better protected! Practice shows that this
assumption is generally false. However, securely handling data

operations in the cloud may be trickier than within youkown
organization.

2400/CSIEMO0140 Distributed Systems

Architectures & Mode

Is 58

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

\] Q i
— Edge Orchestration .

N

~ Managin% resources at the edge may be trickier than in the cloud

» Resource allocation: we need to guarantee the availability of the resources
required to perform a service.

» Service placement: we need to decide when and where to place a service.
This is notably relevant for mobile applications.

» Edge selection: we need to decide which edge infrastructure should be used
when a service needs to be offered. The closest one may not be the best one.

® There is still a lot of buzz about edge infrastructures and computing, yet
whether all that buzz makes any sense remains to be seerr:

CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 59

Microservice Architecture 1\ 7 _

® An application is structured as a collection of collaborating .
services that are:

Small, independent, and loosely coupled

Highly maintainable and testable

Independently deployable

Persisting their own data or external state

Organized around business capabilities

Communicate with others by using well-defined APIs

Owned by a small team T

Support polyglot programming (can use different langs, techh%ogy

stack, libraries, or framework)

CSIE524OHISIEM014O D|str|butepstems r I I 1 I Architectures & lodels 60

YV VYV V VYV VYV

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

Microservice Architecture

® Typical components and organization

failures, rebalancing services, etc.

0O L

(:) Management / Orchestration
R

/'/V ‘\\
CSIESZQDO/QS]QM%_ ﬁ'ﬁstributed Systems

» Management/Orchestration: placing services, identifyllmg

» API Gateway: entry point for clients, forwards cIienw
appropriate services —

ArchiteétuA@s & Models

/’? —
/

\ | 8]

—
Prirks'pleoworking of a
blockchain system

® Blocks are organized into
an unforgeable append-
only chain

® Each block in the
blockchain is immutable
= massive replication

® The real snag lies in who

is allowed to append a
block to a chain

Blockchains

€,

A node broadcasts
a transaction request

CSIE52400/CSIEM0140 Distributed Systems

A validator collects
transactions into a block

A single validated block is
broadcast to all the nodes

%

Architectures & Models 62

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Appending a block: distributed
consensus

® Centralized solution: A single entity decides on which validator can

go ahead and append a block.
® Does not fit the design goals of blockchains /-\

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 63

\ |

'S)
— Appending a block
N

o)
O K Distributed solution (permissioned)

® A selected, relatively small group of servers jointly reach consensus on
which validator can go ahead.

® None of these servers needs to be trusted, as long as roughly two-thirds
behave according to their specifications.

® In practice, only a few tens of servers can be accommodated.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 64

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

CSIES

Appending a block

| ® Decentralized solution (permisionless)

® Participants collectively engage in a leader election. Only the elected
leader is allowed to append a block of validated transactions.

® Large-scale, decentralized leader election that is fair, robust, secure,\ y
and so on, is far from trivial.

2400/CSIEM0140 Distributed Systems e Architectures & Modg

/

Is 65

CSIES

)/ Middleware: OS of distributed /~¢
: systems
® Middleware

> Provide higher-level e —
abStraCtlon Computer 1 Computer 2 I I Computer 3 Computer 4

> Hide the heterogeneity Aepl. A Aeplication B hol. ©

> Promote interoperability [R |
and portability [omost || |[tomosz]| |[teemiosa]| |[iocaoss]

> Often based on the ' I ! I

Network

corresponding
architecturalmodels

__-' _Sl‘ ";. Ry
2400!SIEM014O DistributLtems I I I I I Architectures &Iode

s 66

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Middleware: How

‘® Can use legacy to build. But the interfaces of legacy
components are most likely not suitale for all applications.

® Solution: A wrapper or adapter offers an interface acceptable to a
client application. Its functions are transformed into those available at
the component.

|
CSIE52400/CSIEMO0140 Distributed Systems Introduction 67

\ | 'S)
— Organizing Wrappersg/ .~

Wrapper

o5 Q P
Application / Broker ‘/Q\
\Q)éc\) oo

® Complexity with N applications
> 1-on-1: requires N x(N — 1) = O(N?) wrappers
» broker: requires 2N = O(N) warppers

N\
€ F‘Two soluqions: 1-on-1 or through a broker

'
-\ >>

B

b g

CSIE52400/CSIEM0140 Distributed Systems Introduction 68

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

\> Adaptable Middleware

@ Middleware contains
Intercepted call

solutions that are good for
most applications. Application stub | |

. May Want to adapt Its Request-level interceptor g_ Nonintercepted call

behavior for specific [Y v
invoke (B, &doit, val)

applications.

® Example: Can intercept the ' | ﬁbjem i H
USU8| ﬂOW Of Contl’0| Message-level interceptor '

.

\ J send(B, “doit”, val) I
]_l:ocal 0s ’1—‘ 4
W

Y Toobject B

Client application

CSIES2400/CSIEMO0140 Distributed Systems N Introduction 69

Categories of Middleware

y" e\
Major categories: Subcategory Example systems
“ Distributed objects (Chapters 5, 8) Standard RM-ODP
® tributed objects et CORBA
Platform Java RMI

- - Distributed c ts (Chapter 8) Lightweight ts Fractal
. D|Str|buted Components istributed components apter ightweight componen (;::n(:OM

Lightweight components

. . Application servers SUN EIB /
. P u b I I s h = S u b SC rl be Application servers CORBA Component Model
Application servers JBoss
. M e S Sa g e q u e u e S Publish-subscribe systems (Chapter 6) - CORBA Event Service
- Scribe
. W b H - IMS
e S e rv I Ce S Message quewes (Chapter 6) - Websphere MQ —
- IMS
. Pe e r_ to — pe e r Web services (Chapter 9) Web services Apache Axis
Grid services The Globus Toolkit \
Peer-to-peer (Chapter 10) Routing overlays Pastry
Routing overlays Tapestry
Application-specific Squirrel
Application-specific OceanStore
Application-specific Ivy
Application-specific Gnutella

I

—

T

—

Arefiitectures &

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

/
(@)
CSIES2 jstributed Systems

Categories of Middleware/ T

Remote Procedure

'ihiteles & Models ;

o
@)
ol

Models of
Distributed Systems

/
E 4

e
€

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

| Q
— Fundamental Models .

N

O

O ﬁAbstract models to discuss individual aspects of a distributed
system

® Focus on three aspects:

» Interaction model: Addresses communication and
coordination between processes

» Failure model: Defines and classifies faults and methods of
recovery or tolerance

» Security model: Defines security threats and mechani
resisting them

CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 73

Interaction Model

® Distributed systems are composed of interacting processes.
® Behaviors of processes are captured by distributed algorithms

describing the computing steps and message tra)sﬂm
processes.

® The rate of each process and the timing of messag
transmission cannot in general be predict

® Each process can only access its own sta
® No direct access to the global state of the system.
® No global time.

CSIE52400/CSIEM0140 Distributed Systems Architectures & Models 7:

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

\}I - »
¢ Communication Channels

® Channels can be modeled in various ways
» Streams
» Message passing networks

® Performance characteristics

» Latency - The delay between the start of message
transmission and the beginning of reception.

» Bandwidth = The total amount of info that can be
transmitted over a given time.

» Jitter — Thepvariation in message delivering tlme

c5|552400 SIEMO0140 D|str|butIstems ‘ I I I I I Architectures &Iode s 75

\> Clocks and Timing Events

@ Fach computer has its own clock.

® Different clocks have different drift rates (the rate a clock
deviates from a perfect clock).

® Clock synchronization is to synchronize the clocks of a set of
computers.

® In most cases, relative ordering of events is more important
than absolute timing.

® It is possible to construct logical clocks for process
synchronization.

CSIES2400/CSIEM0140 Distributed Systems y'\'nArchitectures & Models 76

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

“STwo Variants of Interaction

® Synchronous distributed systems - Systems in which the
following bounds are defined:
» Each execution step has known lower & upper bounds.

» Each message transmission is received within known bound.
» Each process has a local clock with known bound on drift
rate.
® In a synchronous system, it is possible to use tim uts}n
distributed system design. o

o \

Architectures & Models 77

CSIES2400/CSIEMO0140 Distributed Systems

Two Variants of Interaction

® Asynchronous distributed systems - Systems with
no bounds on:

» Process execution speeds /\
» Message transmission delays

> Clock drift rates
® Actual distributed systems are very often a ynchronous

® Internet is exactly an asynchronous syste

Architectures & Models 7

CSIES2400/CSIEMO0140 Distributed Systems

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

Event Ordering

I O
NG i
N

@) : .
D send receive receive
& 4 >

X
1 my 4
send M2 _
receive ;
v 2 x - Physmal
receive \ time
send

Z
receive receive
A B
recelve receive receive \ P
t t t3 .
CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 79

\I/O

N

Ond® A failuré model defines the ways in which failure may occur

® Omission Failures - process or channel fails to perform the right
actions (more on next slide)

> process omission failure
» channel omission failure
® Arbitrary (Byzantine) Failures
® Timing Failures: fail to meet the time bound

® We want to mask failures, i.e. to construct reliable servi
from components that may exhibit failures.

Failure Models

CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 80

CSIE52400/CSIEMO0140 Distributed Systems

Processes and Channels \7 _

o/ \O

process p process q

| |
| |
Communication channel

Outgoing message buffer Incoming message buffer

A

Rt - -. Y
CSIE52400fCSIEM0140 Distribut I t I I | i . I
Hl stributegpystems I I Architectures & Models 81

[

Omission and Arbitrary Failureﬁ T

Class of failure Affects Description / \
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.
Crash Process Process halts and remains halted. Other processes may = o
not be able to detect this state. *
Omission Channel A message inserted in an outgoing message buffer ne

arrives at the other end’s incoming message buffer. \
Send-omission Process A process completes a send, but the message is not put

in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message 1
buffer, but that process does not receive it. -

Arbitrary Process or Process/channel exhibits arbitrary behaviour: it may

(Byzantine) channel send/transmit arbitrary messages at arbitrary times,

commit omissions; a process may stop or take an

CSIE52409/§$%ﬁ¥%4912£tributed Systems \ Architectures & Models

Lecture 03: Architectures and Models

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

\ | 'S)
sl Timing Failures
5 (@)
Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.
Performance Process Process exceeds the bounds on the interval
between two steps.
Performance Channel A message’s transmission takes longer than the
stated bound. /}\
\\
. 9
CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 83

Masking Failures

® Failures are unavoidable.
® We can only mask failures

> By hiding it altogether

> By converting it into @ more acceptable type of failure
® Examples of techniques for masking failures

» Message checksums)
> Retransmission \ / |
> Replication 0
> ... (more in later chapters)
o \
O
CSIES2400/CSIEM0140 Distributed Systems Architectures & Models 84

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Security Models ‘o
® Threats: p—_
> threats to processes /' — TN
LR :&sﬁm
> threats to communication chann/als g
> denial of service / .
® Protection: _[5
» cryptography and shared secré\ e |
\
» authentication ‘\
|R &
CSIE52400/CSIEMO0140 Distributed Systems L 4 Argllibectures & Models 85
\!H

—¢ Objects and Principals

[e]

® Access rights: who can invoke the operations
® Principal: the authority on which an invocation or result is

issued.
Access rights Object
invocation
1
Client
result Server
Network Principal (server)

Principal (user)

CSIE52400lSIEM014O Distribut:rystems | I I I I | I Architectures & odels 86

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

N ! D
e The Enemy
\ O
(=)
Copyof m
2\ The enemy ..’:
. N “‘0 m’
/[“""ammunn® \
Process p) m—yp N—7p | Process q
Communication channel
CSIE52400/CSIEMO0140 Distributed Systems Architectures & Models 87
/
Secure Channels
ad
8@ Processes know each others

® Ensure the privacy and integrity of the data transmission
® No message replayed or reordered

Principal A /Principal B
\
@ Secure channel (Process g

CSIES2400/CSIEM0140 Distributed Systems \'n;&rchitectures & Models 88

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

Security Threats N

® Two interesting examples
» Denial of service (DOS) - Enemy interferes with the sk
aci;ivities of authori_zed users by making excessive N
pomFIess accesses in a network. \\
> Mobile code
» Mobile code raises new and interesting security problen;1§.

« Can easily play a Trojan horse role.
« Can be carried in many ways: emails, Web pages, applets,

Active X, ...
CSIE52400/CSQM%9 Distributed Systems Architectures & Models

|
® Security threats can come from any place. / }
|
|
/

“HW 1: Byzantine Generals Problem

® This is a classic problem in distributed system design.

® In a distributed system, failed components can send
conflicting information.

® Different parts of the system receive different
information.

CSIES2400/CSIEMO0140 Distributed Systems

Architectures & Models 90

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 03: Architectures and Models

\ |

d

Q)

— Attack or Retreat ? .

Coordinated Attack Leading to Victory

Uncoordinated Attack Leading to Defeat

How to reach the same agreement among loyal generals?

CSIE52400/CSIEMO0140 Distributed Systems

Architectures & Models 91

The Classic Problem

® Each division of the Byzantine army are directed by its own
general.
® Some of the generals may be traitors.
® Generals communicate with each other by reliable messengers.
® Requirements:
> All loyal generals decide upon the same plan of action.
» A small number of traitors cannot cause the loyal generals to

adopt a bad plan.

S ‘ ’r 1". "n, | g
CSIE524OOISIEM014O Distributerwstems I I I Architectures &Iode

92

)

CSIE52400/CSIEMO0140 Distributed Systems Lecture 03: Architectures and Models

/;)}Iariations and Impossibility

' ® _How many traitors does it take to make the agreement among
loyal generals impossible ?

® What if the messengers were not reliable ?

7

® There are several variant problems. Can you think out a
different one by yourself ?

® Do not try to look for answer from the net or AL. It will loose
all the fun of this assignment.

® You may do that AFTER thinking about the problem thoroughly
and propose your answers. \/

CSIES2400/CSIEM0140 Distributed Systems '\'}chhitectures & Models 93

Reference
‘ l@mport, L., Shostak; R.; Pease, M. “The Byzantine Generé%

oblem”. ACM TOPLAS. Vol 4. Num. 3, July, 1982.

® There are several variant problems based on the C|aSSIC,
problem. .

® Due date: Mar 19, 2024 |
® Submit through the NDHU e-learning (4 #e% =)™ M

g
disk quota is almost full and therefore not reT)I%\\

CSIEEi2400/CS|EM014 istribued Systems Areffitectures & 4

N\

