
CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

CSIE52400/CSIEM0140
Distributed Systems

Lecture 05
Processes & OS Support

Shiow-yang Wu (吳秀陽)
Department of Computer Science and Information Engineering

National Dong Hwa University

CSIE52400/CSIEM0140 Distributed Systems 1

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

System Layers
 OS controls the resources on each node.

Processes & OS Support 2

Applications, services

Platform

Middleware

OS: kernel,
libraries &
servers

Computer &
network hardware

Computer &
network hardware

Node 1 Node 2

OS1
Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Requirements from OS
 Encapsulation  provide useful service interface (good

invocation mechanism) to the resources
 Protection  provide protection of resources from

illegitimate access
 Concurrent processing  allow concurrent clients and

achieve concurrency transparency
 Communication  for coordination with other nodes

over networks
 Scheduling  ensure proper scheduling of the

operations invoked by clients

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 3

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Core OS Functions

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 4

Communication
manager

Thread manager Memory manager

Supervisor

Process manager

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Core OS Components
 Process manager: handles the creation and operations upon

processes
 Thread manager: thread creation, synchronization and

scheduling
 Communication manager: communication between threads

attached to different processes on the same computer
 Memory manager: management of physical and virtual

memory
 Supervisor: dispatching of interrupts, system call traps and

other exceptions

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 5

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

OS Architecture

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 6

Monolithic Kernel Microkernel

Server:
Dynamically loaded
server program:Kernel code and data:

.......

.......S4

S1

S1 S2 S3

S2 S3 S4

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Monolithic vs Microkernel

Processes & OS Support 7

(https://en.wikipedia.org/wiki/Microkernel)

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

The Role of Microkernel

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 8

Middleware

Language
support

subsystem

Language
support

subsystem

OS emulation
subsystem

Microkernel

Hardware

The microkernel supports middleware via subsystems

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Protection
 Protection against both outside malicious accesses,

but also illegal accesses that may violate
consistency or semantics.

 Separate b/w kernels and user-level processes.
 Applications run in the user space.
 Kernels run in the supervisor(privileged) mode.
 A system call trap transfers a user-level process to

the kernel address space.
 Programs pay a price for protection (switching

address spaces is costly).

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 9

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Processing Concepts

 We build virtual processors in software, on top of physical processors:

 Processor: Provides a set of instructions along with the capability of
automatically executing a series of those instructions.

 Thread: A minimal software processor in whose context a series of
instructions can be executed. Saving a thread context implies
stopping the current execution and saving all the data needed to
continue the execution at a later stage.

 Process: A software processor in whose context one or more threads
may be executed. Executing a thread, means executing a series of
instructions in the context of that thread.

Networking & Internetworking 10

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Processes and Threads
 Traditional processes are heavyweight processes
 allow only a single activity
 carry all the resources within it
 make sharing awkward and expensive

 New process concept
 an execution environment
 with one or more threads
 a thread is an OS abstraction of an activity

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 11

REMINDERS FOR
THIS CLASS

Fibers
 Fibers are even lighter units of execution which

are cooperatively scheduled.
 They provide means for running pieces of code

that can be paused and resumed.
 Only one fiber will be running at a time.
 A running fiber must explicitly "yield" to allow

another fiber to run.
 A fiber can run in any thread in the same

process.
 Applications gain performance by managing

scheduling themselves.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 12

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Fibers vs Threads

 Threads are lightweight processes.
 Fibers are lightweight threads.
 Fibers implement user space cooperative multitasking.
 Fibers always start and stop/yield in a number of

predefined places. Makes programming easier.
 Fiber switching is done in user space by the execution

environment.
 Yielding and resuming are performed by saving and

restoring the fiber’s execution context/stack.

Processes & OS Support 13

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Execution Environment
 Process execution environment
 an address space
 thread synch and communication resources

(semaphores, sockets, …)
 high-level resources (files, windows, …)
 provides a protection domain for the threads

within it
 Threads
 share resources accessible within execution

environment

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 14

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Address Space

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 15

Stack

Text

Heap

Auxiliary regions

0

2N

REMINDERS FOR
THIS CLASS

Regions
 An area of contiguous virtual memory that is accessible

only by the threads of the owning process
 Specified by
 extent (lowest address and size)
 RWX permissions
 growth direction (upwards or downwards)

 Can have shared regions for
 libraries
 kernel
 data sharing and communication

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 16

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Execution Environments and
Threads
 States associated with execution environment and threads

CSIE52400/CSIEM0140 Distributed Systems
Processes & OS Support 17

Execution environment Thread

Address space tables Saved processor registers
Communication interfaces, open
files

Priority and execution state (such as
BLOCKED)

Semaphores, other synchronization
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Creation of New Processes 1
 Choose target host
 transfer policy (local or remote)
 location policy (which node)

• static (deterministic or probabilistic)
• adaptive (heuristic decision based on load)

 load sharing
• centralized, decentralized, or hierarchical
• sender-initiated vs. receiver-initiated
• process migration

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 18

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Creation of New Processes 2
Create execution environment
 static (when the address space is in statically

defined format)
 dynamic address space region definition and

initialization (eg. UNIX fork)
• each region of parent process can be inherited or

omitted
• inherited regions can be shared or copied

Copy-on-write: a page in a copied region is physically
copied only when it is modified

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 19

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Copy-on-Write

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 20

a) Before write b) After write

Shared
frame

A's page
table

B's page
table

Process A’s address space Process B’s address space

Kernel

RA RB

RB copied
from RA

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Threads
 Client and Server threads (next slide)
 Threads within clients (next slide)
 Multithreading improves the maximum server

throughput
 Multi-threaded servers architecture
 Worker pool architecture (next slide)

• an I/O thread and a fixed pool of worker threads
 Thread-per-request (slide22a)

• the I/O thread spawns a new thread for each
request

 Thread-per-connection (slide22b)
 Thread-per-object (slide22c)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 21

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Client and Server
with Threads

Processes & OS Support 22

Server

N worker
threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

generates
results

Requests

Receipt &
queuing

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Alternative Server Threading
Architectures

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 23

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remote
remote I/O

per-connection threads per-object threads

objects objects
objects

REMINDERS FOR
THIS CLASS

Why Multi-threaded Model
 Allows overlap of memory access of one with

computation by another thread/process
 Reduce unnecessary blocking
 Need many computing entities (exploit parallelism)
 Threads are cheaper to create and manage
 Switching b/w threads is much cheaper (next slide)
 Resource sharing is easier and more efficient

between threads that share the same exec env
 Useful in the context of large applications
 Many applications are simply easier to structure as a

collection of cooperating threads
CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 24

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Contexts

 Processor context: The minimal collection of values stored in the
registers of a processor used for the execution of a series of instructions
(e.g., stack pointer, addressing registers, program counter).

 Thread context: The minimal collection of values stored in registers and
memory, used for the execution of a series of instructions (i.e.,
processor context, state).

 Process context: The minimal collection of values stored in registers and
memory, used for the execution of a thread (i.e., thread context, but now
also at least MMU register values).

Networking & Internetworking 25

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Context Switching
 Threads share the same address space. Thread context

switching can be done entirely independent of the
operating system.

 Process switching is generally (somewhat) more expensive
as it involves getting the OS in the loop, i.e., trapping to
the kernel. (next slide)

 Creating and destroying threads is much cheaper than
doing so for processes.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 26

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Drawback of IPC

 When structuring large application using multiple processes,
the cost of IPC can be very high

 Context switching as the result of IPC

Processes & OS Support 27

process B

REMINDERS FOR
THIS CLASS

GALLERY 01

Single and Multithreaded
Processes

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 28

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Single Threaded Process
Stack:
 LIFO organization
 for scratch space
 fixed, limited size

Heap
 dynamic allocation
 variable size
 allocate at any time
 deallocate at any time

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 29

REMINDERS FOR
THIS CLASS

A Multithreaded Process

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 30

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Threads vs Processes
 A thread is a single sequential flow within a process.
 Multiple threads within one process share
 heap storage, for dynamic allocation and deallocation
 static storage, fixed space
 code

 Each thread has its own registers and stack.
 Difference between the stack and the heap:
 stack: Memory is allocated by reserving a block of fixed size on top

of the stack. Deallocation is adjusting the pointer to the top.
 heap: Memory can be allocated at any time and of any size.

 Threads share the same single address space and synchronization is
needed when threads access same memory locations.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 31

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Threads vs Processes

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 32

Comparison Processes Threads

Definition A process is a program under execution i.e
an active program

A thread is a lightweight process that can be
managed independently by a scheduler.

Spawning/context
switching time

Spawning/switching processes is
expensive

Spawning/switching threads is less
expensive

Memory Sharing Processes are totally independent and
don’t share memory.

Threads share the same address space:
more prone to errors.

Communication Communication between processes
requires more time than between threads.

Communication between threads requires
less time than between processes .

Blocked If a process gets blocked, remaining
processes can continue execution.

If a user level thread gets blocked, all of its
peer threads also get blocked.

Protection Processes are protected against each others
by OS/HW.

No support from OS/HW to protect threads
using each other’s memory.

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Threads vs Processes

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 33

Comparison Processes Threads

Resource Consumption Processes require more resources
than threads.

Threads generally need less
resources than processes.

Dependency Individual processes are independent
of each other.

Threads are parts of a process and
so are dependent.

Data and Code sharing Processes have independent data
and code segments.

A thread shares the data segment,
code segment, files etc. with its peer
threads.

Treatment by OS
All the different processes are
treated separately by the operating
system.

All user level peer threads are
treated as a single task by the
operating system.

Memory
synchronization

No memory synchronization
needed

Need synchronization mechanisms
to correctly handle the data

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Lifecycle of Thread

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 34

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Threads Issues
 Thread management
 Creation, execution, deletion
 Static versus dynamic

 Thread lifetimes (thread states)
 Thread programming
 Thread synchronization
 Critical sections, condition variables, locks, semaphores

 Thread scheduling

 preemptive vs. non-preemptive scheduling
 Thread implementation

 user-level vs kernel-level
CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 35

REMINDERS FOR
THIS CLASS

GALLERY 01

Thread Implementation 1
 A thread package usually contains operations
 to create and destroy threads
 for thread synchronization

 Two approaches to thread implementation
 as a thread library executed in user mode
 let the kernel handles and schedules threads (expensive)

 Advantages of user-level thread
 cheap to create and destroy threads
 switching thread context is easy

 Problem with user-level thread
 invocation of a blocking system call will immediately block

the entire process (and therefore other threads within)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 36

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Thread Implementation 2
 Kernel solution: the kernel contain the implemenetation of a

thread package. All operations return as system calls.

 Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.

 Handling external events is simple: the kernel (which catches all events)
schedules the thread associated with the event.

 The problem is (or used to be) the loss of efficiency because each
thread operation requires a trap to the kernel.

 Try to mix user-level and kernel-level threads into a single concept.

 Performance gain has not turned out to generally outweigh the
increased complexity.

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 37

REMINDERS FOR
THIS CLASS

Thread Implementation 3
 Introduce a two-level threading approach: kernel threads that can execute user-

level threads.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 38

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Light-Weight Processes
(LWPs)

 Several LWPs per heave-weight process
 User-level threads package
 Create/destroy threads and synchronization primitives

 Multithreaded applications – create multiple threads, assign
threads to LWPs (one-one, many-one, many-many)

 Each LWP, when scheduled, searches for a runnable thread
(two-level scheduling)
 Shared thread table: no kernel support needed

 When a LWP thread block on system call, switch to kernel mode
and OS context switches to another LWP

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 39

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Two-Level Scheduling
of LWPs

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 40

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Two-level Threading

 User thread does system call ⇒ the kernel thread that is executing that
user thread, blocks. The user thread remains bound to the kernel thread.

 The kernel can schedule another kernel thread having a runnable user
thread bound to it. Note: this user thread can switch to any other
runnable user thread currently in user space.

 A user thread calls a blocking user-level operation⇒ do context switch
to a runnable user thread, (then bound to the same kernel thread).

 When there are no user threads to schedule, a kernel thread may
remain idle, and may even be removed (destroyed) by the kernel.

Networking & Internetworking 41

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Thread Implementation 4
 Another way is to use scheduler activations.(next slide)
 No need to maintain LWPs.
 When a thread blocks on a system call, the kernel does an

upcall to the scheduler to pick the next runnable thread.

 Problem: not elegant, upcall violates the structure of layered
system

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 42

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Scheduler Activations
(FastThreads)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 43

Process
A

Process
B

Virtual processors Kernel

Process

Kernel

P idle

P needed

P added

SA blocked

SA unblocked

SA preempted

A. Assignment of virtual processors
to processes

B. Events between user-level scheduler & kernel
Key: P = processor; SA = scheduler activation

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Thread Libraries
 Posix Threads (pThreads)
 Widely used threads library
 Conforms to the Posix standard
 Sample calls: pthread_create,…
 Typical used in C/C++ applications
 Can be user-level or kernel-level or via LWPs

 Windows Threads
 Similar to pThreads for Windows

 Java Threads
 Native thread support built into the language
 Threads are scheduled by the JVM

 OpenThreads
 From the OpenSceneGraph project
 Intended to provide a minimal and complete object-

oriented thread interface for C++

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 44

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

FastThreads
 A very efficient thread implementation.
 Each application process has a user-level

scheduler.
 The kernel allocates virtual processors to

processes.
 The no. of virtual processors assigned to a

process can vary.
 Use scheduler activation (SA) for the kernel

to notify the process’s scheduler of an event
(also known as an upcall).

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 45

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Multithreaded Clients
 Client applications can be multithreaded.
 Can have separate threads for communication, data

manipulation, and user interface.
 Can have multiple connections at the same time.
 Can explore parallelism (eg. transfer data in parallel)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 46

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Multi-threaded Clients : Browsers
 Browsers such as IE are multi-threaded
 Such browsers can display data before entire document is

downloaded: performs multiple simultaneous tasks
 Fetch main HTML page, activate separate threads for other parts
 Each thread sets up a separate connection with the server

• Uses blocking HTTP request

 Each part (eg. gif image file) fetched separately and in parallel
 Multiple request-response calls to other machines (RPC)
 Several calls at the same time, each one by a different thread
 Then waits until all results have been returned
 Note: if calls are to different servers, we may have a linear speed-up

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 47

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Thread-level Parallelism(TLP)
 Let ci denote the fraction of time that exactly i threads are being

executed simultaneously

with N the maximum number of threads that (can) execute at the same
time.

 Practical measurements: A typical Web browser has a TLP value
between 1.5 and 2.5⇒ threads are primarily used for logically
organizing browsers.

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 48

TLP =
∑N

i =1 ici
1− c0

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Multithreaded Servers
 Improve performance
 Starting a thread is cheaper than starting a new process.

 Simple scale-up to a multiprocessor system.

 As with clients: hide network latency by reacting to next request while
previous one is being replied

 Better structure

 Most servers have high I/O demands. Using simple, well-understood
blocking calls simplifies the structure.

 Multithreaded programs tend to be smaller and easier to understand
due to simplified flow of control.

Networking & Internetworking 49

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Multithreaded Servers
 A multithreaded server organized in a dispatcher/worker model.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 50

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Multi-threaded Server
Example

 Apache web server: pool of pre-spawned
worker threads

 Dispatcher thread waits for requests
 For each request, choose an idle worker

thread
 Worker thread uses blocking system calls

to service web request

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 51

REMINDERS FOR
THIS CLASS

GALLERY 01

Server Construction
 Three ways to construct a server.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 52

Model Characteristics

Multithreading Parallelism, blocking system calls

Single-threaded
process

No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls

 The multithreaded model retains the “sequential
process” model which is much easier to program and
still achieve parallelism.

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Thread Programming
 For conventional language (such as C), a thread library

(or thread package) is used.
 C Threads package
 IEEE POSIX threads standard (pthreads)

 Languages with built-in thread support
 Java, Python
 C#
 Clojure, Ada95, Modula-3, …

 We will briefly go over Python threads.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 53

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python Threads
 Low level _thread module
 Higher level threading module
 Starting from 3.7, threading module is always available
 Support direct thread creation
 Support Thread class and thread objects
 Synchronization objects:
 Lock, RLock, Condition, Semaphore
 Event, Timer, Barrier

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 54

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python Thread Concepts
 In Python, a thread is
 an object and therefore can hold data,
 be run with methods,
 be stored in data structures, and
 be passed as parameters to methods

 A thread can also be executed as a process
 Before it can execute, a thread’s class must

implement a run method
 During its lifetime, a thread can be in various

states

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 55

HOW TO USE THIS PRESENTATION

Thread Lifecycle

Processes & OS Support 56CSIE52400/CSIEM0140 Distributed Systems

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Python Thread Basics

 A thread remains inactive until start method runs
 Thread is placed in the ready queue
 Newly started thread’s run method is also activated

 A thread can lose access to the CPU:
 Time-out (process also known as time slicing)
 Sleep
 Block
 Wait

 Process of saving/restoring a thread’s state is called
a context switch

Processes & OS Support 57

REMINDERS FOR
THIS CLASS

GALLERY 01

Python Thread Basics
 The old thread module has been renamed _thread in

Python3 and is “deprecated”.
 The threading module provides high level OOP based

multithreading.
 The GIL(Global Interpreter Lock) used by CPython(the

standard python) prevents two threads from executing
simultaneously. However, the interpreter regularly releases
and reacquires the lock(every 10 bytecode instructions).

 Use multiprocessing, concurrent.futures, joblib, dask,
ray, gevent/greenlets, celery, etc. modules/libraries for
general parallel/distributed programming.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 58

concurrent.futures
concurrent.futures

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Python Thread Methods

 __init__(): thread arguments specification and initialization
 run(): the entry point for a thread
 start() : starts a thread by calling the run() method
 join([time]) : waits for threads to terminate
 isAlive() : checks whether a thread is still executing
 getName() : returns the name of a thread
 setName() : sets the name of a thread

Processes & OS Support 59

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python Thread Creation
To start threads with threading module:
 Construct a subclass from the Thread class.
 Override the __init__(self [,args]) method for

arguments and initialization.
 Override the run(self [,args]) method to code

the processing logic of the thread.
 Instantiate a new thread object from the Thread

subclass above and start() it.
 It automatically calls the run() method to

execute the processing logic.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 60

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Python Thread Direct

import threading
import time

def loop1_10():
for i in range(1, 11):

time.sleep(1)
print(i)

thrd = threading.Thread(target=loop1_10)
thrd.start()

Processes & OS Support 61

REMINDERS FOR
THIS CLASS

GALLERY 01

Python Thread Class/Object
import threading
import time

class MyThread(threading.Thread):
def run(self):

print(self.getName() + " started!")
time.sleep(1)
print(self.getName() + " finished!")

if __name__ == '__main__':
for x in range(4):

mythread = MyThread(name = "Thread-" + str(x + 1))
mythread.start()
time.sleep(.9)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 62

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Synchronization Objects
 Lock – simplest with acquire([blocking]) and release()
 RLock – re-entrant lock to prevent unwanted blocking
 Semaphore – counting locks
 Event – an internal flag with set(), clear() and wait()
 Condition – advanced event with acquire(), release(), wait(),

notify() and notify_all()
 Timer – set a timer to start a thread
 Barrier – wait() until all threads have arrived

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 63

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python Threads: multiprocessing
from multiprocessing import Process
from time import *
from random import *

def sleeper(name):
t = gmtime()
s = randint(1,20)
txt = str(t.tm_min)+':'+str(t.tm_sec)+' '+name+' sleeps for '+str(s)+' seconds'
print(txt)
sleep(s)
t = gmtime()
txt = str(t.tm_min)+':'+str(t.tm_sec)+' '+name+' wakes up'
print(txt)

if __name__ == '__main__':
p = Process(target=sleeper, args=('eve',))
q = Process(target=sleeper, args=('bob',))
p.start(); q.start()
p.join(); q.join()

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 64

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Execution Results

42:35 bob sleeps for 15 seconds
42:35 eve sleeps for 4 seconds
42:39 eve wakes up
42:50 bob wakes up

45:9 eve sleeps for 4 seconds
45:9 bob sleeps for 19 seconds
45:13 eve wakes up
45:28 bob wakes up

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 65

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

More Examples 1/2
from multiprocessing import Process
from threading import Thread
from time import *
from random import *

shared_x = randint(10,99)

def sleeping(name):
global shared_x
t = gmtime(); s = randint(1,20)
txt = str(t.tm_min)+':'+str(t.tm_sec)+' '+name+' sleeps for '+str(s)+' seconds'
print(txt)
sleep(s)
t = gmtime(); shared_x = shared_x + 1
txt = str(t.tm_min)+':'+str(t.tm_sec)+' '+name+' wakes up, seeing shared x being '
print(txt+str(shared_x))

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 66

Try it a try and figure
out what is happening.

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

More Examples 2/2
def sleeper(name):

sleeplist = list()
print(name, 'sees shared x being', shared_x)
for i in range(3):

subsleeper = Thread(target=sleeping, args=(name+' '+str(i),))
sleeplist.append(subsleeper)

for s in sleeplist: s.start()
for s in sleeplist: s.join()
print(name, 'sees shared x being', shared_x)

if __name__ == '__main__':
p = Process(target=sleeper, args=('eve',))
q = Process(target=sleeper, args=('bob',))
p.start(); q.start()
p.join(); q.join()

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 67

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Fibers in Python
 The fibers library allow Python to use fibers.
import fibers

def func1():
print("1“)
f2.switch()
print("3“)
f2.switch()

def func2():
print("2“)
f1.switch()
print("4“)

Processes & OS Support 68

f1 = fibers.Fiber(target=func1)
f2 = fibers.Fiber(target=func2)
f1.switch()

The example will print “1 2 3 4”.

This demonstrate the cooperative
work of 2 fibers yielding control to
each other

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Java Threads

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 69

Thread(ThreadGroup group, Runnable target, String name)
Creates a new thread in the SUSPENDED state, which will belong to group and
be identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()
Set and return the thread’s priority.

run()
A thread executes the run() method of its target object, if it has one, and
otherwise its own run() method (Thread implements Runnable).

start()
Change the state of the thread from SUSPENDED to RUNNABLE.

sleep(int millisecs)
Cause the thread to enter the SUSPENDED state for the specified time.

yield()
Causes the thread to enter the READY state and invoke the scheduler.

destroy()
Destroy the thread.

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

thread.join(int millisecs)
Blocks the calling thread for up to the specified time until
thread has terminated.

thread.interrupt()
Interrupts thread: causes it to return from a blocking method
call such as sleep().

object.wait(long millisecs, int nanosecs)
Blocks the calling thread until a call made to notify() or
notifyAll() on object wakes the thread, or the thread is
interrupted, or the specified time has elapsed.

object.notify(), object.notifyAll()
Wakes, respectively, one or all of any threads that have
called wait() on object.

Java Thread Synchronization

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 70

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Java Thread Lifecycle

Processes & OS Support 71

new

runnable

dead

blocked

constructor

start

run
terminates

sleep, wait, or
blocked on I/O

time expires,
notifyALL,
I/O complete

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Java Thread States

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 72

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Java Thread Lifecycle

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 73

REMINDERS FOR
THIS CLASS

Java Thread Lifecycle

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 74

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Invocations between Address
Spaces

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 75

Performance Factors:
1. Synchronous vs

asynchronous
2. Domain transition

(across address
spaces)

3. Network
communication

4. Thread scheduling
and switching

(c) RPC/RMI (between computers)

User 1 User 2

Thread 1 Network Thread 2

Kernel 2Kernel 1

Control transfer via
trap instruction

User Kernel

Thread

User 1 User 2

Control transfer via
privileged instructions

Thread 1 Thread 2

Protection domain
boundary

(a) System call

(b) RPC/RMI (within one computer)

Kernel

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Lightweight Remote
Procedure Call

Processes & OS Support 76

1. Copy args

2. Trap to Kernel

4. Execute procedure
and copy results

Client

User stub

Server

Kernel

stub

3. Upcall 5. Return (trap)

A
A stack

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Serialized vs Concurrent
Invocations

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 77

Receive
unmarshal
execute request
marshal
Send

Receive
unmarshal

process results

marshal
Send

process args

process args
marshal

Send
transmission

Receive
unmarshal

process results

execute request

Send

Receive
unmarshal

marshal

Client Server

Serialised invocations

Client Server

marshal
Send

process args

marshal
Send

process args

execute request

Send

Receive
unmarshal

marshal

execute request

Send

Receive
unmarshal

marshal
Receive

unmarshal
process results

Receive
unmarshal

process results
time

Concurrent invocations

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Virtualization
 Virtualization is to provide multiple virtual machines (virtual

h/w images with separate OS instances) over underlying
physical system.

 Benefits:
 Apps can run on VMs w/o rewritten or recompiled
 Provide convenient and customized services
 Dynamic creation/destruction of VMs
 Easy migration and flexible management
 Reduce server investment and energy consumption
 Support cloud computing

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 78

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Virtualization Principles

 Basic ideas:
mimicking interface

 Virtualization is important:
 Hardware changes faster than software
 Ease of portability and code migration
 Isolation of failing or attacked components

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 79

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Virtualization & Cloud Computing

 Virtualization is the key to the success of CC.
 Virtualization s/w is used to run multiple Virtual Machines(VMs)

on a single physical server to provide functions of multiple
physical machines.

 The software is called hypervisor(or virtual machine monitor,
VMM) which performs the abstraction of the hardware to the
individual VMs.

 It was first invented and popularized by IBM in the 1960s for
running multiple software contexts on its mainframe
computers.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 80

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Mimicking Interfaces

 Four types of interfaces at three different levels.

 Instruction set architecture: the machine instruction set, with two
subsets

 Privileged instructions: allowed to be executed only by the OS

 General instructions: can be executed by any program

 System calls as offered by an OS

 Library calls, known as an application programming interface (API)

Networking & Internetworking 81

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Ways of Virtualization

 Differences
a) Separate set of instructions, an interpreter/emulator, running atop an OS

b) Low-level instructions, along with bare-bones minimal operating system

c) Low-level instructions, but delegating most work to a full-fledged OS

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 82

(a) Process VM (b) Native VMM (c) Hosted VMM

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Hypervisor(VMM)

 Hypervisor implementation: (figure on next slide)
 Type 1 hypervisor: directly running over the hardware
 Type 2 hypervisor: running over an operating system

 Support the running of multiple VMs, schedule the VMs,
provide a unified and consistent access to the CPU, memory...
resources on the physical machine.

 A VM runs an operating system and applications.
 The OS inside the VM may be virtualization-aware and require

modifications—a scheme known as paravirtualization (as
opposed to full virtualization).

Processes & OS Support 83

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Types of Hypervisors

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 84

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Zooming into VMs
 Privileged instruction: if and

only if executed in user mode,
it causes a trap to the operating
system

 General(Nonpriviliged)
instruction: the rest

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 85

 Special instructions:
 Control-sensitive instruction: may affect configuration of a machine

(e.g., one affecting relocation register or interrupt table)

 Behavior-sensitive instruction: effect is partially determined by context
(e.g., POPF sets an interrupt-enabled flag, but only in system mode)

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Condition for Virtualization
 Necessary condition: For any conventional computer, a VMM

may be constructed if the set of sensitive instructions for that
computer is a subset of privileged instructions.

 Problem: condition is not always satisfied. There may be
sensitive instructions that are executed in user mode without
causing a trap to the OS.

 Solutions:
 Emulate all instructions
 Wrap nonprivileged sensitive instructions to divert control to

VMM
 Paravirtualization: modify guest OS, either by preventing

nonprivileged sensitive instructions, or making them
nonsensitive (i.e., changing the context).

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 86

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Virtualization Types
 A layer of hypervisor (virtual machine monitor) on top of

physical system.
 Full virtualization:
 Hypervisor offers an identical interface to the underlying

physical architecture.
 Existing OSs can run transparently and unmodified.
 Hard to realize with satisfactory performance

 Paravirtualization:
 Hypervisor offers a modified interface with improved

performance
 OSs need to be ported to the modified interface

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 87

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

VM Migration

 VM migration allows you to move an entire VM from one
machine to another and continue operation of the VM on the
second machine.

 This advantage is unique to virtualized environments.
 Can migrate after suspending the source VM, moving its

attendant information to the target machine and starting it on
the target machine.

 Can also migrate while the VM is running (aka. “live migration”)
and resuming its operation on the target machine after all the
state is migrated.

Processes & OS Support 88

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Benefits of Virtualization

 Elasticity and scalability: Firing up and shutting down VMs
involves less effort as opposed to bringing servers up or down.

 Workload migration: Can carry out workload migration with
much less effort as compared to migration across physical
servers at different locations.

 Resiliency: Can isolate physical-server failure from user
services through migration of VMs.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 89

HOW TO USE THIS PRESENTATION

REPRESENTING MOLECULES

Virtualization and Cloud
 Virtualization is not a prerequisite for cloud

computing.
 However, virtualization provides a valuable toolkit

and enables significant flexibility in cloud-
computing deployments.

 Therefore, it is almost adopted by all cloud
platforms.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 90

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Virtualization Software
 Popular virtualization software:
 VMware (VMware Inc.)
 VirtualBox (Oracle)
 Hyper-V (Microsoft)
 QEMU (open source machine emulator & virtualizer)
 Xen (open source project)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 91

REMINDERS FOR
THIS CLASS

GALLERY 01

VirtualBox – A Free VM S/W
 VMware workstation/player needs license fee
 VirtualBox is open-source and well maintained by Oracle
 A type-2 hypervisor(i.e. runs on the host operating), very

easy to install and use
 Users can load multiple guest OSes under a single host OS
 VirtualBox supports many Host OSes: Windows, Linux,

macOS, Solaris, …
 VirtualBox can be accessed from

https://www.virtualbox.org/
 Give it a try.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 92

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

How Does VirtualBox Work?
 Creating a VM in VirtualBox will allocate a portion of your

physical machine’s resources (CPU, RAM, disk, …) to the VM.
 You can install and run a guest OS on the VM.
 The guest OS sees these resources as its own and operates

independently of the host OS.
 Once the VM with guest OS is set up, you can install and run

the applications of guest OS while still using your host OS as
usual.

 You can even create multiple VMs with different guest OSs.
 VirtuslBox acts as a VM manager to create, modify, start,

pause, stop, even save the state of VM to revert to.

Networking & Internetworking 93

REMINDERS FOR
THIS CLASS

Virtualization in VirtualBox
 Software-based virtualization (6.0 and below)
 VirtualBox adopts a standard software-based virtualization

which reconfigures the guest OS code
 Achieve a performance comparable to VMware

 Hardware-assisted virtualization (6.1 and above)
 Supports both Intel's VT-x and AMD's AMD-V hardware-

assisted virtualization
 Run each guest VM in its own address-space
 Starting with 6.1, only supports this method

 Device virtualization: emulates HDs in VDI, VMDK, or VHD
formats

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 94

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Virtualization of CPU
 The primary role of hypervisor
 Popek & Goldberg(1974) divided CPU instructions that can

change the machine state into
 Control-sensitive instructions: change the configuration of

resources
 Behaviour-sensitive instructions: read privileged state and

reveal physical resources
 Condition for virtualization: An architecture lends itself to

virtualization if all sensitive instructions are privileged
instructions. (Not always true in practice but providing a good
direction)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 95

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Paravirtualization
 Full virtualization provides a layer of emulation for all

instructions and handles sensitive ones within the layer.
 Guest OSs can run unchanged
 Expensive

 Paravirtualization
 Many instructions can run on the bare hardware
 Privileged instructions are rewritten as hypercalls that trap

into the hypervisor
 Sensitive but nonprivileged instructions should be dealt with

by the guest OSs. (need porting)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 96

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Case Sudy: Xen
 Xen is another classic example of virtualization.
 Part of the XenoServer project at Cambridge Univ
 XenoServer is an early cloud computing project supporting

infrastructure as a service.
 Produce Xen virtual machine monitor and XenoServer Open

Platform.
 Initially designed to support XenoServer but evolved into a

standalone virtualization solution.
 2013, Xen Project was moved under Linux Foundation.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 97

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Xen
 The goal is to enable multiple OS instances

to run in complete isolation with minimal
overhead.

 Designed to scale to very large no. of
instances (several hundred VMs on a single
machine) and deal with heterogeneity.

 Supports most major OSs (Windows, Linux,
Solaris, NetBSD, …)

 Runs on major CPUs architecture 32/64-bit
x86, PowerPC, IA-32, IA-64, ARM, MIPS, …

 Scale to 4000+ CPUs, 16TB RAM/host

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 98

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Xen Architecture
 Xen virtual machine monitor (hypervisor)
 Virtualize underlying physical resources (CPUs, …)
 Schedule the physical resources
 Provide the appearance that each VM has its own

(virtualized) physical machine
 Multiplex the virtual resources onto the physical

resources
 Ensure strong protection between VMs
 Figure (next slide)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 99

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Architecture of Xen

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 100

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Xen Design
 Implement only a minimal set of mechanisms for resource

management and isolation.

 Primary concern is isolation (domains, faults, …)

 Must be as lightweight as possible to minimize the overhead of
two-level (virtual-physical) execution

 Support large no. of VM instances (domains) running guest
OSs.

 Guest OSs run in domainU (the unprivileged domain)

 A special domain0 act as control plane with privileged access.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 101

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Rings of Privilege

 The hierarchical protection domains (or protection rings) are
mechanisms to protect data and functionality from faults and
malicious behavior.

Processes & OS Support 102

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Rings of Privilege
 Different OSs may adopt different arch.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 103

REMINDERS FOR
THIS CLASS

GALLERY 01

Scheduling
 Many OSs support two-level scheduling

 Scheduling of processes

 Scheduling of user-level threads within processes

 Xen introduces an extra level of scheduling

 Supports virtual CPU (VCPU), each supporting a guest OS

 Hypervisor schedules VCPUs onto physical CPUs

 Guest OS schedules kernel-level threads onto their allocated
VCPUs

 Thread libraries schedule user-level threads onto kernel-level
threads

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 104

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Virtual Memory Management
 The most complicated aspect of virtualization
 Complexity of underlying h/w sol to memory mgnt
 Need extra levels of protection for isolation b/w domains

 Xen adopts a three-level architecture (next slide)
 Hypervisor manages physical memory
 Kernel of the guest OS provides pseudo-physical memory
 Applications within the guest OS are provided with virtual

memory

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 105

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Virtualization of Memory
Management

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 106

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Device Management
 Rely on split device drivers (next slide)
 Access to a physical device is controlled exclusively by

domain0 with a real device driver.
 Xen need to provide an abstraction with device multiplexing

s.t. each guest OS can have its own virtual device.
 Back-end device driver runs in domain0
 Front-end device driver runs in the guest OS
 Two drivers communicate to provide device access for the

guest OS

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 107

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Split Device Drivers

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 108

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Device Drivers
 Back-end device driver
 Manage multiplexing
 Provide a generic interface capturing the essential functions

of the device and making it easy for different guest OS to
use it

 Front-end device driver
 Act as a proxy for the device in the guest OS
 Accept interaction commands and communicating with the

back-end driver
 Communication is supported by a shared memory established

using a grant table of the hypervisor.
Processes & OS Support 109

REMINDERS FOR
THIS CLASS

GALLERY 01

I/O Rings
 Driver communication is done through I/O ring in the shared

memory (next slide)
 I/O ring supports two-way asynchronous comm b/w two parts

of the split device driver.
 Domains comm through requests and responses.
 A domain writes its request clockwise, starting at the request

start indicator and moving the pointer
 The other end can read from its end and move the associated

pointer.
 Same procedure for the responses.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 110

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

I/O Rings

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 111

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Porting a Guest OS
 Replace all privileged instructions used by the OS with the

relevant hypercalls.
 Reimplement all other sensitive instructions in a way that

preserves the semantics of the assoc ops
 Port the virtual memory subsystem
 Develop split device drivers for the required set of devices
 Some other more specific tasks need to be carried out: time,

clock, …

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 112

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

XenoServer Open Platform

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 113

(resource
discovery)

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Containers

 Containers are executable units of software in which
application code is packaged along with its programming
language runtimes, libraries, dependencies, and ALL of the
necessary elements to run in common ways so that the code
can run anywhere.

 Allow the packaging and isolation of applications with their
entire runtime environment—all of the files necessary to run.

 Containers virtualize the operating system and run anywhere.
 This makes it easy to move the containerized applications

between environments while retaining full functionality.
 Containers are isolated, but share OS and, where appropriate,

bins/libraries.

Networking & Internetworking 114

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Containers vs VM

 Both are mechanisms to
abstract physical hardware and
run applications within
independent spaces.

 They are both ways of
deploying applications while
isolating the application from
the underlying hardware.

 But they function differently:
containers share an OS while
VM contain a complete and
independent OS.

Networking & Internetworking 115

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Containers
 Namespaces: a collection of

processes in a container is given
their own view of identifiers

 Union file system: combine several
file systems into a layered fashion
with only the highest layer allowing
for WRITE operations (and the one
being part of a container)

 Control groups: resource restrictions
can be imposed upon a collection of
processes

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 116

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Client-Server Interaction
 Application-level and middleware-level solutions

CSIE52400/CSIEM0140 Distributed Systems
Processes & OS Support 117

REMINDERS FOR
THIS CLASS

GALLERY 01

Client-Server Classical Example:
The X-Window System

 The X kernel contains all the terminal-specific device drivers.
 The X kernel interface for controlling the screen is made

available to applications in the Xlib library.
 Two types of X applications: ordinary applications and window

managers.
 A window manager is an application that is given special

permission to manipulate the entire screen.
 The X protocol is a network-oriented communication protocol by

which an instance of Xlib can exchange data and events with
the X kernel.

 The client which runs only the X kernel is called X terminals.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 118

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Client-Server Classical Example:
The X-Window System

 The basic organization of the X Window System (Windows
Remote Desktop offers similar func).

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 119

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Anatomy of a Web Browser

Networking & Internetworking 120

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Client-Side Software for Distribution
Transparency

 A possible approach to transparent replication of a remote
object using a client-side solution.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 121

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Other Client-Server
Examples

 Mail servers and clients.
 File servers and terminal systems.
 DNS (Domain Name Server)
 Database clients and DB server
 Remote Desktop
 Video Streaming (e.g., YouTube app)
 VoIP (e.g., Skype)
 Cloud Storage (e.g., Dropbox)
 …

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 122

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Servers: Design Issues
 Iterative or concurrent server
 Service identification (next slide)
 End points assignment (more later)
 How a server can be interrupted?
 user exit
 use out-of-band data

 Stateless or stateful server
 Implementing stateful server
 keep records of clients at the server
 use cookies stored at the clients and sent along with

the request

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 123

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Services and Ports
 Most services are tied to a specific (well-known) ports

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 124

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Dynamic End Points Assignment

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 125

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Servers and State
 Stateless servers: Never keep accurate information about the status of

a client after having handled a request

 Don’t record whether a file has been opened (simply close it again
after access)

 Don’t promise to invalidate a client’s cache

 Don’t keep track of your clients

 Consequences

 Clients and servers are completely independent

 State inconsistencies due to client or server crashes are reduced

 Possible loss of performance because, e.g., a server cannot
anticipate client behavior (think of prefetching file blocks)

Networking & Internetworking 126

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Servers and State
 Stateful servers: Keeps track of the status of its clients

 Record that a file has been opened, so that prefetching can be done

 Knows which data a client has cached, and allows clients to keep
local copies of shared data

 Observation: The performance of stateful servers can be extremely
high, provided clients are allowed to keep local copies. As it turns out,
reliability is often not a major problem.

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 127

REMINDERS FOR
THIS CLASS

GALLERY 01

Object Servers
 Activation policy: which

actions to take when an
invocation request comes in:

 Where are code and data of
the object?

 Which threading model to
use?

 Keep modified state of
object, if any?

 Object adapter: implements a
specific activation policy

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 128

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Three Tiers Architecture

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 129

Crucial element: The first tier is generally responsible for passing
requests to an appropriate server: request dispatching.

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Request Handling
 Having the first tier handle all communication from/to the

cluster may lead to a bottleneck.
 A solution: TCP handoff

CSIE52400/CSIEM0140 Distributed Systems
Processes & OS Support 130

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Server Clusters
 The front end may easily get overloaded.
 Transport-layer switching: Front end

simply passes the TCP request to one of
the servers.

 Content-aware distribution: Front end
reads the request content and selects the
best server.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 131

REMINDERS FOR
THIS CLASS

GALLERY 01

Server Clusters
 Combining two solutions:

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 132

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Code Migration
 All systems discussed so fare have been limited to passing

data.
 There are situations in which passing programs (even while

executing) simplifies the design considerably.
 Passing programs is called code migration.
 General issues:
 models of code migration
 platform or infrastructure
 resource management
 how to deal with heterogeneity

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 133

REMINDERS FOR
THIS CLASS

Reasons for Migrating Code
 Improve performance by load distribution
 Reduce network communication by
 migrating part of a client to the server (eg. database access)

or part of a server to the client (eg. form processing)
 to process data close to where those data reside

 Exploit parallelism (eg. Web search)
 Flexibility (enable dynamically configured distributed systems)
 In many cases, one cannot move data to another location, for whatever

reason (often legal ones).

 Major problem: security

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 134

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Dynamic Configuration of a Client

 The principle of dynamically configuring a client to
communicate to a server. The client first fetches the
necessary software, and then invokes the server.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 135

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Models for Code Migration
 Traditionally, code migration in distributed systems is termed

process migration.
 For sake of migration, a process can be considered as consists

of three segments:
 code segment – the program code
 resource segment – references to resources needed by the

process
 execution segment – current execution state

 Different models for code migration may migrate different
segments of a process

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 136

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

ACTIVITY TIME!

Models for Code Migration

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 137

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Models for Code Migration

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 138

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Strong and Weak Mobility
 Object components:
 Code segment: the actual code
 Data segment: the state
 Execution state: the thread context executing the code

 Weak mobility: Move only code and data segment
 Relatively simple, especially if code is portable
 Code shipping (push) vs code fetching (pull)

 Strong mobility: Move component, including exec state
 Migration: move entire object from one to the other
 Cloning: start a clone, and set it in the same exec state

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 139

REMINDERS FOR
THIS CLASS

Migration of Resource
Segment 1

 Resource segment can’t always be easily transferred. Need to
consider the relationships between processes and resources,
as well as resources and machines.

 Process-to-resource bindings
 binding by identifier – precisely the referenced resource is

needed (eg. communication endpoints)
 binding by value – only the value of the resource is needed

(eg. standard libraries)
 binding by type – need only a resource of a specific type (eg.

printers)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 140

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Migration of Resource
Segment 2

 Resource-to-machine bindings:
 unattached resources – can be easily moved between

machines (eg. data files associated with the migrated code)
 fastened resources – can be moved, but only at relative high

costs (eg. databases, Web sites)
 fixed resources – intimately bound to a specific

machine/environment and cannot be moved (eg. local
devices, communication endpoints)

 Combining the two bindings to get 9 combinations to cope
with.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 141

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Migration and Local Resources

 Actions to be taken with respect to the references to local
resources when migrating code to another machine.

Processes & OS Support 142

Unattached Fastened Fixed

By identifier

By value

By type

MV (or GR)

CP (or MV, GR)

RB (or GR, CP)

GR (or MV)

GR (or CP)

RB (or GR, CP)

GR

GR

RB (or GR)

Resource-to-machine binding

Process-
to-

resource
binding

GR establish a global system wide reference
MV Move the resource
CP Copy the value of the resource
RB Rebind process to locally available resource

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Migration in Heterogeneous
Systems

 Main problem:

 The target machine may not be suitable to execute the migrated code

 The definition of process/thread/processor context is highly
dependent on local hardware, operating system and runtime system

 Solution: abstract machine implemented on different platforms

 Interpreted languages, effectively having their own VM

 Virtual machine monitors

 Observation: As containers are directly dependent on the underlying
OS, their migration in heterogeneous environments is far from trivial, to
simply impractical, just as process migration is.

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 143

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Migration in Heterogeneous
Systems

 The principle of maintaining a migration stack to support migration of an
execution segment in a heterogeneous environment

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 144

3-15

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Migrating a Virtual Machine
 Migrating images: three alternatives

1. Pushing memory pages to the new machine and resending the ones
that are later modified during the migration process.

2. Stopping the current virtual machine; migrate memory, and start the
new virtual machine.

3. Letting the new virtual machine pull in new pages as needed:
processes start on the new virtual machine immediately and copy
memory pages on demand.

CSIE52400/CSIEM0140 Distributed Systems Networking & Internetworking 145

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Performance Issue

 A complete migration may actually take tens of seconds. We also need
to realize that during the migration, a service will be completely
unavailable for multiple seconds.

 Measurements regarding response times during VM migration

Networking & Internetworking 146

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Example: D’Agents
 D’Agents (formally called Agent Tcl) can migrate programs in a

heterogeneous system.
 Programs are written in an interpretable language (eg. Tcl,

Java, or Scheme).
 Supports three types of mobility:
 sender-initiated weak mobility
 strong mobility by process migration
 strong mobility by process cloning

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 147

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Code Migration in D'Agents 1

 A simple example of a Tcl agent in D'Agents submitting a script
to a remote machine (sender-initiated weak mobility)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 148

proc factorial n {
if ($n  1) { return 1; } # fac(1) = 1
expr $n * [factorial [expr $n – 1]] # fac(n) = n * fac(n – 1)

}

set number … # tells which factorial to compute

set machine … # identify the target machine

agent_submit $machine –procs factorial –vars number –script
{factorial $number }

agent_receive … # receive the results (left unspecified for simplicity)

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

Code Migration in D'Agents 2
 An example of a D'Agents agent migrating to different machines where it executes the

UNIX who command (strong mobility, process migration)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 149

all_users $machines

proc all_users machines {
set list "" # Create an initially empty list
foreach m $machines { # Consider all hosts in the set of given machines

agent_jump $m # Jump to each host
set users [exec who] # Execute the who command
append list $users # Append the results to the list

}
return $list # Return the complete list when done

}

set machines … # Initialize the set of machines to jump to
set this_machine # Set to the host that starts the agent

Create a migrating agent by submitting the script to this machine, from where
it will jump to all the others in $machines.

agent_submit $this_machine –procs all_users -vars machines -script { all_users $machines }

agent_receive … #receive the results (left unspecified for simplicity)

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Implementation Issues 1
 The architecture of the D'Agents system.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 150

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

Implementation Issues 2
 The parts comprising the state of an agent in D'Agents.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 151

Status Description

Global interpreter variables Variables needed by the interpreter of an agent

Global system variables Return codes, error codes, error strings, etc.

Global program variables User-defined global variables in a program

Procedure definitions Definitions of scripts to be executed by an agent

Stack of commands Stack of commands currently being executed

Stack of call frames
Stack of activation records, one for each running
command

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Example: Mobile-C

 IEEE FIPA (Foundation for Intelligent Physical Agents) standard
compliant multi-agent platform for supporting C/C++ mobile
agents

 Specifically designed for real-time and resource constrained
applications with interface to hardware

 Has been ported to Raspberry Pi and ARM based computers
 Hosted in public git repository

Processes & OS Support 152

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Software Agents
 No universal agreement on the definition.
 An autonomous process capable of

perceiving, reacting to, and initiating
changes in its environment (may
collaborate with users or other agents).

 Researchers can’t reach agreement on a
single taxonomy either.

 Nevertheless, software agents are playing
an increasingly important role in distributed
systems.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 153

REMINDERS FOR
THIS CLASS

GALLERY 01

A Taxonomy by Capabilities

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 154

Autonomous

Cooperate Learn

Collaborative
Agents

Interface
Agents

Smart
Agents

Collaborative
Learning Agents

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

A Taxonomy by Roles/Types
 Reactive agents
 Interface agents
 Collaborative agents
 Mobile agents
 Information/Internet agents
 Hybrid agents
 Smart agents
 Multi-Agent Systems (MASs)

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 155

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Software Agents in Distributed
Systems

 Some important properties by which different types of agents
can be distinguished.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 156

Property
Common to
all agents?

Description

Autonomous Yes Can act on its own

Reactive Yes
Responds timely to changes in its
environment

Proactive Yes Initiates actions that affects its environment

Communicative Yes
Can exchange information with users and
other agents

Continuous No Has a relatively long lifespan

Mobile No Can migrate from one site to another

Adaptive No Capable of learning

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Agent Technology

 The Foundation for Intelligent Physical Agent (FIPA) is developing a
general model for software agents.

 In this model, agents are registered at, and operate under the
management of an agent platform:
 Management: Keeps track of where the agents are.

• creating and deleting agents.
• mapping globally unique agent ID to a local communication endpoint (port)

 Directory: Mapping of agent names and attributes to agent IDs
 ACC: Agent Communication Channel, used to communicate with

other platforms
• Communication between ACCs on different platforms follows Internet Inter-

ORB Protocol (IIOP).
• Example: server in D'Agents

Processes & OS Support 157

REMINDERS FOR
THIS CLASS

FIPA Agent Platform
 The general model of an agent platform (adapted from [fipa98-

mgt]).

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 158

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Agent Communication Languages 1
 Examples of different message types in the FIPA ACL [fipa98-acl], the

purpose of a message, and the description of the actual message
content.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 159

Message purpose Description Message Content

INFORM Inform that a given proposition is true Proposition

QUERY-IF Query whether a given proposition is true Proposition

QUERY-REF Query for a give object Expression

CFP Ask for a proposal Proposal specifics

PROPOSE Provide a proposal Proposal

ACCEPT-PROPOSAL Tell that a given proposal is accepted Proposal ID

REJECT-PROPOSAL Tell that a given proposal is rejected Proposal ID

REQUEST Request that an action be performed Action specification

SUBSCRIBE Subscribe to an information source Reference to source

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Agent Communication Languages 2
 A simple example of a FIPA ACL message sent between two agents using Prolog

to express genealogy information.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 160

Field Value

Purpose INFORM

Sender max@http://fanclub-beatrix.royalty-spotters.nl:7239

Receiver elke@iiop://royalty-watcher.uk:5623

Language Prolog

Ontology genealogy

Content female(beatrix),parent(beatrix,juliana,bernhard)

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

A2: Multi-Threaded Server
 You are to implement a multi-threaded server that provides

shared conditional read/write access to an integer array of
size 10.

 The server will maintain an array of 10 integers. It will
accept two client operations:
 read cond - will return the values of the integers in the

array that satisfy the cond (in the format <op> <num>
such as “> 10”, “% 3”)

 write num[10] - will update the values of the integers in
the array with the integers in num

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 161

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

A2: Server Threads
 Main thread
 Receive requests for read or write services.
 Create a new thread to service each client request, then loop

back to handle the next request.
 Read/Write threads
 Communicate with associated clients. Will need the socket

after the main thread has accepted the client.
 Handle concurrency control. That is, once created, it is up

to the new read or write thread to determine if it is "safe" to
perform the operation.

 Should allow multiple concurrent readers, but exclusive
access for writers.

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 162

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

A2: Server Threads
 When a writer finishes writing and there are both readers

and writers waiting, the finishing writer should allow the first
waiting writer to execute before any waiting readers. If there
are no waiting writers, the finished writer should allow all
waiting readers to execute concurrently.

 Each read/write thread should perform a busy loop
incrementing a local variable from 0 to 2,000,000 before
actually doing the reading or the writing of the shared array.
Make sure that you put this loop inside the critical section of
the thread. This simulates longer service and will therefore
introduce more contention for the resource.

Processes & OS Support 163

REMINDERS FOR
THIS CLASS

A2: The Clients
 You will create a set of clients to exercise the server.
 You should implement both the writer and reader clients.
 Clients should loop making their requests several times -

enough to get contention in the server.
 Clients should print status messages to the screen with an

identifier indicating which client that the message came from.
 On testing, you should create enough clients to fully

demonstrate the concurrency control technique that you have
implemented.

 With proper concurrency control, the readers should always get
an array with all elements written by one writer. Your status
messages should check this and indicate its validity.

 Design test scenarios to test your program.
CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 164

CSIE52400/CSIEM0140 Distributed Systems Lecture 05: Processes & OS Support

REMINDERS FOR
THIS CLASS

GALLERY 01

A2: The Clients

 Test Example: The read client simply does a loop (say 30
times) issuing a read request to the server and printing the
results. The write client does a loop (say also 30 times) issuing
write requests to the server. You can make the write client to
use the loop counter to be the value it writes so that the first
time it writes 1~10, the second time all 11~20, etc. Then, you
should see that the read client gets back correct values each
time. You can also try putting busy loop or sleep delays in both
reader and writer clients if you want to see how it impacts the
interleaving and the result.

 Due date: 3 weeks

CSIE52400/CSIEM0140 Distributed Systems Processes & OS Support 165

