
CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

CSIE52400/CSIEM0140
Distributed Systems

Lecture 06
Communication

Shiow-yang Wu (吳秀陽)
Department of Computer Science and Information Engineering

National Dong Hwa University

CSIE52400/CSIEM0140 Distributed Systems 1

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Middleware Layers

CSIE52400/CSIEM0140 Distributed Systems Communication 2

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Message Synchronization
 Asynchronous Communication
 Non-blocking send: sender process released after message copied

into sender’s kernel

 Synchronous Communication
 Blocking send: sender process released after message transmitted

to network
 Reliable blocking send: sender process released after messages

received by receiver’s kernel
 Explicit blocking send: sender process released after message

received by receiver process
 Request and Reply: sender process released after message been

processed by receiver and response returned to sender

CSIE52400/CSIEM0140 Distributed Systems Communication 3

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Message Destinations
 IP (address, port)
 A port has exactly one receiver but can have many senders.
 Processes may use multiple ports to receive messages.

 To provide location transparency
 refer to services by name and use a name server or binder

for name to server location translation
 the OS provides location independent identifiers and handles

the identifiers to lower level address mapping

CSIE52400/CSIEM0140 Distributed Systems Communication 4

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Sockets and Ports
 Various sockets… Any similarity?

 Many message-oriented systems are built on top of the
transport layer messaging through sockets.

 Socket abstraction provides an endpoint for communication
between processes.

 Messages are transmitted between a socket in one process
and a socket in another.

CSIE52400/CSIEM0140 Distributed Systems Communication 5

REMINDERS FOR
THIS CLASS

Sockets and Ports
 A socket is an endpoint of a connection
 Identified by IP address and Port number

 To receive messages, a socket must be bound to a local
port and IP address.

 Messages sent to a (address, port) can be received only by
a process whose socket is associated with that (address,
port).

 A process can not share ports with others.
 May use the same socket for sending and receiving.
 Each socket is associated with a protocol.

CSIE52400/CSIEM0140 Distributed Systems Communication 6

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Sockets and Ports

Communication 7

message

agreed port
any port

socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

A Port Test with Telnet
 Try this on a command-line window or powershell:
telnet www.csie.ndhu.edu.tw 80
GET / HTTP/1.1

host: www.csie.ndhu.edu.tw

 Now, press the ENTER key two times.
 You will get a Web page response (in text) and disconnect.
 Note that you may need to turn on the telnet client on your

Windows.

CSIE52400/CSIEM0140 Distributed Systems Communication 8

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Ports
 Each host has 65,536 ports
 Some ports are reserved for

specific apps
 20,21: FTP
 23: Telnet
 80: HTTP
 see RFC 1700

• about 2000 ports are
reserved

Communication 9

Port 0

Port 1

Port 65535

A socket provides an interface
to send data to/from the
network through a port

REMINDERS FOR
THIS CLASS

GALLERY 01

Socket Primitives
 Socket primitives for TCP/IP.

CSIE52400/CSIEM0140 Distributed Systems Communication 10

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections

Accept Block caller until a connection request
arrives

Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Socket: Conceptual View

CSIE52400/CSIEM0140 Distributed Systems Communication 11

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Sockets Comm Pattern
 Connection-oriented communication pattern using sockets.

CSIE52400/CSIEM0140 Distributed Systems
Communication 12

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

REMINDERS FOR
THIS CLASS

HTTP Example

CSIE52400/CSIEM0140 Distributed Systems Communication 13

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Network Programming Basics

 IP address handling
 Socket communication
 TCP stream communication
 UDP datagram communication

CSIE52400/CSIEM0140 Distributed Systems Communication 14

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python IP and DNS Lookup
 Get IP address from domain name:
>>> import socket
>>> addr = socket.gethostbyname(‘www.ndhu.edu.tw')
>>> print(addr)
134.208.11.217

 Get domain name from IP address:
>>> name = socket.gethostbyaddr(addr)
>>> print(name)
('134-208-11-217.ndhu.edu.tw', [], ['134.208.11.217'])

CSIE52400/CSIEM0140 Distributed Systems Communication 15

REMINDERS FOR
THIS CLASS

GALLERY 01

Python IP Handling
 The ipaddress module is for IP addresses, networks and

interfaces handling.
 Handle both IPv4 and IPv6 addresses
>>> ipaddress.ip_address('192.168.0.1')

IPv4Address('192.168.0.1')
>>> ipaddress.ip_address('2001:db8::')

IPv6Address('2001:db8::')
 Read the doc for other related objects.

CSIE52400/CSIEM0140 Distributed Systems Communication 16

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Java API for IP Addresses

 Java provides the InetAddress class to represent Internet
addresses.
InetAddress aHost =
InetAddress.getByName(“www.csie.ndhu.edu.tw”);

 The method can throw an UnknownHostException.
 The class allows us to access Internet hosts by their DNS

names instead of numeric IP address.
 We will discuss Java network programming along the way

when Java is the selected language for the semester.

Communication 17

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

TCP Stream Communication

 Connection-oriented communication
 Need to set up a connection between client and server first.
 After setting up the connection, the two processes could be

peers.
 Stream communication procedure:
 Client sends a connect request to server
 Server sends a accept request to client
 Establish a stream between client and server

CSIE52400/CSIEM0140 Distributed Systems Communication 18

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

TCP Stream Characteristics
 Network characteristics hidden by TCP stream
 message size
 lost message
 flow control
 message duplication and ordering
 message destinations

 Outstanding issues:
 matching data items
 Blocking (when queues are empty or full)
 threads

CSIE52400/CSIEM0140 Distributed Systems Communication 19

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

TCP Failure Model
 Corrupt packets
 Duplicate packets
 Lost packets
 Broken connections
 network failure vs. process failure
 message status

CSIE52400/CSIEM0140 Distributed Systems Communication 20

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Stream Communication

 Client: creates a stream socket and binds it to any available
port.

 Client: makes a connect request to a server at its server port.
 Server: creates a listening socket bound to a server port.
 Server: accepts a connection
 Server: creates a new stream socket for communication with

current client
 Server: retains the listening socket for other connect requests

CSIE52400/CSIEM0140 Distributed Systems Communication 21

HOW TO USE THIS PRESENTATIONPython TCP
Client-Server
Flow

Communication 22CSIE52400/CSIEM0140 Distributed Systems

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python Sockets
 Import socket module for socket operations.
 Use socket.socket(socket.AF_INET, socket.SOCK_STREAM) to

create a TCP stream socket.
 Address Familes: AF_UNIX, AF_INET, AF_INET6,..
 Socket Types: SOCK_STREAM, SOCK_DGRAM, …
 Use methods gethostname(), getfqdn(), gethostbyname() to

get hostname, fully qualified domain name, and IP address.
 Use the bind() method to bind the socket to an IP address and

port number.

CSIE52400/CSIEM0140 Distributed Systems Communication 23

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python TCP Echo Server

import socket
HOST = '127.0.0.1' # Localhost
PORT = 65432 # Listening port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT)) # bind the socket to the addr
s.listen(1) # listen to one conn at a time

CSIE52400/CSIEM0140 Distributed Systems Communication 24

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python TCP Echo Server
while True:

print('waiting for a connection')
conn, addr = s.accept()
try:

print('Connected by', addr)
while True:

data = conn.recv(1024)
if not data:

break
conn.sendall(data) # echo

finally:
Clean up the connection
conn.close()

CSIE52400/CSIEM0140 Distributed Systems Communication 25

REMINDERS FOR
THIS CLASS

Python TCP Client
import socket
import time
HOST = '127.0.0.1' # The server's hostname or IP address
PORT = 65432 # The port used by the server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
data = ["Mon", "Tue", "Wed", "Thu", "Fri"] # Data to send
for d in data:

s.sendall(d.encode("utf-8")) # encode before send
print("Sent: ", d)
time.sleep(1)
response = s.recv(1024).decode("utf-8") # decode resp
print('Received: ', response)

CSIE52400/CSIEM0140 Distributed Systems Communication 26

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Socket Utility Functions

 htonl(i), htons(i)

 32-bit or 16-bit integer to network format

 ntohl(i), ntohs(i)

 32-bit or 16-bit integer to host format

 inet_aton(ipstr), inet_ntoa(packed)

 Convert addresses between regular strings and 4-byte
packed strings

CSIE52400/CSIEM0140 Distributed Systems Communication 27

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Timeout Capabilities
 Can set a default for all sockets
 socket.setdefaulttimeout(seconds)

 Argument is float # of seconds
 Or None (indicates no timeout)

 Can set a timeout on an existing socket s
 s.settimeout(seconds)

CSIE52400/CSIEM0140 Distributed Systems Communication 28

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

UDP Datagram Comm
 No acknowledgement or retries (best effort)
 Message buffering and size
 must use buffer (array of bytes) to receive
 if the message is too big, it is truncated
 IP allows 216 bytes message length
 8K is the most commonly used message size

 Blocking - non-blocking sends, blocking receives
 Timeouts - can be set on sockets
 Receive from any
 a receive gets a message addressed to its socket from any origin
 the IP address and port can be checked

CSIE52400/CSIEM0140 Distributed Systems Communication 29

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

UDP Failure Model
 Omission failures
 use checksum to detect corrupted message
 both send-omission and receive-omission are treated as

omission failures in the channel
 Ordering
 message can be delivered out of order

 Applications using UDP must provide their own checks for
reliable communication.

 This can be achieved by using acknowledgements.

CSIE52400/CSIEM0140 Distributed Systems Communication 30

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

UDP Client-Server Interaction

CSIE52400/CSIEM0140 Distributed Systems Communication 31

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python UDP Echo Server
import socket

HOST = '127.0.0.1' # localhost
PORT = 6789 # Port send to

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind((HOST, PORT))

while True:
print('Waiting to receive...')
data, addr = s.recvfrom(1024)
print("recvfrom %s and echo %s" % (addr, data))
s.sendto(data, addr)

CSIE52400/CSIEM0140 Distributed Systems Communication 32

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Python UDP Client
import socket
ADDRESS = "127.0.0.1"
PORT = 6789

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
data = ["Mon", "Tue", "Wed", "Thu", "Fri"] # Data to send
for d in data:

s.sendto(d.encode(), (ADDRESS, PORT)) # encode first
print("Send: ", d)
response, addr = s.recvfrom(1024)
print("Receive %s from %s" % (response.decode(), addr))

CSIE52400/CSIEM0140 Distributed Systems Communication 33

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Multithreaded TCP Socket Server 1
import threading
import socket

host = '127.0.0.1'
port = 2004
ThreadCount = 0
serverSocket = socket.socket()
try:

serverSocket.bind((host, port))
except socket.error as e:

print(str(e))

print('Socket is listening..')
serverSocket.listen(5)

CSIE52400/CSIEM0140 Distributed Systems Communication 34

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Multithreaded TCP Socket Server 2
def handle_request(sock_client):

print('Server is working...')
data = sock_client.recv(2048)
while data:

response = 'Server message: ' + data.decode('utf-8')
sock_client.sendall(str.encode(response)) # echo
data = sock_client.recv(2048)

sock_client.close()

while True:
client, addr = serverSocket.accept()
print('Connected to: ' + addr[0] + ':' + str(addr[1]))
thrd = threading.Thread(target=handle_request,

args=(client,))
thrd.start()
ThreadCount += 1
print('Thread Number: ' + str(ThreadCount))

serverSocket.close()

CSIE52400/CSIEM0140 Distributed Systems Communication 35

REMINDERS FOR
THIS CLASS

Multithreaded TCP Client
import socket

clientSocket = socket.socket()
host = '127.0.0.1'
port = 2004

print('Waiting for connection response')
try:

clientSocket.connect((host, port))
except socket.error as e:

print(str(e))

while True:
Input = input('Message to send: ')
clientSocket.send(str.encode(Input))
res = clientSocket.recv(1024)
print(res.decode('utf-8'))

clientSocket.close()

CSIE52400/CSIEM0140 Distributed Systems Communication 36

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Java API for UDP Datagrams
 Java API provides to classes for UDP.
 DatagramPacket is for constructing and receiving messages.

 DatagramSocket supports sockets for sending and receiving
UDP datagrams.
 send, receive

 getData, getPort, getAddress
 setSoTimeout // set timeout

CSIE52400/CSIEM0140 Distributed Systems Communication 37

message buffer length IP address port number

REMINDERS FOR
THIS CLASS

GALLERY 01

Java UDP Client Example
 UDP client sends a message and gets a reply

CSIE52400/CSIEM0140 Distributed Systems Communication 38

import java.net.*;
import java.io.*;
public class UDPClient {

public static void main(String[] args) {
// args give message contents and server hostname
DatagramSocket aSocket = null;
try {
aSocket = new DatagramSocket();
byte[] m = args[0].getBytes(); // the message
InetAddress aHost = InetAddress.getByName(args[1]);
int serverPort = 6789;
DatagramPacket request = new DatagramPacket(

m, m.length(), aHost, serverPort);
aSocket.send(request);

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Java UDP Client Example

Communication 39

byte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket(

buffer, buffer.length);
aSocket.receive(reply);
System.out.println("Reply: " +

new String(reply.getData()));
} catch (SocketException e) {
System.out.println("Socket: " + e.getMessage());
} catch (IOException e) {
System.out.println("IO: " + e.getMessage());
} finally {
if (aSocket != null) aSocket.close(); }

}
}

message buffer length IP address port number

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Java UDP Server Example

CSIE52400/CSIEM0140 Distributed Systems Communication 40

import java.net.*;
import java.io.*;
public class UDPServer {

public static void main(String[] args) {
DatagramSocket aSocket = null;
try {
aSocket = new DatagramSocket(6789);
byte[] buffer = new byte[1000];
while(true) {

DatagramPacket request = new DatagramPacket(
buffer, buffer.length);

aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(

request.getData(), request.getLength(),
request.getAddress(), request.getPort());

aSocket.send(reply);
}

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

REMINDERS FOR
THIS CLASS

Java UDP Server Example

CSIE52400/CSIEM0140 Distributed Systems Communication 41

} catch (SocketException e) {
System.out.println("Socket: " + e.getMessage());

} catch (IOException e) {
System.out.println("IO: " + e.getMessage());

} finally {
if (aSocket != null) aSocket.close(); }

}
}

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Java TCP Client Example
import java.net.*;
import java.io.*;
public class TCPClient {

public static void main (String[] args) {
// arguments supply message and hostname of destination
Socket s = null;
try {
int serverPort = 7896;
s = new Socket(args[1], serverPort);

DataInputStream in =
new DataInputStream(s.getInputStream());

DataOutputStream out =
new DataOutputStream(s.getOutputStream());

CSIE52400/CSIEM0140 Distributed Systems Communication 42

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Java TCP Client Example
out.writeUTF(args[0]); // UTF is a string encoding (sec 4.3)
String data = in.readUTF();
System.out.println("Received: "+ data) ;
} catch (UnknownHostException e) {
System.out.println("Sock:"+e.getMessage());
} catch (EOFException e) {
System.out.println("EOF:"+e.getMessage());
} catch (IOException e) {
System.out.println("IO:"+e.getMessage());
} finally {

if (s != null) try {
s.close();
} catch (IOException e) {/*close failed*/} }

}
}

CSIE52400/CSIEM0140 Distributed Systems Communication 43

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Java TCP Server Example
import java.net.*;
import java.io.*;
public class TCPServer {

public static void main (String[] args) {
try {

int serverPort = 7896;
ServerSocket listenSocket = new ServerSocket(serverPort);
while(true) {

Socket clientSocket = listenSocket.accept();
Connection c = new Connection(clientSocket); // next slide

}
} catch(IOException e) {

System.out.println("Listen :"+e.getMessage());}
}

}

Communication 44

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Java TCP Server Example
class Connection extends Thread {

DataInputStream in;
DataOutputStream out;
Socket clientSocket;
public Connection (Socket aClientSocket) {

try {
clientSocket = aClientSocket;
in = new DataInputStream(clientSocket.getInputStream());
out =new DataOutputStream(clientSocket.getOutputStream());
this.start();

} catch(IOException e) {
System.out.println("Connection:"+e.getMessage());}

}

CSIE52400/CSIEM0140 Distributed Systems Communication 45

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Java TCP Server Example
public void run() {

try { // an echo server
String data = in.readUTF();
out.writeUTF(data);
clientSocket.close();

} catch(EOFException e) {
System.out.println("EOF:"+e.getMessage());

} catch(IOException e) {
System.out.println("IO:"+e.getMessage());

} finally {
try {

clientSocket.close();
} catch (IOException) {/* close failed */} }

}
}

CSIE52400/CSIEM0140 Distributed Systems Communication 46

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Multicast Communication
 Multicast operation: sending one message from a process to a

group of processes.
 Membership is transparent to the sender.
 Example usage of multicasting
 Fault tolerance based on replicated services
 Discovering services in spontaneous networking
 Better performance through replicated data
 Propagation of event notifications

CSIE52400/CSIEM0140 Distributed Systems Communication 47

REMINDERS FOR
THIS CLASS

IP Multicast 1
 IP multicast is built on top of IP.
 A single IP packet can be sent to a group of hosts that form a

multicast group
 Sender unaware of the receivers and group size
 A multicast group is specified by a Class D address.
 Group membership is dynamic
 Can send to a group w/o being a member
 Multicast addresses may be permanent or temporary
 Permanent groups exist even w/o members
 Multicasting datagrams has the same failure model as UDP

datagrams
CSIE52400/CSIEM0140 Distributed Systems Communication 48

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

IP Multicast 2
 Multicast messages are always sent

using UDP.
 Multicast group addresses are in the

reserved range
(224.0.0.0~230.255.255.255).

 These addresses are treated specially
by routers and switches.

 UDP is not reliable.
 Reliable multicast protocols add loss

detection and retransmission on top
of IP multicast.

CSIE52400/CSIEM0140 Distributed Systems Communication 49

REMINDERS FOR
THIS CLASS

GALLERY 01

Python Multicast Send 1
import socket
import struct
import sys

message = 'very important data'
multicast_group = ('224.3.29.71', 10000)

Create the datagram socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Set a timeout so the socket does not block indefinitely when
trying to receive data.
sock.settimeout(0.2)

CSIE52400/CSIEM0140 Distributed Systems Communication 50

(From “The Python 3 Standard Library by Example, 2nd Ed”)

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

Python Multicast Send 2

Set the time-to-live for messages to 1 so they do not go
past the local network segment.
ttl = struct.pack('b', 1)
sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, ttl)

Communication 51CSIE52400/CSIEM0140 Distributed Systems

(From “The Python 3 Standard Library by Example, 2nd Ed”)

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python Multicast Send 3
try:

Send data to the multicast group
print('sending "%s"' % message)
sent = sock.sendto(message.encode(), multicast_group)

Look for responses from all recipients
while True:

print('waiting to receive')
try:

data, server = sock.recvfrom(16)
except socket.timeout:

print('timed out, no more responses')
break

else:
print('received "%s" from %s' % (data, server))

finally:
print('closing socket')
sock.close()

CSIE52400/CSIEM0140 Distributed Systems Communication 52

(From “The Python 3 Standard Library by Example, 2nd Ed”)

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Python Multicast Receive 1
import socket
import struct
import sys

multicast_group = '224.3.29.71'
server_address = ('', 10000)

Create the socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Bind to the server address
sock.bind(server_address)

Tell the operating system to add the socket to the multicast group
on all interfaces.
group = socket.inet_aton(multicast_group)
mreq = struct.pack('4sl', group, socket.INADDR_ANY)
sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq)

Communication 53

REMINDERS FOR
THIS CLASS

Python Multicast Receive 2
Receive/respond loop
while True:

print('\nwaiting to receive message')
data, address = sock.recvfrom(1024)

print('received %s bytes from %s' % (len(data),
address))

print(data)

print('sending acknowledgement to', address)
sock.sendto(('ack').encode(), address)

CSIE52400/CSIEM0140 Distributed Systems Communication 54

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Java Multicasting 1/2

CSIE52400/CSIEM0140 Distributed Systems Communication 55

import java.net.*;
import java.io.*;
public class MulticastPeer {

public static void main(String[] args) {
// args give message contents & destination multicast group (e.g. "228.5.6.7")
// ex. java MulticastPeer "大家好" all-hosts.mcast.net
MulticastSocket s =null;
try {

InetAddress group = InetAddress.getByName(args[1]);
s = new MulticastSocket(6789);
s.joinGroup(group);
byte[] m = args[0].getBytes();
DatagramPacket messageOut =

new DatagramPacket(m, m.length, group, 6789);
s.send(messageOut);
// this figure continued on the next slide

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Java Multicasting 2/2

CSIE52400/CSIEM0140 Distributed Systems Communication 56

// get messages from others in group
byte[] buffer = new byte[1000];
for(int i=0; i< 3; i++) {

DatagramPacket messageIn =
new DatagramPacket(buffer, buffer.length);

s.receive(messageIn);
System.out.println("Received:" + new String(messageIn.getData()));

}
s.leaveGroup(group);
} catch (SocketException e) {
System.out.println("Socket: " + e.getMessage());
} catch (IOException e) {
System.out.println("IO: " + e.getMessage());
} finally { if (s != null) s.close(); }

}
}

CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Assignment 3: Python TCP, UDP,
Client-Server and Multicasting

1.Try ALL the Python TCP/UDP client-server and multithreaded
examples. Correct any problem.

2.Test run the Python multicast example. Correct any problem.
3.Write simple TCP/UDP calculate servers that accept simple

arithmetic computing requests such as “+ 4 5” (design your own
requrest forms) and send back the result. Choose a GUI lib you like
(e.g. Tkinter, PySimpleGUI, Kivy, …) and construct simple GUI
client(s) to test your servers.

4.Using Python multicast, develop a message board server where
publishers can create message boards of different topics. Any new
message on a board should be received by all subscribers of that
board.

Due date: 3 weeks

CSIE52400/CSIEM0140 Distributed Systems Communication 57

