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Message Synchronization
 Asynchronous Communication
 Non-blocking send: sender process released after message copied 

into sender’s kernel

 Synchronous Communication
 Blocking send: sender process released after message transmitted 

to network
 Reliable blocking send: sender process released after messages 

received by receiver’s kernel
 Explicit blocking send: sender process released after message 

received by receiver process
 Request and Reply: sender process released after message been 

processed by receiver and response returned to sender
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REMINDERS FOR 
THIS CLASS

Message Destinations
 IP (address, port)
 A port has exactly one receiver but can have many senders.
 Processes may use multiple ports to receive messages.

 To provide location transparency
 refer to services by name and use a name server or binder

for name to server location translation
 the OS provides location independent identifiers and handles 

the identifiers to lower level address mapping
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Sockets and Ports
 Various sockets…  Any similarity?

 Many message-oriented systems are built on top of the 
transport layer messaging through sockets.

 Socket abstraction provides an endpoint for communication 
between processes.

 Messages are transmitted between a socket in one process 
and a socket in another.
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REMINDERS FOR 
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Sockets and Ports
 A socket is an endpoint of a connection
 Identified by IP address and Port number

 To receive messages, a socket must be bound to a local 
port and IP address.

 Messages sent to a (address, port) can be received only by 
a process whose socket is associated with that (address, 
port).

 A process can not share ports with others.
 May use the same socket for sending and receiving.
 Each socket is associated with a protocol.
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Sockets and Ports

Communication 7

message

agreed port
any port

socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server
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A Port Test with Telnet
 Try this on a command-line window or powershell:
telnet www.csie.ndhu.edu.tw 80
GET / HTTP/1.1

host: www.csie.ndhu.edu.tw

 Now, press the ENTER key two times.
 You will get a Web page response (in text) and disconnect.
 Note that you may need to turn on the telnet client on your 

Windows.
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Ports
 Each host has 65,536 ports
 Some ports are reserved for 

specific apps
 20,21: FTP
 23: Telnet
 80: HTTP
 see RFC 1700 

• about 2000 ports are 
reserved
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Port 0

Port 1

Port 65535

A socket provides an interface 
to send data to/from the 
network through a port
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GALLERY 01

Socket Primitives
 Socket primitives for TCP/IP.
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Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections

Accept Block caller until a connection request 
arrives

Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection
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Socket: Conceptual View
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Sockets Comm Pattern
 Connection-oriented communication pattern using sockets.
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HTTP Example
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Network Programming Basics

 IP address handling
 Socket communication
 TCP stream communication
 UDP datagram communication
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Python IP and DNS Lookup
 Get IP address from domain name:
>>> import socket
>>> addr = socket.gethostbyname(‘www.ndhu.edu.tw')
>>> print(addr)
134.208.11.217

 Get domain name from IP address:
>>> name = socket.gethostbyaddr(addr)
>>> print(name)
('134-208-11-217.ndhu.edu.tw', [], ['134.208.11.217'])
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Python IP Handling
 The ipaddress module is for IP addresses, networks and 

interfaces handling.
 Handle both IPv4 and IPv6 addresses
>>> ipaddress.ip_address('192.168.0.1')

IPv4Address('192.168.0.1')
>>> ipaddress.ip_address('2001:db8::')

IPv6Address('2001:db8::') 
 Read the doc for other related objects.

CSIE52400/CSIEM0140 Distributed Systems Communication 16



CSIE52400/CSIEM0140 Distributed Systems Lecture 06: Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Java API for IP Addresses

 Java provides the InetAddress class to represent Internet 
addresses.
InetAddress aHost = 
InetAddress.getByName(“www.csie.ndhu.edu.tw”);

 The method can throw an UnknownHostException.
 The class allows us to access Internet hosts by their DNS 

names instead of numeric IP address.
 We will discuss Java network programming along the way

when Java is the selected language for the semester.
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TCP Stream Communication

 Connection-oriented communication
 Need to set up a connection between client and server first.
 After setting up the connection, the two processes could be 

peers.
 Stream communication procedure:
 Client sends a connect request to server
 Server sends a accept request to client
 Establish a stream between client and server
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TCP Stream Characteristics
 Network characteristics hidden by TCP stream
 message size
 lost message
 flow control 
 message duplication and ordering
 message destinations

 Outstanding issues:
 matching data items
 Blocking (when queues are empty or full)
 threads
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REMINDERS FOR 
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GALLERY 01

ACTIVITY TIME!

TCP Failure Model
 Corrupt packets
 Duplicate packets
 Lost packets
 Broken connections
 network failure vs. process failure
 message status
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Stream Communication

 Client: creates a stream socket and binds it to any available 
port.

 Client: makes a connect request to a server at its server port.
 Server: creates a listening socket bound to a server port.
 Server: accepts a connection
 Server: creates a new stream socket for communication with 

current client
 Server: retains the listening socket for other connect requests
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HOW TO USE THIS PRESENTATIONPython TCP 
Client-Server 
Flow
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Python Sockets
 Import socket module for socket operations.
 Use socket.socket(socket.AF_INET, socket.SOCK_STREAM) to 

create a TCP stream socket.
 Address Familes: AF_UNIX, AF_INET, AF_INET6,..
 Socket Types: SOCK_STREAM, SOCK_DGRAM, …
 Use methods gethostname(), getfqdn(), gethostbyname() to 

get hostname, fully qualified domain name, and IP address.
 Use the bind() method to bind the socket to an IP address and 

port number.
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Python TCP Echo Server

import socket
HOST = '127.0.0.1'  # Localhost
PORT = 65432        # Listening port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT)) # bind the socket to the addr
s.listen(1) # listen to one conn at a time
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Python TCP Echo Server
while True:

print('waiting for a connection')
conn, addr = s.accept()
try:

print('Connected by', addr)
while True:

data = conn.recv(1024)
if not data:

break
conn.sendall(data) # echo

finally:
# Clean up the connection
conn.close()
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REMINDERS FOR 
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Python TCP Client
import socket
import time
HOST = '127.0.0.1'  # The server's hostname or IP address
PORT = 65432        # The port used by the server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
data = ["Mon", "Tue", "Wed", "Thu", "Fri"] # Data to send
for d in data:

s.sendall(d.encode("utf-8"))    # encode before send
print("Sent: ", d)
time.sleep(1)
response = s.recv(1024).decode("utf-8") # decode resp
print('Received: ', response)
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Socket Utility Functions

 htonl(i), htons(i)

 32-bit or 16-bit integer to network format

 ntohl(i), ntohs(i)

 32-bit or 16-bit integer to host format

 inet_aton(ipstr), inet_ntoa(packed)

 Convert addresses between regular strings and 4-byte 
packed strings
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HOW TO USE THIS PRESENTATION

REMINDERS FOR 
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Timeout Capabilities
 Can set a default for all sockets
 socket.setdefaulttimeout(seconds)

 Argument is float # of seconds
 Or None (indicates no timeout)

 Can set a timeout on an existing socket s
 s.settimeout(seconds)
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UDP Datagram Comm
 No acknowledgement or retries (best effort)
 Message buffering and size
 must use buffer (array of bytes) to receive
 if the message is too big, it is truncated
 IP allows 216 bytes message length
 8K is the most commonly used message size

 Blocking - non-blocking sends, blocking receives
 Timeouts - can be set on sockets
 Receive from any
 a receive gets a message addressed to its socket from any origin
 the IP address and port can be checked
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HOW TO USE THIS PRESENTATION

REMINDERS FOR 
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UDP Failure Model
 Omission failures
 use checksum to detect corrupted message
 both send-omission and receive-omission are treated as 

omission failures in the channel
 Ordering
 message can be delivered out of order

 Applications using UDP must provide their own checks for 
reliable communication.

 This can be achieved by using acknowledgements.
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ACTIVITY TIME!

UDP Client-Server Interaction
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Python UDP Echo Server
import socket

HOST = '127.0.0.1'  # localhost
PORT = 6789         # Port send to

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind((HOST, PORT))

while True:
print('Waiting to receive...')
data, addr = s.recvfrom(1024)
print("recvfrom %s and echo %s" % (addr, data))
s.sendto(data, addr)
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Python UDP Client
import socket
ADDRESS = "127.0.0.1"
PORT = 6789

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
data = ["Mon", "Tue", "Wed", "Thu", "Fri"] # Data to send
for d in data:

s.sendto(d.encode(), (ADDRESS, PORT))  # encode first
print("Send: ", d)
response, addr = s.recvfrom(1024)
print("Receive %s from %s" % (response.decode(), addr))
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Multithreaded TCP Socket Server 1
import threading
import socket

host = '127.0.0.1'
port = 2004
ThreadCount = 0
serverSocket = socket.socket()
try:

serverSocket.bind((host, port))
except socket.error as e:

print(str(e))

print('Socket is listening..')
serverSocket.listen(5)
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Multithreaded TCP Socket Server 2
def handle_request(sock_client):

print('Server is working...')
data = sock_client.recv(2048)
while data:

response = 'Server message: ' + data.decode('utf-8')
sock_client.sendall(str.encode(response))  # echo
data = sock_client.recv(2048)

sock_client.close()

while True:
client, addr = serverSocket.accept()
print('Connected to: ' + addr[0] + ':' + str(addr[1]))
thrd = threading.Thread(target=handle_request, 

args=(client, ))
thrd.start()
ThreadCount += 1
print('Thread Number: ' + str(ThreadCount))

serverSocket.close()
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Multithreaded TCP Client
import socket

clientSocket = socket.socket()
host = '127.0.0.1'
port = 2004

print('Waiting for connection response')
try:

clientSocket.connect((host, port))
except socket.error as e:

print(str(e))

while True:
Input = input('Message to send: ')
clientSocket.send(str.encode(Input))
res = clientSocket.recv(1024)
print(res.decode('utf-8'))

clientSocket.close()
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Java API for UDP Datagrams
 Java API provides to classes for UDP.
 DatagramPacket is for constructing and receiving messages.

 DatagramSocket supports sockets for sending and receiving 
UDP datagrams.
 send, receive

 getData, getPort, getAddress
 setSoTimeout // set timeout
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message buffer    length     IP address     port number

REMINDERS FOR 
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Java UDP Client Example
 UDP client sends a message and gets a reply
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import java.net.*;
import java.io.*;
public class UDPClient {

public static void main(String[ ] args) { 
// args give message contents and server hostname
DatagramSocket aSocket = null;
try {
aSocket = new DatagramSocket();    
byte[] m = args[0].getBytes();  // the message
InetAddress aHost = InetAddress.getByName(args[1]);
int serverPort = 6789;
DatagramPacket request = new DatagramPacket(

m,  m.length(), aHost, serverPort);
aSocket.send(request);
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Java UDP Client Example

Communication 39

byte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket(

buffer, buffer.length);
aSocket.receive(reply);
System.out.println("Reply: " + 

new String(reply.getData()));
} catch (SocketException e) {
System.out.println("Socket: " + e.getMessage());
} catch (IOException e) {
System.out.println("IO: " + e.getMessage());
} finally {
if (aSocket != null) aSocket.close(); }

} 
}

message buffer   length   IP address   port number

HOW TO USE THIS PRESENTATION
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Java UDP Server Example
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import java.net.*;
import java.io.*;
public class UDPServer {

public static void main(String[ ] args) { 
DatagramSocket aSocket = null;
try {
aSocket = new DatagramSocket(6789);
byte[] buffer = new byte[1000];
while(true) {

DatagramPacket request = new DatagramPacket(
buffer, buffer.length);

aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(

request.getData(), request.getLength(),
request.getAddress(), request.getPort());

aSocket.send(reply);
}
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Java UDP Server Example

CSIE52400/CSIEM0140 Distributed Systems Communication 41

} catch (SocketException e) {
System.out.println("Socket: " + e.getMessage());

} catch (IOException e) {
System.out.println("IO: " + e.getMessage());

} finally {
if (aSocket != null) aSocket.close(); }

}
}

HOW TO USE THIS PRESENTATION

REMINDERS FOR 
THIS CLASS

Java TCP Client Example
import java.net.*;
import java.io.*;
public class TCPClient {

public static void main (String[ ] args) {
// arguments supply message and hostname of destination
Socket s = null;
try {
int serverPort = 7896;
s = new Socket(args[1], serverPort);    

DataInputStream in = 
new DataInputStream( s.getInputStream());

DataOutputStream out =
new DataOutputStream( s.getOutputStream());
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Java TCP Client Example
out.writeUTF(args[0]);        // UTF is a string encoding (sec 4.3)
String data = in.readUTF();
System.out.println("Received: "+ data) ;      
} catch (UnknownHostException e) {
System.out.println("Sock:"+e.getMessage()); 
} catch (EOFException e) {
System.out.println("EOF:"+e.getMessage());
} catch (IOException e) {
System.out.println("IO:"+e.getMessage());
} finally { 

if (s != null) try { 
s.close(); 
} catch (IOException e) {/*close failed*/} }

}
}
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Java TCP Server Example
import java.net.*;
import java.io.*;
public class TCPServer {

public static void main (String[ ] args) {
try {

int serverPort = 7896; 
ServerSocket listenSocket = new ServerSocket(serverPort);
while(true) {

Socket clientSocket = listenSocket.accept();
Connection c = new Connection(clientSocket); // next slide

}
} catch(IOException e) {

System.out.println("Listen :"+e.getMessage());}
}

}

Communication 44
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Java TCP Server Example
class Connection extends Thread {

DataInputStream in;
DataOutputStream out;
Socket clientSocket;
public Connection (Socket aClientSocket) {

try {
clientSocket = aClientSocket;
in = new DataInputStream( clientSocket.getInputStream() );
out =new DataOutputStream( clientSocket.getOutputStream() );
this.start();

} catch(IOException e) {
System.out.println("Connection:"+e.getMessage());}

}
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Java TCP Server Example
public void run() {

try { // an echo server
String data = in.readUTF();
out.writeUTF(data);
clientSocket.close();

} catch(EOFException e) {
System.out.println("EOF:"+e.getMessage());

} catch(IOException e) {
System.out.println("IO:"+e.getMessage());

} finally {
try { 

clientSocket.close(); 
} catch (IOException) {/* close failed */} }

}
}
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Multicast Communication
 Multicast operation: sending one message from a process to a 

group of processes.
 Membership is transparent to the sender.
 Example usage of multicasting
 Fault tolerance based on replicated services
 Discovering services in spontaneous networking
 Better performance through replicated data
 Propagation of event notifications
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IP Multicast 1
 IP multicast is built on top of IP.
 A single IP packet can be sent to a group of hosts that form a 

multicast group
 Sender unaware of the receivers and group size
 A multicast group is specified by a Class D address.
 Group membership is dynamic
 Can send to a group w/o being a member
 Multicast addresses may be permanent or temporary
 Permanent groups exist even w/o members
 Multicasting datagrams has the same failure model as UDP 

datagrams
CSIE52400/CSIEM0140 Distributed Systems Communication 48
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IP Multicast 2
 Multicast messages are always sent 

using UDP.
 Multicast group addresses are in the 

reserved range 
(224.0.0.0~230.255.255.255).

 These addresses are treated specially 
by routers and switches.

 UDP is not reliable.
 Reliable multicast protocols add loss 

detection and retransmission on top 
of IP multicast.
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Python Multicast Send 1
import socket
import struct
import sys

message = 'very important data'
multicast_group = ('224.3.29.71', 10000)

# Create the datagram socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

# Set a timeout so the socket does not block indefinitely when
# trying to receive data.
sock.settimeout(0.2)

CSIE52400/CSIEM0140 Distributed Systems Communication 50

(From “The Python 3 Standard Library by Example, 2nd Ed”)
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# Set the time-to-live for messages to 1 so they do not go 
# past the local network segment.
ttl = struct.pack('b', 1)
sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, ttl)
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(From “The Python 3 Standard Library by Example, 2nd Ed”)
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Python Multicast Send 3
try:

# Send data to the multicast group
print('sending "%s"' % message)
sent = sock.sendto(message.encode(), multicast_group)

# Look for responses from all recipients
while True:

print('waiting to receive')
try:

data, server = sock.recvfrom(16)
except socket.timeout:

print('timed out, no more responses')
break

else:
print('received "%s" from %s' % (data, server))

finally:
print('closing socket')
sock.close()
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Python Multicast Receive 1
import socket
import struct
import sys

multicast_group = '224.3.29.71'
server_address = ('', 10000)

# Create the socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

# Bind to the server address
sock.bind(server_address)

# Tell the operating system to add the socket to the multicast group
# on all interfaces.
group = socket.inet_aton(multicast_group)
mreq = struct.pack('4sl', group, socket.INADDR_ANY)
sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq)
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Python Multicast Receive 2
# Receive/respond loop
while True:

print('\nwaiting to receive message')
data, address = sock.recvfrom(1024)

print('received %s bytes from %s' % (len(data), 
address))

print(data)

print('sending acknowledgement to', address)
sock.sendto(('ack').encode(), address)
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Java Multicasting 1/2
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import java.net.*;
import java.io.*;
public class MulticastPeer {

public static void main(String[ ] args) { 
// args give message contents & destination multicast group (e.g. "228.5.6.7")
// ex. java MulticastPeer "大家好" all-hosts.mcast.net
MulticastSocket s =null;
try {

InetAddress group = InetAddress.getByName(args[1]);
s = new MulticastSocket(6789);
s.joinGroup(group);
byte[ ] m = args[0].getBytes();
DatagramPacket messageOut = 

new DatagramPacket(m, m.length, group, 6789);
s.send(messageOut);
// this figure continued on the next slide

HOW TO USE THIS PRESENTATION

REMINDERS FOR 
THIS CLASS

Java Multicasting 2/2
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// get messages from others in group
byte[ ] buffer = new byte[1000];
for(int i=0; i< 3; i++) {

DatagramPacket messageIn = 
new DatagramPacket(buffer, buffer.length);

s.receive(messageIn);
System.out.println("Received:" + new String(messageIn.getData()));

}
s.leaveGroup(group);
} catch (SocketException e) {
System.out.println("Socket: " + e.getMessage());
} catch (IOException e) {
System.out.println("IO: " + e.getMessage());
} finally { if (s != null) s.close(); }

}
}
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HOW TO USE THIS PRESENTATION

REMINDERS FOR 
THIS CLASS

Assignment 3: Python TCP, UDP, 
Client-Server and Multicasting

1.Try ALL the Python TCP/UDP client-server and multithreaded 
examples.  Correct any problem.

2.Test run the Python multicast example.  Correct any problem.
3.Write simple TCP/UDP calculate servers that accept simple 

arithmetic computing requests such as “+ 4 5” (design your own 
requrest forms) and send back the result.  Choose a GUI lib you like 
(e.g. Tkinter, PySimpleGUI, Kivy, …) and construct simple GUI 
client(s) to test your servers.

4.Using Python multicast, develop a message board server where 
publishers can create message boards of different topics. Any new 
message on a board should be received by all subscribers of that 
board.

Due date: 3 weeks
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