
CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

CSIE52400/CSIEM0140
Distributed Systems

Lecture 07a
Remote Invocation - RPC

Shiow-yang Wu (吳秀陽)
Department of Computer Science and Information Engineering

National Dong Hwa University

CSIE52400/CSIEM0140 Distributed Systems 1

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Middleware Layers

CSIE52400/CSIEM0140 Distributed Systems

Applications

Middleware

layersUnderlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

UDP and TCP

Remote invocation, indirect communicationThis lecture

Remote Invocation – RPC 2

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Request-Reply Protocols
 Support client-server interactions
 Synchronous communication in general (i.e. client blocks until

the reply arrives)
 Asynchronous request-reply is an alternative when the replies

can be retrieved later

Remote Invocation – RPC 3

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Request-Reply Comm

CSIE52400/CSIEM0140 Distributed Systems

Request

ServerClient

doOperation

(wait)

(continuation)

Reply

message

getRequest

execute proceduret

message

select proceduret

sendReply

Remote Invocation – RPC 4

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

GALLERY 01

Request-Reply Protocol
Operations

CSIE52400/CSIEM0140 Distributed Systems

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)
sends a request message to the remote server and returns the reply.
The arguments specify the remote server, the operation to be invoked and
the arguments of that operation.

public byte[] getRequest ();

acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);

sends the reply message reply to the client at its Internet address and port.

Remote Invocation – RPC 5

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Request-Reply Message Structure

messageType

requestId

remoteReference

operationId

arguments

int (0=Request, 1= Reply)

int

RemoteRef

int or Operation

array of bytes

Remote Invocation – RPC 6

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

Protocol Details
 A message identifier consists of two parts
 requestID
 An identifier of the sender

 Failure model
 Omission failures
 Messages may not be delivered in sender order

 Timouts
 Return immediately with failure (not normal)
 Resend the request
 Returns with exception after retries

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 7

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Protocol Details
 Duplicate requests
 Server may receive the same request more than once (why?)
 Recognize successive messages with the same requestID and

filter out duplicates
 Lost reply
 Lost reply may lead to re-execution if the original result was

not stored
 Idempotent operation can be executed repeatedly with the

same effect

Remote Invocation – RPC 8

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

History
 History keeps records of (reply) messages that have been sent.
 An entry contains a requesID, a message, and a client

identifier.
 Allow message retransmission w/o re-execution
 Memory cost can be very high
 Only need to keep the last message sent to each client (why?)
 The memory cost can still be high if the number of clients is

large.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 9

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Styles of Exchanges

CSIE52400/CSIEM0140 Distributed Systems

R Request
RR Request Reply

RRA Request Reply Acknowledge reply

Client Server Client

Name Messages sent by

Remote Invocation – RPC 10

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

GALLERY 01

HTTP: An Example
 HyperText Transfer Protocol (HTTP) is an example of a

request-reply protocol
 Clients (eg. Browsers) send HTTP requests to servers (eg. Web

servers) and wait for HTTP responses.
 Support a fixed set of methods (GET, PUT, POST, etc.)

applicable to all server’s resources.
 Also allows for
 Content negotiation (eg. Language, media type)
 Authentication (password-style)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 11

REMINDERS FOR
THIS CLASS

HTTP Versions
 HTTP 0.9 (1991) — The first documented version
 HTTP 1.0 (RFC 1945, 1996)
 HTTP 1.1 (RFC 2068, 1997)
 HTTP 1.1 (RFC 2616, 1999) — with improvements and

updates (most popular old version)
 HTTP/2 (RFC 7540, 2015) — server push, pipelining of

requests, multiplexing multiple requests over a single TCP
connection, and better performance

 HTTP/3 (RFC 9114, 2022) — uses QUIC (a multiplexed
transport protocol built on UDP)
 used by 29.2% of all the websites (W3Techs, Apr 2024)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 12

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

HTTP Interaction
 Client-server interaction
 Client initiates an attempt
 Server accepts a connection on default port
 Client sends a request message
 Server sends a reply message
 Connection close

 Persist connection allow a series of exchanges
 Request and replies are marshalled into text messages
 Resources can be byte sequences and compressed

Remote Invocation – RPC 13

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

HTTP Data
 Data are supplied as MIME-like structures
 Multipurpose Internet Mail Extensions (MIME)
 Each is prefixed with MIME type
 A MIME type specifies a type and subtype, eg. text/plain,

text/html, image/gif, image/jpeg, …
 Clients can specify the MIME types to accept

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 14

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

GALLERY 01

HTTP Methods
 Each request specifies a method and URL to a resource
 The reply reports the status of operation
 HTTP methods:
 GET ask for the resource (data, program, …)
 HEAD returns only info about data
 POST provide the URL that can deal with the data in the

request
 PUT requests the data to be stored with the URL
 DELETE deletes the resource (URL)
 OPTIONS server supplies a list of methods allowed
 TRACE server sends back the request

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 15

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

HTTP Contents
 HTTP Request message

 HTTP Reply message

 Message body contains the data and can have its own header
(with info such as MIME type)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 16

GET //www.dcs.qmw.ac.uk/index.html HTTP/ 1.1

URL or pathnamemethod HTTP version headers message body

HTTP/1.1 200 OK resource data

HTTP version status code reason headers message body

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

HTTPS
 HTTP is popular but not secure!
 HTTPS(Hyper Text Transfer Protocol Secure, port 443)
 Uses an encrypted connection with Secure Sockets Layer (SSL)

or Transport Layer Security (TLS) certificate to communicate.
 HTTPS = HTTP + Cryptographic Protocols
 HTTPS encrypts all message substance, including the HTTP

headers and the request/response data.
 The verification perspective of HTTPS requires a trusted third

party to sign server-side digital certificates.
 Encryption/decryption makes HTTPS heavier than HTTP.

Remote Invocation – RPC 17

REMINDERS FOR
THIS CLASS

HTTP vs HTTPS

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 18

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Types of Communication
 Transient versus persistent communication

 Asynchronous versus synchronous communication

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 19

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Transient vs Persistent

 Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.

 Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 20

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Synchronous vs Asynchronous
 Places for synchronization (waiting)
 At request submission
 At request delivery
 At request processing

 Asynchronous comm proceeds w/o wait after
sending/receiving.

CSIE52400/CSIEM0140 Distributed Systems
Remote Invocation – RPC 21

REMINDERS FOR
THIS CLASS

Client/Server Comm
 Client/Server computing is generally based on a model of transient

synchronous communication:

 Client and server have to be active at the time of communication

 Client issues request and blocks until it receives reply

 Server essentially waits only for incoming requests, and subsequently
processes them

 Drawbacks of synchronous communication:

 Client cannot do any other work while waiting for reply

 Failures have to be handled immediately: the client is waiting

 The model may simply not be appropriate (eg. mail, news)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 22

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

 Message-oriented middleware:
 Aims at high-level persistent asynchronous communication

 Processes send each other messages, which are queued.

 Sender need not wait for immediate reply, but can do other things.

 Middleware often ensures fault tolerance.

 (more on this later)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 23

Messaging

Remote Procedure Call
(RPC)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 24

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Recap: Socket-based Comm
 Socket API: all we get from the OS to access the network
 Socket = distinct end-to-end comm channels
 Read/write model
 Send a bunch of bytes
 Read a bunch of bytes
 Send a bunch of bytes
 Read a bunch of bytes
 …

 Application implements its protocol
 Line-oriented, text-based protocols common
 Not efficient but easy to debug & use

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 25

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Problems with Socket API
 The sockets interface forces a direct read/write

mechanism
 Programming is often easier with a functional interface
 To make distributed computing look more like centralized

computing, I/O (read/write) is not the way to go
 1984: Birrell & Nelson
 Mechanism to call procedures on other machines

(Remote Procedure Call)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 26

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Conventional Procedure Call
 You write: x = f(a, “test”, 5);
 The compiler parses this and generates code to:

1. Push the value 5 on the stack
2. Push the address of the string “test” on the stack
3. Push the current value of a on the stack
4. Generate a call to the function f

 In compiling f, the compiler generates code to:
1. Push registers that will be clobbered on the stack to save the

values
2. Adjust the stack to make room for local and temporary variables
3. Before a return, unadjust the stack, put the return data in a

register, and issue a return instruction

Remote Invocation – RPC 27

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Conventional Procedure Call
a)Parameter passing in a local procedure call: the stack

before the call to read
b)The stack while the called procedure is active

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 28

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Remote Procedure Call
 Application developers are familiar with simple procedure model.

 Well-engineered procedures operate in isolation (black box).

 There is no fundamental reason not to execute procedures on separate
machine.

 Communication between caller & callee can be hidden by using
procedure-call mechanism.

 Remote Procedure Call (RPC)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 29

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Remote Procedure Call (RPC)
 A client program calls a procedure in another program running

in a server process.
 A server process defines its service interface which specifies

the procedures that are available for calling remotely.
 RPC is generally implemented over a request-reply protocol.
 A widely used standard for communication in distributed

systems.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 30

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Client and Server Interaction
 Principle of RPC between a client and server program.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 31

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Design Issues for RPC
 Programming style – service interfaces
 Call semantics
 Transparency of RPC

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 32

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Interface Definition
 Service interface is defined by an Interface

Definition Language (IDL)
 CORBA IDL example

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 33

// In file Person.idl
struct Person {

string name;
string place;
long year;

} ;
interface PersonList {

readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

};

REMINDERS FOR
THIS CLASS

GALLERY 01

Call Semantics

 Different semantics provide different delivery guarantees

CSIE52400/CSIEM0140 Distributed Systems

Fault tolerance measures Call
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

Remote Invocation – RPC 34

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

RPC Semantics
 Most RPC systems will offer either:
 at least once semantics
 or at most once semantics

 Understand application:
 idempotent functions: may be run any number of times

without harm
 non-idempotent functions: those with side-effects

 Try to design your application to be idempotent
 Not always easy!
 Store transaction IDs, previous return data, etc.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 35

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Call Transparency
 Whether to make RPC transparent is a matter of design
 If remote call is the same as local call, it is transparent.
 Since a remote call is more vulnerable to failure, non-

transparent call reminds the programmers.
 Current consensus is that RPC should be made transparent in

syntax but the difference should be expressed in the interface.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 36

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

More Issues
 Performance
 RPC is slower … a lot slower (why?)

 Security
 Messages may be visible over

network – do we need to hide them?
 Authenticate client?
 Authenticate server?

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 37

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

RPC Implementation (1)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 38

client

Request

Reply

CommunicationCommunication

modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

RPC Implementation (2)
 The client stub
 behaves like a local procedure to the client
 marshals the procedure id and arguments into request

message
 sends the request to server
 wait for the reply message
 unmarshals the results

 The dispatcher
 receives client request message
 selects proper server stub

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 39

HOW TO USE THIS PRESENTATION

 The server stub
 unmarshals the arguments in the request message
 invoke local call to the corresponding service procedure
 marshals the return values for the reply message

 The client and server stub procedures and the dispatcher can
be automatically generated by an interface compiler.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 40

RPC Implementation (3)

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

GALLERY 01

Steps of RPC
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server procedure
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Client stub unpacks result, returns to client

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 41

HOW TO USE THIS PRESENTATION

Steps of RPC

Remote Invocation – RPC 42CSIE52400/CSIEM0140 Distributed Systems

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Steps of RPC
 Steps involved in doing remote computation through RPC

Remote Invocation – RPC 43

REMINDERS FOR
THIS CLASS

Client Proxy
 Client stub has the same interface as the remote function
 Looks & feels like the remote function to the programmer
 But its function is to
 Marshal parameters
 Send the message
 Wait for a response from the server
 Unmarshal the response & return the appropriate data
 Generate exceptions if problems arise

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 44

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Server Stub
 Dispatcher – the listener
 Receives client requests
 Identifies appropriate function (method)

 Skeleton – the unmarshaller & caller
 Unmarshals parameters
 Calls the local server procedure
 Marshals the response & sends it back to the dispatcher

 All this is invisible to the programmer
 The programmer doesn’t deal with any of this
 Dispatcher + Skeleton may be integrated

• Depends on implementation

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 45

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

RPC Benefits
 RPC gives us a procedure call interface
 Writing applications is simplified
 RPC hides all network code into stub functions
 Application programmers don’t have to worry about details

• Sockets, port numbers, byte ordering
 Where is RPC in the OSI model?
 Layer 5: Session layer: Connection management
 Layer 6: Presentation: Marshaling/data representation
 Uses the transport layer (4) for communication (TCP/UDP)

Remote Invocation – RPC 46

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

RPC: Parameter Passing
 There’s more than just wrapping parameters into a message

 Client and server machines may have different data representations
(think of byte ordering)

 Wrapping a parameter means transforming a value into a sequence of
bytes

 Client and server have to agree on the same encoding

• How are basic data values represented (integers, floats, characters)

• How are complex data values represented (arrays, unions)

 Client and server need to properly interpret messages, transforming
them into machine-dependent representations

REMINDERS FOR
THIS CLASS

GALLERY 01

Passing Value Parameters

a) Original message on the sender (little endian)
b) The message after receipt on the server (big endian)
c) The message after being inverted. The little numbers in boxes

indicate the address of each byte

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 48

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Reference Parameters
 How about reference parameters, or pointers?
 Can use copy-in, copy-back.
 Suppose there is a 500 integer array being passed:

• int a[500];
remote_call(a, 500);

 This would copy the array into the message, send it over, the
array would be sent back, and then the contents of the
message would be copied back over the original array.

 Efficient?

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 49

HOW TO USE THIS PRESENTATION

Parameter Spec and Stub
Generation

a) A procedure
b) The corresponding

message.

Remote Invocation – RPC 50CSIE52400/CSIEM0140 Distributed Systems

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Where to bind?

 Solution 1: Maintain a centralized DB that can locate a host
that provides a particular service (Birrell & Nelson’s 1984
proposal)

 Challenges:
 Who administers this?
 What is the scope of administration?
 What if the same services run on different machines (e.g.,

file systems)?

Remote Invocation – RPC 51

HOW TO USE THIS PRESENTATION

 Solution 2: A server on each host maintains a DB of locally
provided services

 Challenges:
 How to handle heterogeneous systems?
 How to provide a uniform interface to the client?

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 52

Where to bind?

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Transport Protocol

 TCP or UDP? Which one should we use?
 Some implementations may offer only one (e.g. TCP)
 Most support several
 Allow programmer (or end user) to choose at runtime

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 53

HOW TO USE THIS PRESENTATION

REPRESENTING MOLECULES

When things go wrong
 Local procedure calls do not fail
 If they core dump, entire process dies

 More opportunities for error with RPC
 Transparency breaks here
 Applications should be prepared to deal with RPC failure

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 54

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

GALLERY 01

RPC Optimizations

What if doing RPC to a process on the same machine?
 Can use shared memory to optimize?
 Can we get rid of all copies?

 Does RPC allow you to overlap communication with
computation?
 Suppose you are sending an array of 1 GB.

 Does RPC give you concurrency? That is, can you have
the caller and callee executing at the same time?
 Does normal procedure call provide that?

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 55

REMINDERS FOR
THIS CLASS

Using Shared Memory
Caller side:

a = func(big_array);
int func(int big_array[1000]) {
copy_to_shared_memory(…);
signal_callee(…);
copy_result_from_shared_memory(…);
return result;

}

Server side:
some_func(…) {

wait_for_signal(…);
call_local_func(…);
/* Directly access from shared memory.*/

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 56

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Extended RPC Model - Doors
 The principle of using doors as IPC mechanism on the same

machine.

Remote Invocation – RPC 57

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Overlapping Communication with
Computation

What can be done?

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 58

Caller

Callee

Array transmission

Time

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Recap: Types of Comm
 Viewing middleware as an intermediate (distributed) service in

application-level communication.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 59

REMINDERS FOR
THIS CLASS

Asynchronous RPC
 Essence: Try to get rid of the strict request-reply behavior, but let the

client continue without waiting for an answer from the server.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 60

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Asynchronous RPC
 Essence: Try to get rid of the strict request-reply behavior, but let the

client continue without waiting for an answer from the server.

a) Interconnection between client & server in a traditional RPC
b) Interaction using asynchronous RPC

Remote Invocation – RPC 61

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Can we get this?
 Is this asynchronous RPC?
How does the client get the result?
 If it does not wait, it is called one-way.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 62

Caller

Callee

Array transmission

Time

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

GALLERY 01

How can we get this?

CSIE52400/CSIEM0140 Distributed Systems

Caller

Callee

Array transmission

Time

Return

Wait

Remote Invocation – RPC 63

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Overlapping Communication
 Assume that this returns before transmission has

completed.
 Array large_array(…);

// Start RPC
resp = start_rpc(“name”, large_array);
// Do lots of stuff.
answer = resp.wait();

 Could this be a problem?
 Array large_array(…);

// Start RPC
resp = start_rpc(“name”, large_array);
large_array.clear();
answer = resp.wait();

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 64

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

Deferred Synchronous RPC
 A client and server interacting through two asynchronous RPCs

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 65

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Sending out Multiple RPCs
 Essence: Sending an RPC request to a

group of servers.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 66

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Futures(1)

 Consider the code:
 a = slow_rpc_func(b);

/* Do a bunch of stuff. */
c = a + b;

 How much concurrency is there? How could you improve it?
 Asynchronous RPC:
 resp_obj = start_slow_rpc_func(b);

/* Do a bunch of stuff. */
a = resp_obj.wait_for_response();
c = a + b;

Remote Invocation – RPC 67

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Futures(2)
 Futures:
 Future<double> a = slow_rpc_func(x);

/* Do a bunch of stuff. */
c = a() + b;

 Can be made first class, and then combined in various ways:
 Future <double> x = …;

Future <double> a = slow_rpc_func(x);
/* Do a bunch of stuff. */
c = a() + b;

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 68

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

GALLERY 01

RPC Example – DCE/RPC
 DCE (Distributed Computing Environment) is developed by Open

Software Foundation (OSF, now called The Open Group) as an
open middleware for distributed systems.

 The key idea is to add an open distributed layer easily w/o
disturbing existing applications.

 Based on client-server model
 Representative of typical RPC systems.
 Provide a number of services:
 Distributed file service (transparent file access)
 Directory service (transparent resource access)
 Security service (resource protection)
 Distributed time service (keep clocks globally synchronized)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 69

HOW TO USE THIS PRESENTATION

 A client can access a remote service by calling a local procedure.
 Existing code run in DCE with few or no changes.
 Automatically locate the correct server and set up the

communication (binding).
 Handle two-way message communication.
 Handle data type conversions
 Clients and servers can be written using different languages, run

on different platforms.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 70

Goals of DCE/RPC

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Writing a Client and a Server (1)
 The steps in writing a client and a server in DCE/RPC.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 71

2-14

HOW TO USE THIS PRESENTATION

REPRESENTING MOLECULES

Writing a Client and a Server (2)

Three files output by the IDL compiler:
A header file (e.g., interface.h, in C terms).
The client stub.
The server stub.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 72

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

RPC Compiler

Remote Invocation – RPC 73

HOW TO USE THIS PRESENTATION

Registration of a server makes it possible for a
client to locate the server and bind to it.

Server location is done in two steps:
1.Locate the server’s machine.

2.Locate the server on that machine.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 74

Binding a Client to a Server (1)

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

Binding a Client to a Server (2)

 Client-to-server binding in DCE.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 75

(port)

(a table of
(server, endpoint)

pairs)

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Other RPC Related Sys/Protocols

 FreeDCE
 MSRPC (Microsoft)
 J-Interop (MSRPC implementation in Java)
 Jarapac (DEC/RPC in Java)
 MS-RPCE (Microsoft Remote Procedure Call Protocol

Extensions)
 JSON-RPC (a “JSON encoded” RPC variant)
 XML-RPC (an “XML encoded” RPC variant)
 SOAP is a successor of XML-RPC and also uses XML to encode

its HTTP-based calls.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 76

CSIE52400/CSIEM0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

REMINDERS FOR
THIS CLASS

GALLERY 01

Python RPC Libraries
 Many libraries exist for Python RPC
 RPyC (are-pie-see), or Remote Python Call, is a transparent

python library for symmetrical remote procedure calls.
 gRPC is an open source RPC system initially developed

at Google.
 The Google Protocol RPC library is a framework for

implementing HTTP-based RPC services.
 Apache Thrift (developed at Facebook) is a RPC framework for

defining and creating services for numerous languages.
 See also: xmlrpc, json-rpc, tinyrpc

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RPC 77

