CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

ol 3l CSIE52400/CSIEM0140
Distributed Systems

Lecture 07a
Remote Invocation - RPC

Shiow-yang Wu (£ %) /
epartment of Computer Science and Information Engineering
National Dong Hwa University /

—& Middleware Layers

/[N
o]
Applications
This lecture Remote invocation, indirect communication
Middleware
Underlying interprocess communication primitives: layers
Sockets, message passing, multicast support, overlay networks

UDP and TCP

___.' ,,‘ I :"-.:._
CSIE52400lSIEM014O Distribute:rystems I I I I ‘ I Remote InvocaI)n —RPC2

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

= S\
Request-Reply Protocols SUR T

\\ \ % =
® Support client-server interactions \?

® Synchronous communication in general (i.e. client blocks until
the reply arrives)

® Asynchronous request-reply is an alternative when the replies
can be retrieved later

O
| Q
\ _

o o

£ - \ Remote Invocation - RPC 3

O
C@Zé/CSIEMOMO Distributed Systems

Request-Reply Comm

Client Server

Request

doOperation

message getRequest

select proceduret

execute proceduret

Reply

sendReply

(continuation)< message

_/

CSIESZQOO/QSQJ\‘II\%&Q@Stributed Systems ﬂte Invocation — RPC!

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

}w) Request-Reply Protocol
T Operations

public byte[] doOperation (RemoteRef s, int operationld, byte[] arguments)
sends a request message to the remote server and returns the reply.
The arguments specify the remote server, the operation to be invoked and
the arguments of that operation.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.\ /

CSIE52400/CSIEM0140 Distributed Systems v._b‘;él;';ﬁote Invocation — RPC 5

Request-Reply Message Struc

messageType int (0=Request, 1= Reply)
requestld int

remoteReference RemoteRef

operationld int or Operation

arguments array of bytes

\I/O

' N’

c:(fE}zASIEMomo Distributed Systems i \ Remote Invocation - RPC 6

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

N Protocol Details

® A message identifier consists of two parts
» requestID
> An identifier of the sender
® Failure model
» Omission failures
» Messages may not be delivered in sender order
® Timouts o)
> Return immediately with failure (not normal) \ /
» Resend the request
» Returns with exception after retries

o/

CSIE52400/CSIEMO0140 Distributed Systems Remote Invocation = RPC 7

\-/v
~

O
® Duplicate requests

» Server may receive the same request more than once (why?)

» Recognize successive messages with the same requestID and
filter out duplicates

® Lost reply

> Lost reply may lead to re-execution if the original result was
not stored

» Idempotent operation can be executed repeatedly with the
same effect \
b

\

, @
CSIE52400/CSIEM0140 Distributed Systems Remotenvocation — RPC 8

Protocol Details

D

g

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

V

= ——
History [
I
® History keeps records of (reply) messages that have begn sent.l

; . /
® An entry contains a requesID, a message, and a cllentll o

identifier. [)
® Allow message retransmission w/o re-execution N
® Memory cost can be very high \‘\\L

® Only need to keep the last message sent to each client (why?)
® The memory cost can still be high if the number of clients gsﬁ

large.
c5|Esz400/gsgy%g Bistributed Systems ﬂwc
[P
S Styles of Exchanges
Name Messages sent by
Client Server Client
R Request

RR Request Reply
RRA Request Reply Acknowledge reply

CSIESZ400!SIEM014O Distributetstems i I I I I Remote Invocatil —RPC 10

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HTTP: An Example

'ﬁ-lyperText Transfer Protocol (HTTP) is an example of a
request-reply protocol

® Clients (eg. Browsers) send HTTP requests to servers (eg. Web
servers) and wait for HTTP responses.

® Support a fixed set of methods (GET, PUT, POST, etc.)
applicable to all server’s resources.

® Also allows for
» Content negotiation (eg. Language, media type)
» Authentication (password-style)

CSIE52400/CSIEM0140 Distributed Systems d ‘ir‘ﬁ'c'yte Invocation — RPC 11

HTTP Versions
. N

® HTTP 0.9 (1991) — The first documented version
® HTTP 1.0 (RFC 1945, 1996)
® HTTP 1.1 (RFC 2068, 1997)

® HTTP 1.1 (RFC 2616, 1999) — with improvements and
updates (most popular old version)

® HTTP/2 (RFC 7540, 2015) — server push, pipelining of
requests, multiplexing multiple requests over a smgle TCP

connection, and better performance XX
® HTTP/3 (RFC 9114, 2022) — uses QUIC (a multiplaxed
transport protocol built on UDP) —

> used by 29.29% of all the websites (W3Techs, Apr%)

CSIES2400/CSIEMO0140 Distributed Systems Remote Invocation —RPC 12

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

\ | /V

o HTTP Interaction

’0 Client-server interaction
» Client initiates an attempt
> Server accepts a connection on default port
> Client sends a request message
» Server sends a reply message
» Connection close
® Persist connection allow a series of exchanges
® Request and replies are marshalled into text messages
® Resources can be byte sequences and compressed

D

CSIE52400/CSIEMO0140 Distributed Systems

Remote Ipvocation — RPC 13

/
| HTTP Data
g 89
® Data are supplied as MIME-like structures

® Multipurpose Internet Mail Extensions (MIME)
® Each is prefixed with MIME type

® A MIME type specifies a type and subtype, eg. text/plain,
text/html, image/gif, image/jpeg, ...
® Clients can specify the MIME types to accept

Remote Iny,

E

IE52400/CSIEMO014QDistribut@d Systems

Cc14

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

HTTP Methods

1/Each request specifies a method and URL to a resource
® The reply reports the status of operation
® HTTP methods:

» GET - ask for the resource (data, program, ...)

» HEAD - returns only info about data

» POST - provide the URL that can deal with the data in the
request

» PUT - requests the data to be stored with the URL
» DELETE - deletes the resource (URL)

» OPTIONS - server supplies a list of methods allowed /
» TRACE - server sends back the request

CSIE52400/CSIEM0140 Distributed Systems d ‘Fr{c.)te Invocation — RPC 15

P HTTP Contents

® HTTP Request message

method URL or pathname HTTP version headers message body

GET /lwww.dcs.gmw.ac.uk/index.html HTTP/ 1.1

® HTTP Reply message

HTTP version status code reason headers message body

HTTP/1.1 200 OK resource data

® Message body contains the data and can have its own header
(with info such as MIME type)

CSIE52400!SIEM014O Distributetstems | I I I I I I Remote Invocatil —RPC 16

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 07a: Remote Invocation - RPC

D

CSIE52400/CSIEMO0140 Distributed Systems

\ | /\./

. HTTPS

’o HTTP is popular but not secure!
® HTTPS(Hyper Text Transfer Protocol Secure, port 443)

® Uses an encrypted connection with Secure Sockets Layer (SSL)
or Transport Layer Security (TLS) certificate to communicate.

® HTTPS = HTTP + Cryptographic Protocols

® HTTPS encrypts all message substance, including the HTTP
headers and the request/response data.

® The verification perspective of HTTPS requires a trusted thir
party to sign server-side digital certificates.

® Encryption/decryption makes HTTPS heavier than H

Remote Ipvocation — RPC 17

CSIES

HTTP vs HTTPS

i)

| |
H TTF usemame: usermame

password; password ‘

® Data sent across the HTTP is plain text

Y

-~

Browser

WEB
With SSL SERVER

\

[Data sent across the HTTP is encrypted ‘ |

L J

HTTPS usermname: ghgVtul873LgtiOhhGGD5h/41638bVghRFg
password: wsdrTGD65fTVEETBgh8BgréJ191LEgI90nE

. 7

o/

2400/CSIEMO0140 Distributed Systems

Remote Invocation =R

Browser \ j a—

18

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 07a: Remote Invocation - RPC

® Transient versus persistent communication

Types of Communication /| —

® Asynchronous versus synchronous communication /
/ §
Synchronize at Synchronize at Synchronize after l Pt
request submission request delivery processing by server i
Client — e \‘
Request\/ / D
Transmission
interrupt ﬂ
e V Storage 7’
facility
\ /Reply
8 __________ Server o _Ti_rr;e _ —

CSIE52 istributed Systems Remotlocation —RPC

vi§ = =
%‘ ‘\ Transient vs Persistent

® Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.

® Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.

eany o
‘E 2400/CSIEM014QfDistributgd Systems Remote Inv,

n—R

\

C 20

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

Synchronous vs Asynchronous’ _

7\
® Places for synchronization (waiting) : o

> At request submission
> At request delivery
» At request processing

® Asynchronous comm proceeds w/o wait after
sending/receiving.

CSIE524OHlSIEM014O D|str|butepstems I I I I I Remote Invocatil —RPC21

- Client/Server Comm

® Client/Server computing is generally based on a model of transient
synchronous communication:

» Client and server have to be active at the time of communication
» Client issues request and blocks until it receives reply

» Server essentially waits only for incoming requests, and subsequently
processes them

® Drawbacks of synchronous communication:
» Client cannot do any other work while waiting for reply O
» Failures have to be handled immediately: the client is waitin 4
» The model may simply not be appropriate (eg. mail, news) —_—

o/

CSIES2400/CSIEMO0140 Distributed Systems Remote Invocation —RPC 22

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote |

nvocation - RPC

» Aims at high-level persistent asynchronous communication
» Processes send each other messages, which are queued.
» Sender need not wait for immediate reply, but can do other things.
» Middleware often ensures fault tolerance.

» (more on this later)

O
I @
NoL

C@ZAASIEMOMO Distributed Systems

e\
Messaging a\ A)
® Message-oriented middleware: \\:‘ ‘

=

-

Remote Invocation - RPC 23

Remote Procedure Call
(RPC)

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

Recap: Socket-based Comm

® Socket API: all we get from the OS to access the network
® Socket = distinct end-to-end comm channels
® Read/write model
» Send a bunch of bytes
> Read a bunch of bytes
» Send a bunch of bytes
> Read a bunch of bytes
> ...
® Application implements its protocol
® Line-oriented, text-based protocols common
> Not efficient but easy to debug & use

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation — RPC 25

Problems with Socket API

® The sockets interface forces a direct read/write
mechanism

® Programming is often easier with a functional interfac
® To make distributed computing look more like centralj

computing, I/O (read/write) is not the way to go \
® — 1984: Birrell & Nelson

» Mechanism to call procedures on other machines R
(Remote Procedure Call)

CSI E52409/§$%ﬁl\£%49@;sitributed Systems mﬁ

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

N

@nventlonal Procedure Gz
- :
D ’/0 You write: x = f(a, “test”, 5);
® The compiler parses this and generates code to:
1. Push the value 5 on the stack
2. Push the address of the string “test” on the stack
3. Push the current value of a on the stack
4. Generate a call to the function f
® In compiling f, the compiler generates code to:

1. Push registers that will be clobbered on the stack to save the
values

2. Adjust the stack to make room for local and temporary variables \
b

3. Before a return, unadjust the stack, put the return dat a
register, and issue a return instruction \

. @
CSIE52400/CSIEMO0140 Distributed Systems Remote lnvocation — RPC 27

o

onventional Procedure CallF ™

a) Parameter passing in a local procedure call: the stack
before the call to read
b) The stack while the called procedure is active
Stack pointer N
Main program's Main program's
local variables local variables
- bytes]
buf
fd
return address
read's local
variables
‘7
._,L,;:-"-I"’j | (=) ®) s
,C.SIEJMOO/CSIEMOM istributg@d Systems X (I \Remotelnv n—RPC 28

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

V
—

Remote Procedure Call [

® Application developers are familiar with simple procedure mode’. \
® Well-engineered procedures operate in isolation (black box). /

- [
® There is no fundamental reason not to execute procedures on Iéepara.tee

machine. N
® Communication between caller & callee can be hidden by USN‘

procedure-call mechanism.

= Remote Procedure Call (RPC) y
S

CSIES 2400/(_.:59!_/10 40 Distributed Systems mpc

Remote Procedure Call (RPC) 7 _

o/ \o

® A client program calls a procedure in another program running
in @ server process.

® A server process defines its service interface which specifies
the procedures that are available for calling remotely.

® RPC is generally implemented over a request-reply protocq_l.

® A widely used standard for communication in distributed &=
systems. :

CSIE524OH‘SIEM014O D|str|but¥stems I I I I I Remote Invocatil _RPC 30

CSIE52400/CSIEMO0140 Distributed Systems

Client and Server Interactiqﬁ‘\

Lecture 07a: Remote Invocation - RPC

® Principle of RPC between a client and server program.

Wait for result

CSIESZZ}Q(‘)/‘(‘;_S_Q"M(% &Q@;_strlbuted Systems

/
/

Chent v > ———
Call remote Return L —
procedure from call 7

%
3
Request Reply
Server - o m— oo
Call local procedure Time —
and return results T

/

/

{—
/

Remote Invocation — RPC

/ .
\ 3\ Design Issues for RPC
3

® Programming style - service interfaces
® Call semantics
® Transparency of RPC

,.G&}_EJMOO/CSIEMOM istributgd Systems

\

Remote Iny, n—RPC 32

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 07a: Remote Invocation - RPC

Interface Definition

® Service interface is defined by an Interfac
Definition Language (IDL)
® CORBA IDL example

//'In file Person.idl

struct Person {
string name;
string place;
long year;

} =

interface PersonList {
readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

CSIE52400/CSIEMO0140 Distributed Systems

N /7

Remote Invocation — R

Call Semantics
\—/
® Different semantics provide different delivery guarantees
Fault tolerance measures Call .
semantics
Retransmit request Duplicate Re-execute procedure
message filtering or retransmit reply
No Not applicable Not applicable Maybe
Yes No Re-execute procedure At-least-once
Yes Yes Retransmit reply At-most-once

CSIES2400/CSIEMO0140 Distributed Systems

C34

250 .
lemote Invocation — R

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 07a: Remote Invocation - RPC

® Most RPC systems will offer either:

/
» at least once semantics I/
I [

/

» or at most once semantics :

without harm
» non-idempotent functions: those with side-effects 1

® Try to design your application to be idempotent N
> Not always easy!

» Store transaction IDs, previous return data, etc.
CSIE52400/CSQMOd’40 QJstrlbuted Systems Remote Invocation — RPC

RPC Semantics | T

® Understand application:
> idempotent functions: may be run any number of tH’H’Q}L

lllll

—& Call Transparency

® Whether to make RPC transparent is a matter of design
® If remote call is the same as local call, it is transparent.

® Since a remote call is more vulnerable to failure, non-
transparent call reminds the programmers.

® Current consensus is that RPC should be made transparent in
syntax but the difference should be expressed in the interface.

CSIE52400lSIEM014O Distributetstems i I I I I Remote Invocatil -R

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 07a: Remote Invocation - RPC

More Issues

® Performance
» RPC is slower ... a lot slower (why?)
® Security

» Messages may be visible over
network — do we need to hide them?

> Authenticate client?
> Authenticate server?

CSIE52400/CSIEMO0140 Distributed Systems

Remote Invocation — RPC 37

client stub
procedure

Communication Communication

module module

,.G&}_EJMOO/CSIEMOM istributgd Systems

dispatcher

server stub
procedure

service
procedure I

\

Mhmote J g ot

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

RPC Implementation (2)

® The client stub
» behaves like a local procedure to the client

» marshals the procedure id and arguments into request
message

» sends the request to server
> wait for the reply message
» unmarshals the results

® The dispatcher \
> receives client request message 4

» selects proper server stub a——

o/

CSIE52400/CSIEMO0140 Distributed Systems Remote Invocation = RPC 39

RPC Implementation (3)

® The server stub
» unmarshals the arguments in the request message
» invoke local call to the corresponding service procedure
» marshals the return values for the reply message

® The client and server stub procedures and the dispatcher can
be automatically generated by an interface compiler.

\I/O

C@ZASIEMOMO Distributed Systems

ol o

Remote Invocation - RPC 40

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

Steps of RPC

Client procedure calls client stub in normal way
Client stub builds message, calls local OS
Client's OS sends message to remote OS
Remote OS gives message to server stub
Server stub unpacks parameters, calls server procedure
Server does work, returns result to the stub
Server stub packs it in message, calls local OS
Server's OS sends message to client's OS
Client's OS gives message to client stub
0 Client stub unpacks result, returns to client ~ /

CSIE52400/CSIEM0140 Distributed Systems

i ,Tﬁ.cA)te Invocation — RPC 41

Client Machine Server Machine
Client Server
R:e.turn Call C:iil Execule Return

Server stub

1

1

1

1

1

1

1

1

1

z 1
Client stub i
v '
1

1

1

1

1

1

1

1

1

1

1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 r 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
L a

Unpack Pack

A

Unpack Pack

A

Steps of RPC

RPC Runtim

ITPC Runtimg

Rece:ve Send

Rticeive Jait Send

Call Packet
I/ \ / Result Packet
K ‘,,"{»:'3 Implementation of RPC mechanism

A
[t

CSIE52400/CSIEMO0140 Distributed Systems Remote Invocation — RPC 42

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

R
- Steps of RPC
L/ oo

’o Steps involved in doing remote computation through RPC

Client machine Server machine
Client process Server process
- Crli)ecrgdcuarléto Implementation 6. Stub makes
P of add local call to "add"
el L Client s?jbrversmb\
proc: "add" — \ proc: "add"
int: val(i) 2. Stub builds int: val(i) 5. Stub unpacks
int:_ val(j) message int:_val(j) message
Client OS e \Z?IZ) Server OS * ﬁgr:\éirn?esssage
§ int: __val()) to server stub \
3. Message is sent D |
across the network %
CSIE52400/CSIEMO0140 Distributed Systems Remot>wocation —RPC43
® Client stub has the same interface as the remote function
® Looks & feels like the remote function to the programmer
® But its function is to
» Marshal parameters
» Send the message
> Wait for a response from the server
» Unmarshal the response & return the appropriate data
> Generate exceptions if problems arise \ 7/
I
CSIES2400/CSIEMO0140 Distributed Systems O /Remote Invocation — RPC 44

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

Server Stub | T

® Dispatcher - the listener /
> Receives client requests / ‘
> Identifies appropriate function (method) ,’ o

® Skeleton - the unmarshaller & caller / .
» Unmarshals parameters {
> Calls the local server procedure B—
» Marshals the response & sends it back to the dispatcher <

@ _All this is invisible to the programmer .

» The programmer doesn’t deal with any of this
> Dispatcher + Skeleton may be integrated

« Depends on implementation
CSIE52409/C59M%Q.@;§tributed Systems Remote Invocation — RPC

\ | / =
\

RPC Benefits

® RPC gives us a procedure call interface
® Writing applications is simplified
» RPC hides all network code into stub functions
> Application programmers don’t have to worry about details
» Sockets, port numbers, byte ordering
® Where is RPC in the OSI model?
> Layer 5: Session layer: Connection management

> Layer 6: Presentation: Marshaling/data representation
> Uses the transport layer (4) for communication (TCP\ P)

\

\

D

d

2

CSIE52400/CSIEM0140 Distributed Systems Remote\y/ocation —RPC 46

D
&

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

_.—¢ RPC: Parameter Passing

[e]

® There’s more than just wrapping parameters into a message

» Client and server machines may have different data representations
(think of byte ordering)

» Wrapping a parameter means transforming a value into a sequence of
bytes

» Client and server have to agree on the same encoding
» How are basic data values represented (integers, floats, characters)
» How are complex data values represented (arrays, unions)

® Client and server need to properly interpret messages, transforming
them into machine-dependent representations

a1 Ta Tl Tari1Pal

) Passing Value Parameters

(@

e
a) Original message on the sender (little endian)
b) The message after receipt on the server (big endian)

c) The message after being inverted. The little numbers in boxes
indicate the address of each byte

CSIES2400/CSIEMO0140 Distributed Systems d ?ﬁ}dte Invocation — RPC 48

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

V

Reference Parameters /\\

/
® How about reference parameters, or pointers? / \
» Can use copy-in, copy-back. / .
» Suppose there is a 500 integer array being passed: / il
e int a[500]; [—
remote call(a, 500); \‘

» This would copy the array into the message, send it over, the
array would be sent back, and then the contents of the &
message would be copied back over the original array.

> Efficient?

CSIES 2400/(_.:59!_/10 40 Distributed Systems ’ﬂpc

Parameter Spec and Stub
Generation

foobar's local
variables

E

a) A procedure Y

b) The corresponding 5

message. Z[0
Z[1

]
]
foobar(char x; float y; int z[5]) z[2]
]
]

{ z[3
} z[4

(@) (b)

ot . e
CSIE52400/CSIEMO0140 Distributed Systems

Remote Invocation — RPC 50

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

\ | /\./

N
/ o
yo Solution 1: Maintain a centralized DB that can locate a host
that provides a particular service (Birrell & Nelson’s 1984

proposal)

Where to bind?

® Challenges:
» Who administers this?
> What is the scope of administration?

> What if the same services run on different machines (e.g
file systems)? \
b

\

. @
3
CSIE52400/CSIEMO0140 Distributed Systems Remote lnvocation — RPC 51

Where to bind? \
® Solution 2: A server on each host maintains a DB of /ocall
provided services
® Challenges:
» How to handle heterogeneous systems?
> How to provide a uniform interface to the client?
o)
\ i O
/
o/ g’
C(I’E}ZASIEMOMO DistributedOSystems i N L, -Remote Invocation - RPC 52

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

'\ ,\ Transport Protocol
S ° .
X' ® TCP or UDP? Which one should we use?

® Some implementations may offer only one (e.g. TCP)
® Most support several

> Allow programmer (or end user) to choose at runtime _~"

/

V4

¥ 4

V4

"\

\

N

/7! =

N Y
(NFT/L

[CSIE52400/CSIEM014Q¥Distribut€d Systems

g \ 7’&"‘~ _—

When things go wrong

® Local procedure calls do not fail

> If they core dump, entire process dies
® More opportunities for error with RPC
® Transparency breaks here

> Applications should be prepared to deal with RPC failure
\

o/ "\

o
g 5B 11l fiay
CSIE524OOISIEM014O DistributItems i I ‘ I Remote Invocatil —RPC 54

©

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

\
=
oy

Y
~—

) RPC Optimizations

-
® What if doing RPC to a process on the same machine?

» Can use shared memory to optimize?
» Can we get rid of all copies?

® Does RPC allow you to overlap communication with
computation?
> Suppose you are sending an array of 1 GB.

® Does RPC give you concurrency? That is, can you have
the caller and callee executing at the same time?
» Does normal procedure call provide that? ~_

CSIE52400/CSIEM0140 Distributed Systems d ‘ir;ﬁ;c'yte Invocation — RPC 55

Using Shared Memory

® Caller side:

a = func(big array);

int func(int big array([1000]) {
copy_ to_shared memory(..);
signal callee(..);
copy_result from shared memory(..);
return result;

}
® Server side:

0]
some func(..) {
wait for signal(..);
call local func(..); —
/* Directly access from shared memory.*/ /

o \

CSIES2400/CSIEMO0140 Distributed Systems Remote Invocation —RPC 56

/

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

| ~
ET(tended RPC Model - D
284
oty
) o |
’ ® The principle of using doors as IPC mechanism on the same
machine.
Computer
Client process Server process
server_door(...) €————_
{
;:i;)or_return(...); E—
main() maing
{
gonrOE:Irll((fc:ioor_)r-]ame' o Register door | d = door_create...):
low fattach(fd, door_name. ...);
}
‘ Operating system N M JJ
A
Invoke registered door i
at other process Return to calling process
CSIE52400/CSIEMO0140 Distributed Systems Remote lpvocation — RPC 57

Overlapping Communication with
Computation
® \What can be done?

Caller

Callee

Array transmission

CSIE52409/§£M%&49@§tributed Systems Remote Invocation — RPC

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

Recap: Types of Comm

® Viewing middleware as an intermediate (distributed) service in
application-level communication.

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ I/ g —— L

Request
Transmission
interrupt
Storage
facility
\ / Reply
Server Time —>
CSIE52400/CSIEM0140 Distributed Systems \ Remote Invocation — RPC 59

Asynchronous RPC

® Essence: Try to get rid of the strict request-reply behavior, but let the
client continue without waiting for an answer from the server.

call RPC return results

T T >
wait for accept 7
callback

S / > 0O
b e e mm e e e |
call local procedure \ 4

and return results

o/

CSIES2400/CSIEMO0140 Distributed Systems Remote Invocation — RPC 60

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

\-/u
\O

’ ® Essence: Try to get rid of the strict request-reply behavior, but let the
client continue without waiting for an answer from the server.

a) Interconnection between client & server in a traditional RPC
b) Interaction using asynchronous RPC

Asynchronous RPC o/ ™.~

D

Client Wait for result Client Wait for acceptance
« 3 « >
Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure Time —» Server Call local procedure Time —» \
and return results X : ¢
3
(@) ®) \ N
\ @
CSIE52400/CSIEMO0140 Distributed Systems Remote\wmcation —RPC61

Can we get this?

® [s this asynchronous RPC?
® How does the client get the result?
® If it does not wait, it is called one-way.

Caller

Array transmission

CSIE52400/C£M%9'wstributed Systems Remote Invocation — RPC

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

Caller Wait

Callee

Array transmission

CSIES2400/CSIEMO0140 Distributed Systems i“";:c;te Invocation — RPC 63

Overlapping Communication

® Assume that this returns before transmission has
completed.

» Array large array(..); "’!"---‘\\\~
// Start RPC

resp = start _rpc(“name”, large_ array);
// Do lots of stuff.
answer = resp.wait();

® Could this be a problem?
» Array large array(..);
// Start RPC
resp = start _rpc(“name”, large array)
large array.clear();
answer = resp.wait();

CSIES2400/CSIEMO0140 Distributed Systems Remote Invocation — RPC 64

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 07a: Remote Invocation - RPC

Deferred Synchronous RPC

\ 7

o/

Remote Invocation =R

® A client and server interacting through two asynchronous RPCs
Wait for Interrupt client
acceptance
Client eeptant A
A »
Call remote Return et
from call eturn
procedure results Acknowledge
Accept
Request request
Server o ———————— o
Call local procedure K Time ——»
Call client with
one-way RPC
CSIE52400/CSIEMO0140 Distributed Systems

65

all local procedure

callback

‘\/’—’

callback

/

wait for results - - -

c
Sy a
C ——callRPC - -
So -

c

CSIES2400/CSIEMO0140 Distributed Systems

Y

all local procedure

Sending out Multiple RPCs*

® Essence: Sending an RPC request to a
group of servers.

te Invocation — R

PC 66

CSIE52400/CSIEMO0140 Distributed Systems

Lecture 07a: Remote Invocation - RPC

\ | /\./

N
/ 7
'@ Consider the code:
> a = slow_rpc_func(b);
/* Do a bunch of stuff. */
c =a+ b;

® How much concurrency is there? How could you improve it?

® Asynchronous RPC:
> resp obj = start slow rpc func(b);
/* Do a bunch of stuff. */
a = resp obj.wait for response();
c =a+ b;

Futures(1)

CSIE52400/CSIEMO0140 Distributed Systems Remote lnvocation — RPC 67

S Futures(2)

® Futures:

» Future<double> a = slow_rpc func(x);
/* Do a bunch of stuff. */
c =a() + b;

® Can be made first class, and then combined in various ways:

» Future <double> x = .;
Future <double> a = slow_rpc_ func(x);
/* Do a bunch of stuff. */
c =a() + b;

__-' _Sl‘ ";. s
CSIESZ400!SIEM014O Distribut;r;/stems ‘ I I I I I Remote Invocatil -R

CSIE52400/CSIEMO0140 Distributed Systems

) RPC Example — DCE/RPC

"O/DCE (Distributed Computing Environment) is developed by Open
Software Foundation (OSF, now called The Open Group) as an
open middleware for distributed systems.

® The key idea is to add an open distributed layer easily w/o
disturbing existing applications.
® Based on client-server model
® Representative of typical RPC systems.
® Provide a number of services:
» Distributed file service (transparent file access)
» Directory service (transparent resource access)
> Security service (resource protection)
» Distributed time service (keep clocks globally synchronize

CSIE52400/CSIEM0140 Distributed Systems

i emote Invocation — RPC 69

Goals of DCE/RPC

YA
® A client can access a remote service by calling a local proc dgré
® Existing code run in DCE with few or no changes.

® Automatically locate the correct server and set up the
communication (binding).

® Handle two-way message communication.
® Handle data type conversions

® Clients and servers can be written using different languages, run
on different platforms.

\I/O
/ o

e
>
\ <3
CSIE ZASIEMOMO Distributed Systems £ Remote Invocation - RPC 70

Lecture 07a: Remote Invocation - RPC

CSIE52400/CSIEMO0140 Distributed Systems

CSIESZZ}OQ/Q%MQ&Q Distributed Systems

Writing a Client and a Server/(“t)\

® The steps in writing a client and a server in DCE/RPC. }

/
/
/

/

/

Interface ® a3
definition file ¥
L
?‘DL compier N
Client code Client stub Header Server stub Server code \
S —_#include /V #include T
[C compiler J [C compiler) L C compiler] [C compiler) &
Client Client stub Server stub Server
object file obje ct file object file object file
—~
—A{ \A
Linker Runtime R_un ime Linke
library Ilb
Client
binary

Server
binary
Remote Invocation — RPC

CSIES

Writing a Client and a Server (2)

® Three files output by the IDL compiler:
> A header file (e.qg., interface.h, in C terms)":aﬁ;
»The client stub.
»The server stub.

AL 5B 11
2400lSIEM014O Distributet,tems ‘ i I ‘

C72

Lecture 07a: Remote Invocation - RPC

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

- RPC Compiler
) / . client code (main)

client stub

data conversion compiler client

RPC

: headers
compiler

data conversion compiler

server skeleton

. Code you write

server functions
. Code RPC compiler generates

CSIE52400/CSIEMO0140 Distributed Systems

Rem&ocation —RPC73

Binding a Client to a Server (1) \ %

® Registration of a server makes it possible for
client to locate the server and bind to it.

® Server location is done in two steps:
1.Locate the server’s machine.
2.Locate the server on that machine.

o ©
| O
\ _

Ng o

CSIE52400/CSIEM0140 Distributed Systems

@)

@)
o “"

~ Remote Invocation - RPC 74

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

Binding a Client to a Server (2)

® Client-to-server binding in DCE.

Directory machine

Directory
server
hd i i
3. Look up server 2. Register service

Server machine

Client machine

IIEECBEC___I_* Server | 1. Register endpoint
Client (port) <

Fy
4, Ask for endpoint ™ bce @‘R
table (server, endpoint)
pairs) O /
CSIE52400/CSIEMO0140 Distributed Systems Remote Invocation = RPC 75

Other RPC Related Sys/Protocols

® FreeDCE

® MSRPC (Microsoft)
® J-Interop (MSRPC implementation in Java) /\\
® Jarapac (DEC/RPC in Java)

® MS-RPCE (Microsoft Remote Procedure CallProto
Extensions)

® JSON-RPC (a "JSON encoded” RPC variant)
® XML-RPC (an “XML encoded” RPC variant

® SOAP is a successor of XML-RPC and also'uses XML to encode
its HTTP-based calls.

CSIES2400/CSIEMO0140 Distributed Systems Remote Invocation — RPC 76

CSIE52400/CSIEMO0140 Distributed Systems Lecture 07a: Remote Invocation - RPC

Python RPC Libraries

'O/Many libraries exist for Python RPC

® RPyC (are-pie-see), or Remote Python Call, is a transparent
python library for symmetrical remote procedure calls.

® gRPC is an open source RPC system initially developed
at Google.

® The Google Protocol RPC library is a framework for
implementing HTTP-based RPC services.

® Apache Thrift (developed at Facebook) is a RPC framework for
defining and creating services for numerous languages.

® See also: xmlrpc, json-rpc, tinyrpc

~— E &

CSIE52400/CSIEM0140 Distributed Systems d ‘ir'ﬁ;cite Invocation — RPC 77

