
CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

CSIE52400/CSIEM0140
Distributed Systems

Lecture 07b
Remote Invocation - RMI

Shiow-yang Wu (吳秀陽)
Department of Computer Science and Information Engineering

National Dong Hwa University

CSIE52400/CSIEM0140 Distributed Systems 1

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

RMI vs RPC
 Commonalities
 Programming with interfaces
 Request-reply protocol and call semantics
 Similar level of transparency

 Differences
 RMI supports OOP
 Unique object references allow richer parameter-passing

semantics

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 2

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

Distributed Object Model
 Remote objects
 objects that can receive remote invocations

 Remote object references
 a unique global identifier to refer to an object

 Remote interfaces
 specifies remotely invokable methods of an object

 Remote method invocations (Actions)
 invocations between objects in different processes

 Exceptions
 Handle error conditions

 Garbage collection
 Automatic freeing of space of unused objects

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 3

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 4

Remote and Local Method
Invocations

invocation invocation

remote

invocation
remote

local

local

local

invocation

invocation

A
B

C

D

E

F

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Remote Object and Interface

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 5

remote
interface

m1

m2

m3

m4
m5
m6

Data

Implementation
of methods

remote object

{

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Instantiation of Remote Objects

CSIE52400/CSIEM0140 Distributed Systems
Remote Invocation 6

C

NM

K

invocation
remote

invocation
remote

L

instantiate instantiate

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

RMI Implementation
 A remote object with client-side proxy.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 7

2-16

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 8

Proxy, Skeleton & Servant

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

The RMI Software
 Proxy: one proxy for each remote object to make remote

method invocation transparent to clients
 Skeleton
 each remote object class has a skeleton that implements the

methods in the remote interface
 unmarshals the request message, invokes the corresponding

remote object, waits for its completion, and marshals the result
 Dispatcher
 one dispatcher and skeleton for each class representing a remote

object
 receives request message, selects appropriate method, passes on

the request to the skeleton

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 9

REMINDERS FOR
THIS CLASS

Binding a Client to an Object

a) Implicit binding using global references
b) Explicit binding using global and local references
*: A binder is a service to keep the mappings between names
and object references

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 10

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; //Initialize the reference to a distributed object
obj_ref-> do_something(); //Implicitly bind and invoke a method

(a)

Distr_object obj_ref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

Static vs Dynamic Invocations
 Static invocation: the client invokes remote methods by

following predefined interface definitions.
Example: fobject.append(n)

 Dynamic invocation: the client can compose a method
invocation at runtime. Generally takes a form such as
invoke(obj, method, ip_parms, op_parms)

Example: invoke(fobject, id(append), n)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 11

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Mechanisms for RMI Delivery Guarantees

 Retry request message
 Duplicate filtering
 Retransmission of results

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 12

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Invocation Semantics

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 13

Fault tolerance measures
Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Question:

 Should remote invocations provide transparency? Why or why
not?

 Current consensus:

 remote invocation should be made transparent on
the syntax level

 the difference between local and remote objects
should be expressed in their interfaces

Remote Invocation 14

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Parameter Passing
 The situation when passing an object by reference(remote) or

by value(local).

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 15

2-18

HOW TO USE THIS PRESENTATION

 DCE is a RPC-based system which does not have object
support in the first place.

 Remote objects were added to catch up with the object
movement.

 However, remote object invocation is still done by means of an
RPC.

 Lacking a proper systemwide object reference mechanism
makes parameter passing in DCE harder.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 16

DCE Remote Objects

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

DCE Distributed-Object Model
a) Distributed dynamic objects in DCE.
b) Distributed named objects

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 17

REMINDERS FOR
THIS CLASS

Python Remote Objects
 Python is a multi-paradigm programming language and

support object orientation.
 All RPC libraries discussed previously can be used in object-

oriented way.
 Many Python modules for remote/distributed objects:
 Pyro (Python Remote Objects)
 Dopy (Distributed Objects for Python)
 PyCSP (Communicating Sequential Processes for Python)
 …

 We use Pyro as an example.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 18

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python RMI Architecture

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 19

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Pyro

 Python Remote Objects
 Pyro3 - https://pythonhosted.org/Pyro/ (Pyro 3.16)
 Pyro4 - https://pythonhosted.org/Pyro4/ (Pyro4 4.82)
 Pyro5 - https://pypi.org/project/Pyro5/ (Pyro5 5.15)

 Distributed Object Technology
 RMI
 Mobile code

 100% pure Python, comm between diff Python versions
 Name server, IPv4/IPv6, SSL/TLS, remote exceptions, …
 Should use Pyro5 whenever possible.

Remote Invocation - RMI 20

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Pyro Overview
 Server
 Write a server program

• containing a class 'serverClass'
 Expose the server class ‘serverClass’
 Register the class with Pyro daemon (returns an URI) as a Pyro object
 [Register the object(URI) with a name in the Name Server]
 Start the request loop

 Client
 Queries the Name Server for the server object(s)

• returns Pyro URI (Universal Resource Identifier) for them.
 Create proxie(s) for the remote object(s).

• Proxy mimics the real ‘serverClass’,
 Invoke methods on the remote objects.

• The proxy will forward the method invocations and return the results,
just as if it was the local object itself.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 21

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Server
 Implement a server class to be accessed remotely with methods

and attributes.
 Make it “remotable”
 Pyro3

• Make it a subclass of Pyro.core.ObjBase
• Derive a new class

 Pyro4
• Expose methods: @Pyro4.expose
• Create a new “exposed” class:
 ExposedClass = Pyro4.expose(SomeClassFromLibrary)

 Pyro5
• Expose the server class: @Pyro5.api.expose
• Can give it a name through Name Server

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 22

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Server Class (Pyro3)
class remoteClass(Pyro.core.ObjBase, origClass):

def __init__(self):
Pyro.core.ObjBase.__init__(self)
origClass.__init__(self)

…

 import Pyro.core
 Make the new class subclass of
 Pyro.core.ObjBase and origClass

 Call the constructors of the super-classes

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 23

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Start the Server (Pyro3)
 Initialize Pyro3
 Pyro.core.initServer()

 Start daemon
 daemon = Pyro.core.Daemon()

 Create the object
 obj = remoteClass()

 Make object available
 uri=daemon.connect(obj, "objName")

 Print URI
 Start request loop
 daemon.requestLoop()

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 24

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Client (Pyro3)
 Initialize Pyro
 Pyro.core.initClient()

 Get URI (more about this later)
 Get a proxy for the remote object
 obj = Pyro.core.getProxyForURI(URI)
 obj = Pyro.core.getAttrProxyForURI(URI)

 Call methods
 Access attributes

CSIE52400/CSIEM0140 Distributed Systems
Remote Invocation - RMI 25

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Server Class (Pyro4)
import Pyro4
class PyroService(object):

value = 42 # not exposed
def __dunder__(self): # not exposed

pass
@Pyro4.expose
def get_value(self): # exposed

return self.value
@Pyro4.expose
@property
def attr(self): # exposed as remote attr

return self.value
@Pyro4.expose
@attr.setter
def attr(self, value): # exposed as writable attr

self.value = value

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 26

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

Expose a class (Pyro4)
import Pyro4
@Pyro4.expose
class PyroService(object):

def normal_method(self, args):
result = do_calculation(args)
return result

@Pyro4.oneway
def oneway_method(self, args):

result = do_calculation(args)

from thirdparty_library import SomeClass
import Pyro4
expose SomeClass using @expose as wrapper function:
ExposedClass = Pyro4.expose(SomeClass)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 27

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Start the Server (Pyro4)
 Start Pyro4 daemon
 daemon = Pyro4.Daemon()

 Create the object
 obj = exposedClass()

 Make object available
 uri = daemon.register(obj, "objName")

 Print URI
 Start request loop
 daemon.requestLoop()

Remote Invocation - RMI 28

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

 Get URI
 Get Proxy for the remote object
 obj = Pyro4.Proxy(URI)

 Call Methods
 Access attributes

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 29

Client (Pyro4)

REMINDERS FOR
THIS CLASS

GALLERY 01

Server Class (Pyro5)
saved as greeting-server.py
import Pyro5.api

@Pyro5.api.expose
class GreetingMaker(object): # server class

def get_fortune(self, name): # remote method
return "Hello, {0}. Here is your fortune message:\n" \

"Tomorrow's lucky number is 12345678.".format(name)

daemon = Pyro5.server.Daemon() # make a Pyro daemon
ns = Pyro5.api.locate_ns() # find the Name Server
uri = daemon.register(GreetingMaker) # register the server class as a Pyro object
ns.register("example.greeting", uri) # register the object with a name

print("Ready.")
daemon.requestLoop() # start the event loop of the server to wait for calls

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RMI 30

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Start the Server (Pyro5)

$ python greeting-server.py
Ready. Object uri =
PYRO:obj_fbfd1d6f83e44728b4bf89b9466965d5@localhost:35845

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RMI 31

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Client (Pyro5)
saved as greeting-client.py
import Pyro5.api

name = input("What is your name? ").strip()

use name server object lookup remote uri
greeting_maker = Pyro5.api.Proxy("PYRONAME:example.greeting")
print(greeting_maker.get_fortune(name))

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RMI 32

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

Naming Services
 URI is not user friendly
 PYRO://134.208.2.15:7766/92c1290f512e20e1b13888fdd50

4a238d5
 PYRO:addServer@localhost:51989

 Objects can be scattered on the network
 Name service should handle translations
 Text name → URI

 Starting a name server(NS)
 python -m Pyro4.naming or simply: pyro4-ns
 python –m Pyro5.nameserver or simply: pyro5-ns

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 33

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

NS Location (Pyro3)
 Server
 pyro-ns

 LAN broadcast
 locator = Pyro.naming.NameServerLocator()
 ns = locator.getNS()

 Explicit location
 locator = Pyro.naming.NameServerLocator()
 ns = locator.getNS(host='hostname', port=7777)

Remote Invocation - RMI 34

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Object Location (Pyro3)
 Server
 Register objects

• daemon.useNameServer(ns)
• uri = daemon.connect(obj, "objName")

 Client
 Find objects

• URI = ns.resolve('objName')
• remExec = Pyro.core.getAttrProxyForURI(URI)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 35

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

NS Location (Pyro4)
 Server
 pyro4-ns

 LAN broadcast
 ns = Pyro4.locateNS()

 Explicit location
 ns = Pyro4.locateNS(host='hostname', port=7777)

CSIE52400/CSIEM0140 Distributed Systems
Remote Invocation - RMI 36

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Object Location (Pyro4)
 Server
 uri = daemon.register(obj, "addServer")
 ns.register(objName, uri)

 Client
 uri = nameserver.lookup(objName)
 obj = Pyro4.Proxy(uri)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 37

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

NS Location (Pyro5)
 Server
 pyro5-ns

 Locate name server
 ns = Pyro5.api.locate_ns()
 ns = Pyro5.core.locate_ns()

 Explicit location
 ns = Pyro5.api.locate_ns(host='hostname', port=7777)

CSIE52400/CSIEM0140 Distributed Systems
Remote Invocation - RMI 38

Pyro5.api.locate_ns

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Object Location (Pyro5)
 Server
 @Pyro5.api.expose … # explse server class
 uri = daemon.register(serverClass)
 ns.register(objName, uri)

 Client
 obj = Pyro5.api.Proxy(objName)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 39

REMINDERS FOR
THIS CLASS

GALLERY 01

One Way Calls
 A one way call returns None immediately.
 The server will process the call while your client continues

execution.
 Pyro3
 Define asynchronous methods

• Obj._setOneway(method)
 Pyro4
 @Pyro4.oneway

def oneway_method(self, args):
result = do_long_calculation(args)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 40

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

Oneway Calls (Pyro5)
import Pyro5

@Pyro5.server.expose
class PyroService(object):

def normal_method(self, args):
result = do_long_calculation(args)
return result

@Pyro5.server.oneway
def oneway_method(self, args):

result = do_long_calculation(args)
no return value, cannot return anything to the client

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RMI 41

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

More Information
 Pyro3
 http://pythonhosted.org/Pyro/

 Pyro4
 https://pyro4.readthedocs.io/en/stable/

 Pyro5
 https://pyro5.readthedocs.io/en/latest/

Remote Invocation - RMI 42

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Java Distributed Object Model
 Java has built in support for distributed objects using the Java

RMI.
 Strictly speaking, only remote objects are supported (i.e. an

object’s state always resides on a single machine, but whose
interfaces can be made available to remote processes).

 All related classes are in the java.rmi package.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 43

REMINDERS FOR
THIS CLASS

GALLERY 01

Java RMI
 Local and remote objects are almost the same at the language

level.
 All serializable data (i.e. can be marshaled) can be passed as a

parameter to an RMI.
 Local objects are passed by value whereas remote objects are

passed by reference.
 A remote object is built from two different classes.
 Server class. Contain the object’s state and methods and the

skeleton generated from interface specifications.
 Client class. Contain the client code and the proxy also generated

from interface specification.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 44

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Participating Processes
 Client
 Process that is invoking a method on a remote object

 Server
 Process that owns the remote object
 To the server, this is a local object

 Object Registry (rmiregistry)
 Name server that associates objects with names
 A server registers an object with rmiregistry
 URL namespace

• rmi://hostname:port/pathname
• e.g.: rmi://crapper.pk.org:12345/MyServer

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 45

REMINDERS FOR
THIS CLASS

GALLERY 01

Java RMI Interface
 User defined remote interfaces must extend the Remote

interface (in java.rmi).
 Remote interface methods must throw RemoteException.
 Any serializable object (i.e. implements the Serializable

interface) can be passed as an argument or result.
 The UnicastRemoteObject: used to export a remote object

reference or obtain a stub for a remote object
 Naming: methods to interact with the registry

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 46

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Java RMI Parameter Passing
 Remote interface typed parameters and return values are

always passed as remote object references.
 All non-remote objects are copied and passed by value.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 47

REMINDERS FOR
THIS CLASS

GALLERY 01

Remote Class
 Remote class (remote object)
 Instances can be used remotely
 Works like any other object locally
 In other address spaces, object is referenced with an object

handle
• The handle identifies the location of the object

 If a remote object is passed as a parameter, its handle is
passed

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 48

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Serializable Interface
 java.io.Serializable interface (serializable object)
 Allows an object to be represented as a sequence of bytes

(marshaled)
 Allows instances of objects to be copied between address spaces

• Can be passed as a parameter or be a return value to a remote
object

• Value of object is copied (pass by value)
 Any objects that may be passed as parameters should be defined

to implement the java.io.Serializable interface
• Good news: you rarely need to implement anything
• All core Java types already implement the interface
• For your classes, the interface will serialize each variable

iteratively
CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 49

REMINDERS FOR
THIS CLASS

GALLERY 01

Remote Classes
 Classes that will be accessed remotely have 2 parts:

1. interface definition
2. class definition

 Remote interface
 This will be the basis for the creation of stub functions
 Must be public
 Must extend java.rmi.Remote
 Every method in the interface must declare that it throws

java.rmi.RemoteException
 Remote class
 implements Remote interface
 extends java.rmi.server.UnicastRemoteObject

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 50

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Downloading of Classes
 For an object pass by value, if the recipient does not have its

class definition, the code is downloaded automatically.
 Similarly for the recipient of a remote object reference who

does not have the class definition of the corresponding proxy.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 51

REMINDERS FOR
THIS CLASS

GALLERY 01

A Super Simple Example
 Client invokes a remote method with strings as parameter
 Server returns a string containing the reversed input string

and a message

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 52

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Define the remote interface
SampleInterface.java

import java.rmi.Remote;
import java.rmi.RemoteException;
public interface SampleInterface extends Remote {
public String invert(String msg) throws RemoteException;

}

 Interface is public
 Extends the Remote interface
 Defines methods that will be accessed remotely
 We have just one method here: invert

 Each method must throw a RemoteException
 In case things go wrong in the remote method invocation

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 53

REMINDERS FOR
THIS CLASS

GALLERY 01

Define the remote class
 Defines the implementation of the remote methods
 It implements the interface we defined
 It extends the java.rmi.server.UnicastRemoteObject class

 Defines a unicast remote object whose references are valid
only while the server process is alive.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 54

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Sample.java
import java.rmi.Remote;

import java.rmi.RemoteException;

import java.rmi.server.*;

public class Sample extends UnicastRemoteObject

implements SampleInterface {

public Sample() throws RemoteException { }

public String invert(String m) throws RemoteException {

// return input message with characters reversed

return new StringBuffer(m).reverse().toString();

}

}

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 55

REMINDERS FOR
THIS CLASS

GALLERY 01

Next…
 We now have:
 The remote interface definition: SampleInterface.java
 The server-side (remote) class: Sample.java

 Next, we’ll write the server: SampleServer.java
 Two parts:

1. Create an instance of the remote class
2. Register it with the name server (rmiregistry)

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 56

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Java RMIregistry
 The binder for Java RMI.
 Maintains a table mapping textual names to remote object

references.
//computerName:port/objectName

 Accessed by methods of the Naming class.
 Can also use the LocateRegistry class to get a Registry

object and then use methods similar to the Naming class.(See
the API doc)

 Clients must direct their lookup enquires to particular hosts.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 57

REMINDERS FOR
THIS CLASS

GALLERY 01

The Naming Class of Java RMIregistry

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 58

void rebind (String name, Remote obj)
Used by a server to register the identifier of remote object by name.

void bind (String name, Remote obj)
Used by a server to register a remote object by name, but if the name
is already bound, an exception is thrown.

void unbind (String name)
This method removes a binding.

Remote lookup (String name)
Used by clients to look up a remote object by name. A remote object
reference is returned.

String[] list(String name)
This method returns an array of Strings containing the names bound
in the registry.

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Server Code (SampleServer.java)
 Create the object

new Sample()

 Register it with the name server (rmiregisty)
Naming.rebind("Sample”, new Sample())

 rmiregistry runs on the server
 The default port is 1099
 The name is a URL format and can be prefixed with a

hostname and port: “//localhost:1099/Server”

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 59

REMINDERS FOR
THIS CLASS

GALLERY 01

SampleServer.java
import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class SampleServer {

public static void main(String args[]) {

if (args.length != 1) {

System.err.println("usage: java SampleServer
rmi_port");

System.exit(1);

}

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 60

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

SampleServer.java
try {
// first command-line arg: the port of the rmiregistry
int port = Integer.parseInt(args[0]);

// create the URL to contact the rmiregistry
String url = "//localhost:" + port + "/Sample";
System.out.println("binding " + url);
// register it with rmiregistry
Naming.rebind(url, new Sample());
// Naming.rebind("Sample", new Sample());
System.out.println("server " + url + " is running...");

}
catch (Exception e) {
System.out.println("Sample server failed:" + e.getMessage());

}
}

}

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 61

REMINDERS FOR
THIS CLASS

GALLERY 01

Policy File
 When we run the server, we need to specify security policies
 A security policy file specifies what permissions you grant to

the program
 This simple one grants all permissions

grant {

permission java.security.AllPermission;

};

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 62

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

The Client
 The first two arguments will contain the host & port
 Look up the remote function via the name server
 This gives us a handle to the remote method

SampleInterface sample =

(SampleInterface)Naming.lookup(url);

 Call the remote method for each argument
sample.invert(args[i]));

 We have to be prepared for exceptions

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 63

REMINDERS FOR
THIS CLASS

GALLERY 01

SampleClient.java
public class SampleClient {
public static void main(String args[]) {
try {
// basic argument count check
if (args.length < 3) {
System.err.println(
"usage: java SampleClient rmihost rmiport string... \n");

System.exit(1);
}
// args[0] : hostname, args[1] : port
int port = Integer.parseInt(args[1]);
String url = "//" + args[0] + ":" + port + "/Sample";
System.out.println("looking up " + url);
// look up the remote object named “Sample”
SampleInterface sample =
(SampleInterface)Naming.lookup(url);

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 64

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

SampleClient.java
// args[2]… are the strings to reverse

for (int i=2; i < args.length; ++i)

// call remote method and print result

System.out.println(sample.invert(args[i]));

} catch(Exception e) {
System.out.println("SampleClient exception: " + e);

}

}

}

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 65

REMINDERS FOR
THIS CLASS

GALLERY 01

Compile
 Compile the interface and classes:

javac SampleInterface.java Sample.java
javac SampleServer.java

 And the client…
javac SampleClient.java

 (you can do it all on one command: javac *.java)
 Note – Java used to use a separate RMI compiler
 Since Java 1.5, Java supports the dynamic generation of

stub classes at runtime
 In the past, one had to use an RMI compiler, rmic
 If you want to, you can still use it but it’s not needed

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 66

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Run
 Start the object registry (in the background):

rmiregistry 12345 &
 An argument overrides the default port 1099

 Start the server (telling it the port of the rmi registry):
java -Djava.security.policy=policy SampleServer 12345

 Run the client:
java SampleClient svrname 12345 testing abcdefgh

 Where svrname is the name of the server host
 12345 is the port number of the name server: rmiregistry, not the

service!
 See the output:

gnitset
hgfedcba

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 67

REMINDERS FOR
THIS CLASS

GALLERY 01

More Complex Case Study
 We will use a shared whiteboard as example.
 A group of users shares a common view of a drawing surface

containing graphical objects.
 The server maintains the current state of a drawing:
 allows clients to submit the latest shapes drawn
 keeps a record of all the shapes it has received
 allows clients to retrieve the latest shapes
 maintains a version number for each shape
 allows clients to enquire info about version no.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 68

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Remote Interfaces

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 69

import java.rmi.*;
import java.util.Vector;
public interface Shape extends Remote {

int getVersion() throws RemoteException;
GraphicalObject getAllState() throws RemoteException;

}

public interface ShapeList extends Remote {
Shape newShape(GraphicalObject g) throws RemoteException;
Vector allShapes() throws RemoteException;
int getVersion() throws RemoteException;

}

REMINDERS FOR
THIS CLASS

GALLERY 01

ShapeListServer

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 70

import java.rmi.*;
Import java.rmi.server.UnicastRemoteObject;
public class ShapeListServer {

public static void main(String args[]) {
System.setSecurityManager(new RMISecurityManager());
try {

ShapeList aShapeList = new ShapeListServant();
ShapeList stub =

(ShapeList) UnicastRemoteObject.exportObject(aShapeList, 0);
Naming.rebind("ShapeList", stub);

System.out.println("ShapeList server ready");
} catch(Exception e) {

System.out.println("ShapeList server main " + e.getMessage());
}

}
}

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

ShapeListServant

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 71

import java.util.Vector;
public class ShapeListServant implements ShapeList {

private Vector theList; // contains the list of Shapes
private int version;
public ShapeListServant() {...}
public Shape newShape(GraphicalObject g) {

version++;
Shape s = new ShapeServant(g, version);
theList.addElement(s);
return s;

}
public Vector allShapes() {...}
public int getVersion() { ... }

}

REMINDERS FOR
THIS CLASS

GALLERY 01

Java Client of ShapeList

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 72

import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;
public class ShapeListClient {

public static void main(String args[]) {
System.setSecurityManager(new RMISecurityManager());
ShapeList aShapeList = null;
try{

aShapeList = (ShapeList) Naming.lookup("//bruno/ShapeList");
Vector sList = aShapeList.allShapes();

} catch(RemoteException e) {
System.out.println(e.getMessage());

} catch(Exception e) {
System.out.println("Client: " + e.getMessage());

}
}

}

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

REMINDERS FOR
THIS CLASS

GALLERY 01

Classes Supporting Java RMI

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation 73

RemoteServer

UnicastRemoteObject

<servant class>

Activatable

RemoteObject

HOW TO USE THIS PRESENTATION

 Instead of clients keep polling the server, the server can
inform the clients through callback

 Implementing callbacks in RMI:
 The client creates a remote object with a method for the

server to call. (The callback object)
 The server provides an operation for the clients to register

their callback objects. It records these objects in a list.
 Whenever an event of interest occurs, the server calls the

interested clients.

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 74

Callbacks

CSIE52400/CSIEM0140 Distributed Systems Lecture 07b: Remote Invocation - RMI

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Pyro Callbacks
 Need to register the callback Pyro object just like a server

program. (Check the Pyro5 doc for more details.)

import Pyro5.api

class Callback(object):
@Pyro5.api.expose
@Pyro5.api.callback
def call(self):

print("callback received from server!")
return 1//0 # crash!

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation – RMI 75

REMINDERS FOR
THIS CLASS

Assignment 4: RPC/RMI Exercises

1.Design a SciCalculator function and call it with RPC.
2.Design a SciCalculatorServer class to accept calculation requests

from clients with RMI.
3.Both the function and server above should accept requests such

as add, sub, mul, div, pow, sqr, log, sin, cos operations.
4.Define/expose remote interface/classes if necessary.
5.Design a SciCalculatorClient class to invoke the remote

operations in a loop until exist.

 Due date: 3 weeks

CSIE52400/CSIEM0140 Distributed Systems Remote Invocation - RMI 76

