
CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

CSIE52400/CSIEM0140
Distributed Systems

Lecture 08:
Indirect Communication

Shiow-yang Wu (吳秀陽)
Department of Computer Science and Information Engineering

National Dong Hwa University

CSIE52400/CSIEM0140 Distributed Systems 1

REMINDERS FOR
THIS CLASS

GALLERY 01

Indirect Communication
 RPC and RMI are direct communication.
 Indirect communication
 Communication through an intermediary
 No direct coupling b/w sender and receiver(s)

 Properties of using intermediary
 Space uncoupling: sender does not need to know the

identity of the receiver(s), and vice versa.
 Time uncoupling: sender and receiver(s) can have

independent lifetimes (i.e. don’t need to exist at the same
time to communicate).

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 2

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Space and Time Coupling

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 3

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Group Communication
 Message is sent to a group and delivered to all members of

the group.
 Sender is not aware of the IDs of the receivers.
 An abstraction over multicast communication
 Applications:
 Reliable dissemination of information
 Support collaborative applications
 Support some fault-tolerance strategies
 Support system monitoring and management

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 4

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

 In general, three types of communication can all be considered
as group communication.

CSIE52400/CSIEM0140 Distributed Systems

Types of Group Communication

Indirect Communication 5

HOW TO USE THIS PRESENTATION

Group Communication System
 Services provided by group comm systems:
 Abstraction of a Group
 Multicast of messages to a Group
 Membership of a Group
 Reliable messaging
 Ordering of messages sent to a Group
 Failure detection of members of the Group
 Semantic model of how messages are handled when

changes to the Group membership occur

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 6

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Modes of Communication
 One-to-One
 unicast

• 1↔1
• Point-to-point

 Anycast
• 1→ nearest 1 of several identical nodes
• Introduced with IPv6; used with BGP(Border Gateway Prot)

 One-to-many
 multicast

• 1 → many
• group communication

 broadcast
• 1 → all

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 7

REMINDERS FOR
THIS CLASS

Groups
 Groups allow us to deal with a collection of processes as one

abstraction
 Send message to one entity
 Deliver to entire group

 Groups are dynamic
 Created and destroyed
 Processes can join or leave

• May belong to 0 or more groups
 Primitives: join_group, leave_group, send_to_group,

query_membership

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 8

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Design Issues
 Closed vs. Open (next slide)
 Close: only members can multicast to it
 Open: processes outside the group may send to it

 Peer vs. Hierarchical
 Peer: each member communicates with group
 Hierarchical: go through dedicated coordinator(s)
 Diffusion(擴散): send to other servers & clients

 Managing membership & group creation/deletion
 Distributed vs. centralized

 Leaving & joining must be synchronous
 Fault tolerance
 Reliable message delivery?
 What about missing members?

Indirect Communication 9

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Open and Closed Groups

Closed group Open group

Indirect Communication 10

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Failure Considerations
 Crash failure
 Process stops communicating

 Omission failure (typically due to network)
 Send omission: A process fails to send messages
 Receive omission: A process fails to receive messages

 Byzantine failure
 A message is faulty

 Partition failure
 The network may get segmented, dividing the group into

two or more unreachable sub-groups

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 11

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Programming Model
 Group, group membership
 Processes may join or leave the group.
 A single multicast operation such as aGroup.send(aMessage) is

enough to send to each member of a group.
 Advantages:
 Convenience for the programmers
 Efficient utilization of bandwidth
 Minimize total time to deliver the message to all

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 12

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

Process vs Object Groups
 Process groups
 Group of processes
 Messages are sent to processes only
 Messages are unstructured byte arrays

 Object groups
 Group of objects
 Can process invocations concurrently
 Invocate operations on a local proxy of the group
 Object parameters and results are marshalled.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 13

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Other Distinctions
 Overlapping and non-overlapping groups
 Overlapping: entities may join multiple groups
 Non-overlapping: membership does not overlap

 Synchronous and asynchronous systems
 Need to consider group communication in both environments

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 14

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Implementation Issues
 Reliability (reliable multicast)
 Integrity: message delivered intact w no duplicate
 Validity: message sent is eventually delivered
 Agreement: if a message is received by one, it must be

delivered to all.
 Ordering (ordered multicast) – one or more
 FIFO ordering: msgs delivered in sending order
 Causal ordering: if a msg happens before another, it is

delivered in that order
 Total ordering: same ordering across all processes

Indirect Communication 15

REMINDERS FOR
THIS CLASS

GALLERY 01

Group Membership Mgnt
 Group membership services
 Interface for group membership update (create/destroy

groups, join/leave group)
 Failure detection: to monitor the reachability of each

member
 Notification of membership changes: notify members about

group changes
 Group address expansion: a msg sent to a group identifier is

expanded to the addresses of the members
 Called view-synchronous group communication

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 16

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Group Membership Mgnt

CSIE52400/CSIEM0140 Distributed Systems

Join

Group
address

expansion

Multicast
communication

Group

send

Fail
Group membership

management

Leave

Process group

Indirect Communication 17

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

JGroups Toolkit
 Java toolkit for reliable group

communication.
 Channels: primitive interface

for joining, leaving, sending,
receiving

 Building blocks: higher-level
abstraction

 Protocol stack: underlying
communication protocol

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 18

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

JGroups - Channels
 A process interacts with a group through a channel object

which is disconnected on create.
 The connect operation binds a channel object to a group (can

only bind to one group at a time).
 The disconnect operation leaves the group.
 The close operation disable the channel.
 The getView operation returns the member list.
 The getState operation returns the historical application state.
 Use send and receive for messaging.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 19

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

FireAlarmJG Class

CSIE52400/CSIEM0140 Distributed Systems

import org.jgroups.JChannel;
public class FireAlarmJG {
public void raise() {

try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel");
Message msg = new Message(null, null, "Fire!");

channel.send(msg);
}
catch(Exception e) {
}

}

dst, null
means all

src address

Indirect Communication 20

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

FireAlarmConsumerJG

CSIE52400/CSIEM0140 Distributed Systems

import org.jgroups.JChannel;

public class FireAlarmConsumerJG {
public String await() {

try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel");
Message msg = (Message) channel.receive(0);
return (String) msg.GetObject();

} catch(Exception e) {
return null;

}
}

}

timeout(long),
0 blocks forever

Indirect Communication 21

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

To Use the Classes
 To create a new instance of FireAlarmJG and raise an alarm

FireAlarmJG alarm = new FireAlarmJG();
alarm.raise();

 To receive alarm message
FireAlarmConsumerJG alarmCall =

new FireAlarmConsumerJG();
String msg = alarmCall.await();
System.out.println("Alarm received: " + msg);

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 22

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

 Higher-level abstraction on top of channels.
 MessageDispatcher provides synchronous and asynchronous

message sending, as well as conditional receiving.
 RpcDispatcher invokes remote methods on all objects of a

group.
 NotificationBus provides notification sending and handling

capability.
 Read the online JGroups API for more details.

CSIE52400/CSIEM0140 Distributed Systems

Building Blocks

Indirect Communication 23

REMINDERS FOR
THIS CLASS

Protocol Stacks
 UDP is the common transport layer in

JGroups.

 FRAG implements message
packetization.

 MERGE deals with unexpected network
partitioning and the subsequent
merging of subgroups.

 GMS implements a group membership
protocol.

 CAUSAL implements causal ordering.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 24

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Spread Toolkit
 An open source toolkit providing high performance group

communication system resilient to faults across networks.
 Reliable and scalable messaging and group communication.
 A powerful but simple API.
 Easy to use, deploy and maintain.
 Highly scalable from one LAN to complex wide area networks.
 Supports thousands of groups with different sets of members.
 Reliable messaging in the presence of machine failures, process

crashes and recoveries, and network partitions and merges.
 Provides a range of reliability, ordering and stability guarantees.
 Emphasis on robustness and high performance.
 Completely distributed algorithms with no central point of failure.
 Interfaces with C/C++, Java, Perl, Python, Ruby, PHP, …

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 25

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Spread Level of Service
 When an application sends a Spread message, it chooses a

level of service for that message.
 It controls what kind of ordering and reliability are provided to

that message.

Indirect Communication 26

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Spread Architecture
 SPREAD is composed of 2 entities – daemons and client

processes.
 Daemon(s) maintain information about all processes

connected to it and the presence of other daemon(s), if any.
 Client processes join/leave the group or send/receive

messages using the SPREAD primitives.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 27

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Spread Architecture

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 28

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Publish-Subscribe Systems
 Also known as distributed event-based systems
 Publishers publish events to an event service
 Subscribers subscribe events of interest
 The publish-subscribe system is to match subscription against

published events and to ensure correct delivery of event
notifications.

 Events can have structures.
 Subscription can be arbitrary patterns of events.
 A one-to-many communication paradigm

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 29

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Applications of PS Systems
 Financial information systems
 Areas with live feeds of real-time data
 Cooperative working
 Ubiquitous computing
 Monitoring applications
 Health care systems
 …

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 30

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

Characteristics of PS Systems
 Heterogeneity
 Events allow distributed system components that were not

interoperable to work together
 Asynchronicity
 Publishers and subscribers are decoupled.
 Notifications are sent asynchronously.

 Delivery guarantees
 Can have different levels of guarantees
 Determined by application requirements

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 31

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Programming Model
 Operations
 publish(e) – publishers disseminate an event e
 subscribe(f) – subscribers express an interest in a set of

events through a filter f
 unsubscribe(f) – subscribers revoke the interest
 notify(e) – deliver the event e to subscribers
 advertise(f) – subscribers declare the nature of future events
 unadvertise(f) – revoke advertisement

Indirect Communication 32

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Publish-Subscribe Paradigm

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 33

REMINDERS FOR
THIS CLASS

Subscription(Filter) Model
 Channel-based
 Use named channels to publish/subscribe
 Primitive scheme with physical channel

 Topic-based (Subject-based)
 Notification is expressed by topic and other fields
 Subscriptions are defined by topic(s) of interest
 Topic can be hierarchically organized

 Content-based
 The filter is a query defined on event attributes
 Much more expressive then two approaches above

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 34

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Subscription(Filter) Model
 Type-based
 Subscriptions are defined by types of events
 Filters can be course-grained(on type names) or fine-

grained(on type attributes and/or methods)
 Integrated elegantly with programming lang

 Object-based
 Subscriptions can be defined directly on objects
 Can be defined on object status changes
 Intrinsically linked to object orientation

 Others: context-aware, concept-based, complex event
processing

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 35

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Implementation Issues
 Goals of publish-subscribe system implementation
 Ensure correct(filter matching) and efficient event delivery
 Satisfy other requirements:

• Security
• Scalability
• failure handling
• Concurrency
• QoS
• …

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 36

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Centralized Approach
 Centralized architecture
 A single node acts as event broker.
 Publishers publish events to this broker.
 Subscribers send subscriptions and receive notifications from

this broker.
 Interaction is done by point-to-point messages

 Characteristics
 Easy implementation
 Lacks resilience and scalability

Indirect Communication 37

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Distributed Approach
 Network of brokers cooperate to offer services.
 Survive node failure and operate well in Internet-scale

deployments.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 38

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Peer-to-peer Approach

 No distinction between publishers, subscribers and brokers.
 All nodes act as brokers, cooperatively implementing the

desired functionalities.
 Very popular for recent systems

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 39

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Implementation Architecture

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 40

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Event Routing Flooding
 Flooding
 Send event notification to all nodes and match at the

subscriber end.
 Can also send subscriptions back to all publishers with

matching done at the publisher end. Matched events sent
directly to the subscribers.

 Simple, easy, but can result in lot of traffic.
 Other techniques try to optimize the number of message

exchanged by considering content.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 41

REMINDERS FOR
THIS CLASS

Event Routing Filtering
 Filtering
 Brokers forward notifications only when there is a path to a

valid subscriber.
 Done by propagating subscriptions through network toward

publishers and storing state at each broker.
 Each node must maintain a neighbors list, a subscriber list,

and a routing table.
 See the algorithm on next slide.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 42

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Filtering-based Routing

 Advertisements can reduce message traffic by propagating
advertisements toward subscribers.

upon receive publish(event e) from node x
matchlist := match(e, subscriptions)
send notify(e) to matchlist;
fwdlist := match(e, routing);
send publish(e) to fwdlist - x;

upon receive subscribe(subscription s) from node x
if x is client then

add x to subscriptions;
else add(x, s) to routing;
send subscribe(s) to neighbours - x;

Indirect Communication 43

REMINDERS FOR
THIS CLASS

GALLERY 01

Rendezvous
 View the set of all events as an event space.
 A rendezvous node is responsible for a subset of the event

space.
 Each node maintains a subscription list and forwards all

matching events to subscribing nodes
 Need two functions: SN(s) and EN(e) (see the algorithm on

next slide)
 The intersection of EN(e) and SN(s) must be non-empty for a

given e that matches s. (exercise)
 Can use a distributed hash table (DHT) to map both events

and subscriptions onto a corresponding rendezvous node.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 44

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Rendezvous-based Routing

CSIE52400/CSIEM0140 Distributed Systems

upon receive publish(event e) from node x at node k
rvlist := EN(e); /* EN returns nodes responsible for matching e */
if i in rvlist then begin

matchlist :=match(e, subscriptions);
send notify(e) to matchlist;

end
send publish(e) to rvlist - k;

upon receive subscribe(subscription s) from node x at node k
rvlist := SN(s); /* SN returns nodes responsible for s */
if i in rvlist then

add s to subscriptions;
else

send subscribe(s) to rvlist - k;

Indirect Communication 45

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Python Pub/Sub Modules
 There are many modules for pub/sub in Python:
 PyPubSub An old but still useful module.
 PyDispatcher Another good module normally used with

Django.
 Redis Python Client The popular Redis key-value store also

supports pub/sub pattern.
 ActiveMQ The popular Apache multi-protocol message

broker also supports pub/sub pattern.
 Google Pub/Sub A modern messaging framework

supporting both messaging queues and distributed publish-
subscribe models.

Indirect Communication 46

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Python Pub/Sub with ZMQ
import multiprocessing
import zmq, time

def server():
context = zmq.Context()
socket = context.socket(zmq.PUB) # create a publisher socket
socket.bind("tcp://*:12345") # bind socket to the address
while True:

time.sleep(5) # wait every 5 seconds
t = “TIME ” + time.asctime() # construct a TIME message of current time
socket.send(t.encode()) # publish the message

def client():
context = zmq.Context()
socket = context.socket(zmq.SUB) # create a subscriber socket
socket.connect("tcp://localhost:12345") # connect to the server
socket.setsockopt(zmq.SUBSCRIBE, b"TIME") # subscribe to TIME messages

for i in range(5): # Five iterations
time = socket.recv() # receive a message related to subscription
print(time.decode()) # print the result

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 47

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Message Queues

 Message queues provide a point-to-point indirect
communication service.

 Sender places the message into a queue, which can be
removed later by a receiving process.

 Also known as Message-Oriented Middleware (MOM).
 Major class of commercial middleware for indirect

communication.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 48

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

Message-Passing Interface(MPI)
 Representative operations of MPI.

CSIE52400/CSIEM0140 Distributed Systems

Operation Description

MPI_BSEND Append outgoing message to a local send buffer(basic send)

MPI_SEND Send and wait until message copied to local or remote buffer(blocking
send)

MPI_SSEND Send and wait until transmission starts(blocking synchronous send)

MPI_SENDRECV Send a message and wait for reply

MPI_ISEND Pass reference to outgoing message, and continue

MPI_ISSEND Pass reference to outgoing message, and wait until receipt starts

MPI_RECV Receive a message; block if there is none(blocking receive)

MPI_IRECV
Check if there is an incoming message, but do not block(nonblocking
receive)

Indirect Communication 49

REMINDERS FOR
THIS CLASS

GALLERY 01

Message-Queuing Model
 Four combinations for loosely-coupled comm using queues.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 50

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Programming Model
 Communication through queues.
 Processes can send messages to a queue.
 Other processes can receive messages from that queue.
 Styles of receive
 Blocking receive, block until msg available
 Non-blocking receive (polling), check the queue for msg

availability
 Notify, issue a notification when a msg is available

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 51

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Message-Queue Paradigm

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 52

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Messaging Characteristics
 Message communication can be
 persistent – a submitted message is stored by the

communication system as long as it takes to deliver.
 transient – a message is stored only as the sending and

receiving application are executing.
 Message communication can also be
 asynchronous – sender continues immediately after it has

submitted its message
 synchronous – sender is blocked until its message is stored

in a local buffer at the receiving host, or actually delivered

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 53

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Persistence Communication
 Persistent communication of letters back

in the days of the Pony Express.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 54

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Persistence and Synchronicity
a) Persistent asynchronous communication
b) Persistent synchronous communication

CSIE52400/CSIEM0140 Distributed Systems

2-22.1

Indirect Communication 55

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Persistence and Synchronicity
c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 56

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Message Queuing Systems
 The middleware services to provide message oriented

communication, also known as Message-Oriented Middleware
(MOM).

 Provide intermediate-term storage capacity for messages.
 Provide extensive support for persistent asynchronous

communication.
 Target message transfers that take minutes instead of seconds

or milliseconds.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 57

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Message-oriented Middleware
 Asynchronous persistent communication through support of

middleware-level queues. Queues correspond to buffers at
communication servers.
Operation Description

PUT(Send) Append a message to a specified queue

GET(Receive) Block until the specified queue is nonempty, and remove the
first message

POLL Check a specified queue for messages, and remove the first.
Never block

NOTIFY Install a handler to be called when a message is put into the
specified queue

Indirect Communication 58

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

MOM Architecture – General Model

 Queues are managed by queue managers. An application can
put messages only into a local queue. Getting a message is
possible by extracting it from a local queue only⇒ queue
managers need to route messages.

 Routing

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 59

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

MOM Architecture - Routers

 The general organization of a message-queuing system with
routers.

2-29

Indirect Communication 60

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

 Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data
representation)

 Broker handles application heterogeneity in an MQ system

 Transforms incoming messages to target format

 Very often acts as an application gateway

 May provide subject-based routing capabilities (i.e., publish-subscribe
capabilities)

CSIE52400/CSIEM0140 Distributed Systems

Message Broker

Indirect Communication 61

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Message Broker: general
architecture

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 62

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Example: RabbitMQ
 RabbitMQ is an open source message broker to route

messages from producers to consumers.
 Offer a Message Oriented Middleware
 Server written in Erlang
 Supports multiple messaging protocols.
 Route messages depends upon the messaging protocol.
 AMQP(Advanced Message Queuing Protocol) is the most

commonly used one.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 63

REMINDERS FOR
THIS CLASS

GALLERY 01

AMQP
 AMQP is a message protocol for any conforming client

applications and brokers. (play the same role as, eg. TCP in
nerworks: a protocol for high-level messaging with different
implementations)

 Simple and straightforward with thee entities: Queue, Binding,
Exchange.
 When a publisher pushes a message, it first arrives at an

exchange.
 The exchange distributes messages(copies) to variously

connected queues (specified by binding rules).
 Consumers receive messages from queues.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 64

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

AMQP Model

Indirect Communication 65

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

RabbitMQ and AMQP
 RabbitMQ implements AMQP (among others)

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 66

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

RabbitMQ Architecture
 RabbitMQ employs a flexible mechanism to implement AMQP

with routing key and binding key.
 Different types of key matching allow different types of

exchanges.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 67

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

RabbitMQ Exchanges
 Many types of exchanges are available:
 Direct exchange
 Topic exchange
 Fanout exchange
 Headers exchange
 Default exchange
 Dead Letter exchange
 (https://hevodata.com/learn/rabbitmq-exchange-type/)

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 68

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Example: IBM MQ
 IBM's MOM: MQSeries(1993) WebSphere MQ(2002) IBM

MQ(2014[8.0], 2016[9.0], 2022[9.3]).
 Queue managers are connected by unidirectional and reliable

message channels managed by message channel agent (MCA).

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 69

REMINDERS FOR
THIS CLASS

Channels
 Some attributes associated with message channel agents.

CSIE52400/CSIEM0140 Distributed Systems

Attribute Description

Transport
type

Determines the transport protocol to be used

FIFO delivery
Indicates that messages are to be delivered in the order
they are sent

Message
length Maximum length of a single message

Setup retry
count

Specifies maximum number of retries to start up the
remote MCA

Delivery
retries

Maximum times MCA will try to put received message into
queue

Indirect Communication 70

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Message Transfer (1)
 The general organization of an message queuing network

using routing tables and aliases.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 71

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Message Transfer (2)
 Examples of primitives available in the Message Queue

Interface (MQI)

CSIE52400/CSIEM0140 Distributed Systems

Primitive Description

MQopen Open a (possibly remote) queue

MQclose Close a queue

MQput Put a message into an opened queue

MQget Get a message from a (local) queue

Indirect Communication 72

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

IBM MQ Hub (w/o local queue
manager)

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 73

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Java Message Service(JMS)
 Java MOM API for passing messages between clients.
 JMS point-to-point messaging domain

 JMS publish/subscribe messaging domain

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 74

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

JMS Participating Objects
 JMS Administered Objects: Connection Factory, Connection,

Session, JMSContext(replace C&S)
 JMS producer: creates and produces messages
 JMS consumer: receives and consumes messages
 JMS client: a producer or consumer
 JMS provider: a system that implement the JMS specification
 JMS message: the message object
 JMS destination: an object supporting JMS (either a JMS topic

or a JMS queue)

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 75

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

JMS Programming Model(old)

CSIE52400/CSIEM0140 Distributed Systems

Creates

Creates

CreatesCreates

Creates

Indirect Communication 76

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

JMS Programming Model(new)

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 77

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

JMS Administered Objects
 JMS Connection Factories

@Resource(lookup = "jms/ConnectionFactory")

private static ConnectionFactory connectionFactory;

 JMS Destinations
@Resource(lookup = "jms/Queue")

private static Queue queue;

@Resource(lookup = "jms/Topic")

private static Topic topic;

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 78

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

JMSContext Objects
A JMSContext object combines a connection and a

session in a single object.

Use it to create message producers, message consumers,
messages, queue browsers, and destinations.
JMSContext context = connectionFactory.createContext();

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 79

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

JMS Message Producers
 An object created by a JMSContext or a session for sending

messages to a destination.
try (JMSContext context = connectionFactory.createContext();) {

JMSProducer producer = context.createProducer();
producer.send(dest, message);
...

Or simply
try (JMSContext context = connectionFactory.createContext();) {

context.createProducer().send(dest, message);
} catch (JMSRuntimeException ex) {

// handle exception (detains omitted)
}

Indirect Communication 80

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

JMS Message Consumers
 An object created by a JMSContext or a session for receiving

messages sent to a destination.
try (JMSContext context = connectionFactory.createContext();) {

JMSConsumer consumer = context.createConsumer(dest);

...

 A message consumer allows a JMS client to register interest
in a destination.

 Receiving messages is easy (blocking receive):
Message m = consumer.receive();

Message m = consumer.receive(1000); // time out after a second

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 81

HOW TO USE THIS PRESENTATION

 An object that acts as an asynchronous event handler for
messages.

 This object implements the MessageListener interface,
which contains one method, onMessage.

 In the onMessage method, you define the actions to be
taken when a message arrives.
Listener myListener = new Listener(); consumer.setMessageListener(myListener);

CSIE52400/CSIEM0140 Distributed Systems

JMS Message Listeners

Indirect Communication 82

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Sending & Receiving Msgs
 Sending simple text message

String message = "This is a message"; context.createProducer().send(dest,
message);

 Receiving simple text message
String message = receiver.receiveBody(String.class);

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 83

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

FireAlarmJMS Class

CSIE52400/CSIEM0140 Distributed Systems

import javax.jms.*;
import javax.naming.*;
public class FireAlarmJMS {

public void raise() {
try {

Context ctx = new InitialContext(); // the naming context
TopicConnectionFactory topicConnectionFactory =

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory");

Topic topic = (Topic)ctx.lookup("Alarms");
TopicConnection topicConn =

topicConnectionFactory.createTopicConnection();

Indirect Communication 84

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

FireAlarmJMS Class
TopicSession topicSess = topicConn.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE); // false: not transacted
TopicPublisher topicPub = topicSess.createPublisher(topic);
TextMessage msg = topicSess.createTextMessage();
msg.setText("Fire!");

topicPub.publish(msg);
} catch (Exception e) {

}
}

Indirect Communication 85

HOW TO USE THIS PRESENTATION

FireAlarmConsumerJMS Class

CSIE52400/CSIEM0140 Distributed Systems

import javax.jms.*;
import javax.naming.*;

public class FireAlarmConsumerJMS
public String await() {
try {

Context ctx = new InitialContext();
TopicConnectionFactory topicConnectionFactory =

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory");
Topic topic = (Topic)ctx.lookup("Alarms");
TopicConnection topicConn =

topicConnectionFactory.createTopicConnection();

Indirect Communication 86

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

FireAlarmConsumerJMS Class

CSIE52400/CSIEM0140 Distributed Systems

TopicSession topicSess = topicConn.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);

TopicSubscriber topicSub = topicSess.createSubscriber(topic);
topicSub.start();
TextMessage msg = (TextMessage) topicSub.receive();
return msg.getText();

} catch (Exception e) {
return null;

}
}

Indirect Communication 87

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

JMS Alarm Example
 To raise an alarm

FireAlarmJMS alarm = new FireAlarmJMS();
alarm.raise();

 To consume the alarm
FireAlarmConsumerJMS alarmCall =
new FireAlarmConsumerJMS();

String msg = alarmCall.await();

System.out.println("Alarm received: " + msg);

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 88

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Popular Message Queue Systems

 RabbitMQ
 IBM MQ
 Amazon Simple Queue System (SQS)
 Apache ActiveMQ
 Apache Kafka
 Google Cloud Pub/Sub
 Microsoft Azure Service Bus
 Red Hat AMQ
 Anypoint MQ (MuleSoft)
 Solace PubSub+ Event Broker

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 89

REMINDERS FOR
THIS CLASS

Python Messaging Libraries
 Kombu — a messaging library supporting AMQP(Advanced

Message Queuing Protocol)
 py-ampqlib — Another library for AMQP
 RabbitMQ & Pika client — a message broker which speaks

AMQP, accessed through Pika
 Apache ActiveMQ & Stomp client — an open-source message

broker accessed through Stomp
 mpi4py — MPI for Python, fast, support most MPI routines
 …
 Almost all message queue systems offer Python API.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 90

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Distributed Shared Memory
 DSM is an abstraction for sharing data among nodes w/o

shared physical memory.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 91

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Message Passing vs. DSM
Message Passing Distributed Shared Memory

Marshalling and transmission of variables between
possibly heterogenous processes

Homogenous processes share variables

Processes communicate while being protected from each
other

Processes share DMS with no support for encapsulation
and information hiding

Synchronization between processes is achieved in the
message model through message passing primitives

Synchronization is via normal constructs for shared-
memory programming such as locks and semaphores

Processes communicating via message passing must
execute at the same time

DSM can be made persistent, processes communicating
via DSM may execute with nonoverlapping lifetimes

Indirect Communication 92

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Tuple Space (TS)
 By David Gelernter from Yale University.
 Processes communicate by placing tuples in a tuple space.
 Other processes can read or remove them.
 Tuples are accessed by pattern matching.
 Result in the Linda programming model.
 Linda has been highly influential and has led to the

development of Agora, Sun JavaSpaces, and IBM’s TSpaces.
 However, good ideas don’t always win.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 93

HOW TO USE THIS PRESENTATION

 A tuple consists of a sequence of one or more typed data fields.
 Any combination of types of tuples may exist in the same tuple

space.
 Write place a tuple in tuple space
 Read read a tuple from tuple space
 Take extract a tuple from tuple space
 Read/Take is done by providing a specification to match tuples.
 Both block until there is a matching tuple.

CSIE52400/CSIEM0140 Distributed Systems

TS Programming Model

Indirect Communication 94

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Tuple Space Abstraction

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 95

HOW TO USE THIS PRESENTATION

 Space uncoupling
 A tuple placed in tuple space may originate from any number

of sender processes and may be delivered to any one of a
number of potential recipients.

 Time uncoupling
 A tuple placed in tuple space will remain in that tuple space

until removed (potentially indefinitely), and hence the sender
and receiver do not need to overlap in time.

CSIE52400/CSIEM0140 Distributed Systems

Properties of Tuple Spaces

Indirect Communication 96

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Extensions
 Multiple tuple spaces
 Distributed implementation
 Model everything as sets
 Tuple spaces are sets of tuples
 Tuples are sets of values
 Tuples can be nested

 From tuple space to object space, i.e. tuples are now data
objects.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 97

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

JavaSpaces
 The Java tuple space tool
 Any one can offer the implementation of JavaSpaces by

following the service specification.
 Third-party implementations: GigaSpaces, Blitz
 Strongly dependent on Jini (Sun’s discovery service).

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 98

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

Programming JavaSpaces
 Can create any number of JavaSpace.
 An object in a JavaSpace is called an entry.
 A process can write an entry into a JavaSpace with an

associated lease (time of availability).
 read returns a copy of a matching (specified by a template)

entry.
 take removes a matching entry.
 read/take are blocking ops with timeout.
 readIfExists/takeIfExists return null if not exists
 All ops can be transactional.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 99

REMINDERS FOR
THIS CLASS

GALLERY 01

JavaSpaces API

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 100

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

AlarmTupleJS Class

CSIE52400/CSIEM0140 Distributed Systems

import net.jini.core.entry.*;

public class AlarmTupleJS implements Entry {
public String alarmType;
public AlarmTupleJS() {
}
public AlarmTupleJS(String alarmType) {

this.alarmType = alarmType;}
}

}

Indirect Communication 101

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

FireAlarmJS Class

CSIE52400/CSIEM0140 Distributed Systems

import net.jini.space.JavaSpace;

public class FireAlarmJS {
public void raise() {

try {
JavaSpace space = SpaceAccessor.getSpace("AlarmSpace");
AlarmTupleJS tuple = new AlarmTupleJS("Fire!");
space.write(tuple, null, 60*60*1000);

}
catch (Exception e) {
}

}
}

Indirect Communication 102

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

FileAlarmConsumerJS Class

CSIE52400/CSIEM0140 Distributed Systems

import net.jini.space.JavaSpace;

public class FireAlarmConsumerJS {
public String await() {

try {
JavaSpace space = SpaceAccessor.getSpace("AlarmSpace");
AlarmTupleJS template = new AlarmTupleJS("Fire!");
AlarmTupleJS recvd = (AlarmTupleJS) space.read(template, null,

Long.MAX_VALUE);
return recvd.alarmType;

}
catch (Exception e) {

return null;
}

}
}

Indirect Communication 103

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Usage Example
 To raise an alarm

FireAlarmJS alarm = new FireAlarmJS();
alarm.raise();

 To consume an alarm
FireAlarmConsumerJS alarmCall =

new FireAlarmConsumerJS();
String msg = alarmCall.await();
System.out.println(“Alarm received: “ + msg);

CSIE52400/CSIEM0140 Distributed
Systems

Indirect Communication 104

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

DSM Modules for Python
 lindypy – An old but still useful Linda Tuple Spaces module for

Python.
 multiprocessing.shared_memory – distributed shared memory

for Python.
 Ems – Extended Memory Semantics, a framework for

persistent shared object memory and parallelism in Node.js
and Python.

 Python Shared Objects – CPython extension implementing
Shared Transactional Memory with native-looking interface

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 105

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Information Dissemation
 Techniques for disseminating information.
 The means by which facts are distributed to the public at large.
 There are different types of information disseminating in

human societies.
 Not all types of information are relevant to all but are of

interest to a targeted audience.
 Effective information dissemination is the rapid dissemination

of information to the right audience.
 There are many techniques and protocols.

Indirect Communication 106

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Flooding
 P sends a message m to each of its neighbors. Each neighbor will

forward that message, except to P, and only if it had not seen m before.

 Variation: Q forward a message with a certain probability pflood ,
possibly even dependent on its own number of neighbors (i.e., node
degree) or the degree of its neighbors.

 The effect can be dramatic: the total number of messages
sent will drop linearly in pflood.

 The risk: the lower pflood, the higher the chance that not all
nodes in the network will be reached. (why?)

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 107

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Epidemic(Gossip) Protocols
 Like diseases or rumors spread among people

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 108

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

Forms of Epidemics
 Two forms of epidemics:
 Anti-entropy: Node P picks another node Q at random and

exchanges updates with Q.
 Rumor spreading(Gossiping): Node P tells several other nodes

(contaminating them).
 Approaches to exchanging updates
 P only pushes its own updates to Q
 P only pulls in new updates from Q
 P and Q send updates to each other

 For Anti-entropy model, it takes O(log(N)) rounds to spread
from a single node to all nodes.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 109

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Gossiping for Replica Updates
 P received update to data
 Contact arbitrary node Q
 Push update to data to Q
 If Q already has update, stop spreading with possibility 1/k

 For large # of nodes, susceptible nodes (don’t know the
update) will satisfy

 For k=1, 20% are predicted to miss the update.
 With k=5, 0.24% will miss.
 With k=10, only 0.00017% will miss !!

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 110

CSIE52400/CSIEM0140 Distributed Systems Lecture 08: Indirect Communication

REMINDERS FOR
THIS CLASS

GALLERY 01

Assignment 5: Building
Shared Message Board

 In this assignment, you are to build a simple shared message
board.

 Your board must support persistent and asynchronous
communication.
 The sender must be allowed to send a message and go away or

even terminate w/o loosing the message.
 The receiver can receive the message at any time after the

message has been successfully placed on board.
 Both the senders and receivers are identified by symbolic names.

 A message can be read by more than one receivers but can
only be removed by the owner.

CSIE52400/CSIEM0140 Distributed Systems Indirect Communication 111

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Assignment 5: Building
Shared Message Board (Optional)

 Your middleware class(es) must provide at least the following
services:
 Name registration (register user names)
 Message sending/receiving
 Message deletion
 Message checking (to prepare for receiving)

 Note that in order to provide persistency, your message server
may need to save the messages in secondary storage.

 Due date: 3 weeks

Indirect Communication 112

