

Chandy and Lamport's Algorithm
•
Marker receiving rule for process p.
On p_i 's receipt of a <i>marker</i> message over channel c :
if $(p_i$ has not yet recorded its state) it
records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;
else
p_i records the state of c as the set of messages it has received over c
since it saved its state.
end if
Marker sending rule for process p _i
After p_i has recorded its state, for each outgoing channel c :
<i>p_i</i> sends one marker message over <i>c</i>
(before it sends any other message over c).
400/CSIEM0140 Distributed Systemss Coordinat

Violation Probabilities So, what can we conclude?								
Ν	m	р	Violation		Ν	m	р	Violation
8	5	3 sec/hour	< 10 ⁻¹⁵		8	5	30 sec/hour	< 10 ⁻¹⁰
8	6	3 sec/hour	< 10 ⁻¹⁸		8	6	30 sec/hour	< 10 ⁻¹¹
16	9	3 sec/hour	< 10 ⁻²⁷		16	9	30 sec/hour	< 10 ⁻¹⁸
16	12	3 sec/hour	< 10 ⁻³⁶		16	12	30 sec/hour	< 10 ⁻²⁴
32	17	3 sec/hour	< 10 ⁻⁵²		32	17	30 sec/hour	< 10 ⁻³⁵
32	24	3 sec/hour	< 10 ⁻⁷³		32	24	30 sec/hour	< 10 ⁻⁴⁹
SIEM014		ited Systemss	•		•		9	

	Messages per	Delay before entry
Algorithm	entry/exit	(in message times)
Centralized	3	2
Distributed	$2 \cdot (N-1)$	$2 \cdot (N-1)$
Token ring	1,,∞	0,, <i>N</i> – 1
Decentralized	$2 \cdot m \cdot k + m, k = 1, 2, \dots$	2.m.k

