
CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

CSIE52400/CSIEM0140
Distributed Systems

Lecture 09: Coordination

Shiow-yang Wu (吳秀陽)
Department of Computer Science and Information Engineering

National Dong Hwa University

CSIE52400/CSIEM0140 Distributed Systems 1

REMINDERS FOR
THIS CLASS

GALLERY 01

Clock Skew
 The instantaneous difference between the readings of any two

clocks.
 Computer clock skew is caused by difference in frequency

oscillations.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 2

Network

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Physical Clocks
 Clock drift rate -- change in offset between clock and reference

clock per unit of time
 10-6 seconds/second 1 second every 11.6 days

 Reference clock:
 astronomical time -- based on Earth’s rotation on its axis and

revolution about the sun
 atomic time -- transitions of the Caesium-133(銫) atom

• International Atomic Time (high-precision atomic
coordinate time standard)

• Coordinated Universal Time (UTC), successor of the
Greenwich Mean Time (GMT).

Coordination 3

HOW TO USE THIS PRESENTATION

Necessity for Clock Synchronization

 Need for accurate measure of time
 e.g., time of day

 Algorithms may dependent on clock synchronization for
 data consistency
 check authenticity of requests to server
 eliminate duplicate update processing
 . . .

CSIE52400/CSIEM0140 Distributed Systemss Coordination 4

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

ACTIVITY TIME!

Clock Synchronization
Requirements

 limit on
 the deviation between clocks
 the deviation between any clock and UTC

 clocks should only advance (monotonicity)
 only authorized principals may reset clocks

CSIE52400/CSIEM0140 Distributed Systemss Coordination 5

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Modes of Synchronization
 External synchronization (accuracy)
 synchronize with authoritative external source S (UTC)
 for a bound α, ∀t, |S(t) - Ci(t)| < α
 Ci are accurate to within the bound α

 Internal synchronization (precision)
 Clocks synchronize with one another.
 for a bound π, ∀t i,j |Ci(t) - Cj(t)| < π
 Ci agree within the bound π

 A set of clocks accurate within α will be precise within π = 2α.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 6

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Clock Synchronization Algorithms

 Cristian’s algorithm
 use of time server which received UTC signals

 Berkeley algorithm (by Gusella and Zatti)
 use of master/coordinator computer

 Network Time Protocol (NTP)
 distribute time information over the Internet

 Clock Sampling Mutual Network Synchronization
 CS-MNS, for distributed and mobile applications)

 Precision Time Protocol (PTP)
 master/slave protocol for delivery of highly accurate time

over local area networks

Coordination 7

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Cristian’s Algorithm
 Given:
 Tround : total roundtrip time to send and receive time

message
 t : time received from server

 Time estimate = t + Tround /2
 If the minimum transmission time is min, then the server’s

clock (when receiving the reply) is in
[t + min, t + Tround -min]

 Therefore the accuracy is ±(Tround /2 - min)

CSIE52400/CSIEM0140 Distributed Systemss Coordination 8

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Time Server

CSIE52400/CSIEM0140 Distributed Systemss Coordination 9

mr

mt
p Time server,S

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Berkeley Algorithm
 by Gusella and Zatti (1989)
 Master polls other computers to send their clock values
 master calculates average time and sends each the necessary

adjustment
 Faulty clocks may have significant adverse effect on the result.
 The master takes a fault-tolerant average by selecting only a

subset of the clocks that are close enough.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 10

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

Berkeley Algorithm

CSIE52400/CSIEM0140 Distributed Systemss Coordination 11

REMINDERS FOR
THIS CLASS

GALLERY 01

Network Time Protocol (NTP)
 servers organized into a synchronization subnet whose levels

are called strata.

 primary servers UTC
 secondary servers sync with primary servers
 sync modes with increasing accuracies
 multicast mode (periodically multicast the time, used in

high-speed LAN)
 procedure-call mode (time server accepts requests from

other computers)
 symmetric mode (a pair of servers exchange timing info)

CSIE52400/CSIEM0140 Distributed Systemss Coordination 12

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Synchronization Subnet

CSIE52400/CSIEM0140 Distributed Systemss Coordination 13

1

2

3

2

3 3

Note: Arrows denote synchronization control, numbers denote strata.

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

NTP Messages Exchange

Coordination 14

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

NTP Clock Synchronization
 For each pair of messages, NTP calculates
 oi : offset between two servers
 ti : delay, i.e. total trans time for two messages

 Let the true offset be o, and the actual trans time be t and t’,
then
Ti-2 = Ti-3 + t + o Ti = Ti-1 + t’ - o

 This leads to
di= t + t’ =Ti-2 - Ti-3 + Ti - Ti-1

o = oi + (t’-t)/2 oi = (Ti-2-Ti-3+ Ti-1-Ti)/2
 We can then use <oi, di> for clock sync, since

oi - di/2 o oi + di/2
CSIE52400/CSIEM0140 Distributed Systemss Coordination 15

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Logical Clocks

 Lamport(1978)
 can’t sync clocks perfectly
 can’t use physical time to order events

 monotonically increasing software counter
 value does not need to have any particular relationship to any

physical clock
 use Lamport’s algorithm to synchronize logical clocks
 uses the “happened-before” ordering

Coordination 16

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

Happened-before Ordering ()
 if a and b occurred in same process, and a occurs before b,

then a b
 if message is sent between processes, then the send occurred

before the receive: send(m) receive(m)

 transitivity property: a b, and b c, then a c

 Events that are not order by are concurrent and write as
a‖e.

 This introduces a partial ordering of events in a system with
concurrently operating processes.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 17

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Events at three processes

CSIE52400/CSIEM0140 Distributed Systemss Coordination 18

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Logical Clocks
 How to maintain a global view that is consistent with the

happened-before relation?
 Attach a timestamp L(e) to each event e, satisfying the

following properties:
1. If a and b are two events in the same process, and a b,

then we demand that L(a) < L(b).
2. If a corresponds to sending a message m, and b to the

receipt of that message, then also L(a) < L(b).
 How to attach a timestamp to an event when there’s no global

clock maintain a consistent set of logical clocks, one per
process.

Coordination 19

REMINDERS FOR
THIS CLASS

GALLERY 01

Lamport’s Algorithm
 Each process pi keeps its own logical clock Li

 Each event e is timestamped at process pi by Li(e)
 Step 1: Li incremented before each event is issued at pi

(satisfy property P1)
 Li = Li + 1

 Step 2: (satisfy property P2)
a) When pi sends message m, t = Li is included
b) On receive(m, t), qj sets Lj = max(Lj ,t) ; then applies

Step 1 before timestamping the event receive(m)

CSIE52400/CSIEM0140 Distributed Systemss Coordination 20

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Lamport’s Algorithm

 If send(m) receive(m), then Lsend(m) < Lreceive(m)

 If a b, then La < Lb

 Problem: converse NOT true (why?)
 Totally ordered logical clocks:
 define the global logical timestamp of event e at pi with local

timestamp Ti to be (Ti , i)
 (Ti , i) < (Tj , j) iff Ti < Tj , or Ti =Tj and i <j.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 21

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Lamport Timestamps

CSIE52400/CSIEM0140 Distributed Systemss Coordination 22

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Logical Clocks: Example
 Consider three processes with event counters operating at different

rates

Indirect Communication 23

REMINDERS FOR
THIS CLASS

Logical Clocks Implementation

CSIE52400/CSIEM0140 Distributed Systemss Coordination 24

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

 Developed by Mattern(1989) and Fidge(1991) to overcome the
shortcoming of logical clock.

 Can capture causality.
 A vector clock (for N processes) is an array of N integers. Each

process keeps its own clock.
 Vi[i] is the local logical clock at process pi.
 If Vi[j] = k then pi knows that k events have occurred at pj.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 25

Vector Clocks

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Vector Clocks Operations
 VC1: initially, Vi[j] = 0, j=1, 2,…,N
 VC2: before process pi timestamps an event,

sets Vi[i] = Vi[i]+1
 VC3: pi includes Vi in every message sent
 VC4: when pi receives a message with t, from pj

delay delivery until
 t[j] = Vi[j]+1
 t[k] <= Vi[k] for k <> i

 VC5 (merge): when pi delivers a message with t,
sets Vi[j] = max(Vi[j], t[j])

Coordination 26

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

Vector Timestamps
 To compare vector timestamps:
 V = V’ iff V[j] = V’[j], j=1, 2,…,N
 V V’ iff V[j] V’[j], j=1, 2,…,N
 V < V’ iff V V’ V V’

 We can show that
 e e’ V(e) < V(e’) (the same as Lamport’s logical clock),

AND
 V(e) < V(e’) e e’ (overcome the problem of logical clock)

 Exercise: Prove the claim above.
 Any disadvantage of vector clocks compared with logical clock?

CSIE52400/CSIEM0140 Distributed Systemss Coordination 27

REMINDERS FOR
THIS CLASS

Vector Timestamps

CSIE52400/CSIEM0140 Distributed Systemss Coordination 28

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Vector Clocks: More Examples

Coordination 29

Situation ts(m2) ts(m4) ts(m2)
<

ts(m4)

ts(m2)
>

ts(m4)

Conclusion

(a) (2, 1, 0) (4, 3, 0) Yes No m2 may causally precede m4

(b) (4, 1, 0) (2, 3, 0) No No m2 and m4 may conflict

REMINDERS FOR
THIS CLASS

GALLERY 01

Global States
 In many cases, we need to have a good observation of the

current global state of a distributed system.
 distributed garbage collection
 distributed deadlock detection
 distributed termination detection
 distributed debugging
 . . .

 We call the global state of a distributed system in a particular
moment the snapshot of the system.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 30

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Detecting Global Properties

CSIE52400/CSIEM0140 Distributed Systemss Coordination 31

p2p1

message

garbage object

object
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

activate
passive passivec. Termination

HOW TO USE THIS PRESENTATION

 It is quite easy to observe and record the succession of states
of a single process.

 It is not that easy to determine the global state of a
distributed system.

 The essential problem is the absence of global time.
 We therefore want to assemble a meaningful global state from

local states of different processes.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 32

Determine Global States

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Define Global States
 A system P of N processes pi (i = 1, 2, …, N)
 Local history and finite prefix

history(pi)= hi = <ei
0, ei

1, ei
2, ...>

hi
k = <ei

0, ei
1, ... , ei

k>
si

k :the state of process pi immediately
before the event ei

k occurs
 Global history

H = h1 h2 ... hN

 Global state
S = (s1, s2, ... , sN)

CSIE52400/CSIEM0140 Distributed Systemss Coordination 33

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Consistent Global States
 A global state corresponds to initial prefixes of hi (i = 1, 2, …,

N)
 A cut is a union of prefixes of hi :

C = h1
c1 h2

c2 ... hN
cN

 The frontier of the cut
{ ei

ci : i = 1, 2, …, N }
 Consistent cut C

eC, fe fC(:happened-before)(what does it mean?)
 A consistent global state is a global state that corresponds to a

consistent cut.

Coordination 34

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

Cuts

CSIE52400/CSIEM0140 Distributed Systemss Coordination 35

m1 m2

p1

p2
Physical

time

e1
0

Consistent cut
Inconsistent cut

e 1
1

e 1
2

e 1
3

e 2
0

e 2
1

e 2
2

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

State Transitions and Runs
 The execution of a distributed system can be considered as a

series of transitions between global states:
S0 S1 S2 . . .

 A run is a total ordering of events in a global history that is
consistent with each local ordering i (i = 1, 2, …, N)

 A linearization (consistent run) is a run that is consistent with
the ordering on H.

 S’ reachable from S if there is a linearization from S to S’.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 36

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

 A global state predicate P: S {True, False}
 A stable predicate P: once in a state S in which P is True, it

remains True in all future states reachable from S. Otherwise,
P is non-stable.

 Safety w.r.t an undesirable property : is False for all states
S reachable from S0(the initial state).

 Liveness w.r.t a desirable property : for any linearization L
started from S0, is True for some state SL reachable from S0.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 37

Global State Predicates

REMINDERS FOR
THIS CLASS

GALLERY 01

Distributed Snapshot Algorithm
 Assume each process communicates with another process

using unidirectional point-to-point channels (e.g, TCP
connections)

 Any process can initiate the algorithm
 Checkpoint local state
 Send marker on every outgoing channel

 On receiving a marker
 Checkpoint state if first marker and send marker on

outgoing channels, save messages on all other channels
until:

 Subsequent marker on a channel: stop saving state for that
channel

CSIE52400/CSIEM0140 Distributed Systemss Coordination 38

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Distributed Snapshot
 A process finishes when
 It receives a marker on each incoming channel and

processes them all
 State: local state plus state of all channels
 Send state to initiator

 Any process can initiate snapshot
 Multiple snapshots may be in progress. Each is separate,

and each is distinguished by tagging the marker with the
initiator ID (and sequence number)

Coordination 39

REMINDERS FOR
THIS CLASS

Chandy and Lamport’s Algorithm

CSIE52400/CSIEM0140 Distributed Systemss Coordination 40

Marker receiving rule for process pi

On pi’s receipt of a marker message over channel c:
if (pi has not yet recorded its state) it

records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else
pi records the state of c as the set of messages it has received over c

since it saved its state.
end if

Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:
pi sends one marker message over c

(before it sends any other message over c).

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

Distributed Snapshot Algorithm
a) Organization of a process and channels for a distributed

snapshot

CSIE52400/CSIEM0140 Distributed Systemss Coordination 41

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Distributed Snapshot
b) Process Q receives a marker for the first time and records its local

state
c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording

the state of the incoming channel

CSIE52400/CSIEM0140 Distributed Systemss Coordination 42

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Processes and Initial States

Coordination 43

p1 p2
c2

c1

account widgets

$1000 (none)

account widgets

$50 2000

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Processes and Global States

CSIE52400/CSIEM0140 Distributed Systemss Coordination 44

p
1

p
2

(empty)<$1000, 0> <$50, 2000>

(empty)

c
2

c
1

1. Global state S
0

2. Global state S
1

3. Global state S
2

4. Global state S
3

p
1

p
2

(Order 10, $100), M<$900, 0> <$50, 2000>

(empty)

c
2

c
1

p
1

p
2

(Order 10, $100), M<$900, 0> <$50, 1995>

(five widgets)

c
2

c
1

p
1

p
2

(Order 10, $100)<$900, 5> <$50, 1995>

(empty)

c
2

c
1

(M = marker message)

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

Timestamps and Variable Values

CSIE52400/CSIEM0140 Distributed Systemss Coordination 45

m1 m2

p1

p2
Physical

time

Cut C1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)

x1= 1 x1= 100 x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C2

REMINDERS FOR
THIS CLASS

GALLERY 01

Termination Detection
 Detecting the end of a distributed computation
 Notation: let sender be predecessor, receiver be successor
 Two types of markers: Done and Continue
 After finishing its part of the snapshot, process Q sends a Done

or a Continue to its predecessor
 Send a Done only when
 All of Q’s successors send a Done
 Q has not received any message since it check-pointed its local

state and received a marker on all incoming channels
 Else send a Continue

 Computation has terminated if the initiator receives Done
messages from everyone

CSIE52400/CSIEM0140 Distributed Systemss Coordination 46

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Reachability between States

CSIE52400/CSIEM0140 Distributed Systemss Coordination 47

Sinit Sfinal

Ssnap

actual execution e0, e1,...

recording
begins

recording
ends

pre-snap: e'
0
,e'

1
,...e '

R-1
post-snap: eR’, eR+1’

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

The lattice of global states

CSIE52400/CSIEM0140 Distributed Systemss Coordination 48

Sij= global state after i events at process 1
and j events at process 2

S00

S10

S20

S21S30

S31

S32

S22

S23

S33

S43

Level 0

1

2

3

4

5

6

7

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

Global Predicates: Possibly f and
Definitely f

CSIE52400/CSIEM0140 Distributed Systemss Coordination 49

REMINDERS FOR
THIS CLASS

GALLERY 01

Global Predicates: Possibly f and
Definitely f

CSIE52400/CSIEM0140 Distributed Systemss Coordination 50

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Evaluating definitely f

Coordination 51

F = (f(S) = False); T = (f(S) = True)

?

–

Level 0

1

2

3

4

5

F

F

F

F T

F

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Mutual Exclusion
 Problem: A number of processes in a distributed system want

exclusive access to some resource.
 Basic solutions:
 Permission-based: A process wanting to enter its critical

section, or access a resource, needs permission from other
processes.

 Token-based: A token is passed between processes. The one
who has the token may proceed in its critical section, or pass
it on when not interested.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 52

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

Permission-based (centralized
algorithm)

a)Process P1 asks the coordinator for permission to access a shared
resource. Permission is granted.

b)Process P2 then asks permission to access the same resource. The
coordinator does not reply.

c) When P1 releases the resource, it tells the coordinator, which then
replies to P2.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 53

REMINDERS FOR
THIS CLASS

Mutual Exclusion (Ricart & Agrawala)

a)Two processes want to access a shared resource at the same
moment.

b)P0 has the lowest timestamp, so it wins.
c)When process P0 is done, it sends an OK also, so P2 can now

go ahead.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 54

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Mutual Exclusion: Token ring algorithm

 Organize processes in a logical ring, and let a token be passed
between them. The one that holds the token is allowed to
enter the critical region (if it wants to).

Coordination 55

HOW TO USE THIS PRESENTATION

 Assume every resource is replicated N times, with each replica
having its own coordinator

 Access requires a majority vote from m > N/2 coordinators.
 A coordinator always responds immediately to a request.
 When a coordinator crashes, it will recover quickly, but will

have forgotten about permissions it had granted.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 56

Decentralized Mutual Exclusion

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

Decentralized Mutual Exclusion
(Robustness)

 Let p = △t /T be the probability that a coordinator resets
during a time interval t, while having a lifetime of T.

 The probability P[k] that k out of m coordinators reset
during the same interval is

 f coordinators reset correctness is violated when there is
only a minority of nonfaulty coordinators: when m - f ≤ N /
2, or, f ≥ m - N / 2.

 The probability of a violation is

CSIE52400/CSIEM0140 Distributed Systemss Coordination 57

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Violation Probabilities

 So, what can we conclude?

CSIE52400/CSIEM0140 Distributed Systemss
Coordination 58

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Mutual Exclusion: Comparison

Coordination 59

REMINDERS FOR
THIS CLASS

GALLERY 01

Election Algorithms
 An algorithm requires that some process acts as a coordinator.

The question is how to select this special process dynamically.
 In many systems the coordinator is chosen by hand (e.g. file

servers). This leads to centralized solutions) single point of
failure.

 If a coordinator is chosen dynamically, to what extent can we
speak about a centralized or distributed solution?

 Is a fully distributed solution, i.e. one without a coordinator,
always more robust than any centralized/coordinated solution?

CSIE52400/CSIEM0140 Distributed Systemss Coordination 60

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

Election Algorithms

 Many distributed algorithms require one process (any one) to
be the coordinator.

 Election algorithms try to locate the process with the highest
process number to be the coordinator.

 The goal is to ensure that all processes agreeing on who the
new coordinator is.

 Each process knows the process number of every other
process but doesn’t know which ones are up or down.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 61

REMINDERS FOR
THIS CLASS

Election Requirements
 Any process can call an election but does not call more than

one election at a time.
 Concurrent elections are allowed.
 Elected process must be unique with the highest id, even if
 several processes call elections concurrently
 processes fail during the election

 A participant process is either undecided or concludes with the
highest id process at the end (safety)

 All processes eventually agree (liveness)

CSIE52400/CSIEM0140 Distributed Systemss Coordination 62

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

Election in a Ring
 Process priority is obtained by organizing processes into a

(logical) ring. Process with the highest priority should be
elected as coordinator.

 Any process can start an election by sending an election
message to its successor. If a successor is down, the message
is passed on to the next.

 If a message is passed on, the sender adds itself to the list.
When it gets back to the initiator, everyone had a chance to
make its presence known.

 The initiator sends a coordinator message around the ring
containing a list of all living processes. The one with the
highest priority is elected as coordinator.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 63

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

A Ring-based Election
 The solid line shows the election messages initiated by P6
 The dashed one the messages by P3

Coordination 64

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

Bully(土匪) Algorithm
 Each process has a unique numerical ID
 Processes know the IDs and address of every other process
 Communication is assumed reliable
 Key Idea: select process with highest ID
 Process initiates election if it just recovered from failure or

if coordinator failed
 3 message types: Election, OK, I won
 Several processes can initiate an election simultaneously
 Need consistent result

 O(n2) messages required with n processes

CSIE52400/CSIEM0140 Distributed Systemss Coordination 65

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Bully Algorithm Details
 Any process P can initiate an election
 P sends Election messages to all process with higher IDs and

awaits OK messages
 If no OK messages, P becomes coordinator and sends I won

messages to all process with lower IDs
 If it receives an OK, it drops out and waits for an I won
 If a process receives an Election msg, it returns an OK and

starts an election
 If a process receives a I won, it treats sender an coordinator

CSIE52400/CSIEM0140 Distributed Systemss Coordination 66

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Bully Algorithm (1)
a) Process 4 holds an election by sending ELECTION messages to all

processes with higher numbers
b) Process 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election

CSIE52400/CSIEM0140 Distributed Systemss Coordination 67

REMINDERS FOR
THIS CLASS

GALLERY 01

Bully Algorithm (2)
d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

CSIE52400/CSIEM0140 Distributed Systemss Coordination 68

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Bully Algorithm (3)

Coordination 69

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C
coordinator

Stage 4

C

election

election
Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3

p
4

election

answer

The election of coordinator p2,
after the failure of p4 and then p3

REMINDERS FOR
THIS CLASS

Wireless Environments
 Unreliable, and nodes may move.
 Algorithm:

1. Any node starts by sending out an ELECTION message to
neighbors.

2. When a node receives an ELECTION message for the first time, it
forwards to neighbors, and designates the sender as its parent.

3. It then waits for responses from its neighbors.
• Responses may carry resource information.

4. When a node receives an ELECTION message for the second time,
it just OKs it.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 70

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

(a)

(c)

(b)

(d)

REMINDERS FOR
THIS CLASS

GALLERY 01

The build-tree phase.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 72

Reporting of best
node to source.

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

Elections in Large-Scale Systems (1)

 In large-scale systems, sometimes need to select more
than one.
 For example, sometimes need to select multiple superpeers.

 Requirements for superpeer selection:
1. Normal nodes should have low-latency access to superpeers.
2. Superpeers should be evenly distributed across the overlay

network.
3. There should be a predefined portion of superpeers relative to the

total number of nodes in the overlay network.
4. Each superpeer should not need to serve more than a fixed

number of normal nodes.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 73

REMINDERS FOR
THIS CLASS

GALLERY 01

Elections in Large-Scale Systems (2)

 One approach, if a DHT is being used:
 Reserve part of the ID space to identify superpeers.
 For example, save the top k bits, and let superpeers have zeros everwhere

else.
 A node routes a message to the superpeer by sending to p AND 11100000, for

key p, for example.
• What if this node doesn’t exist?
• How can a node know if it is a superpeer?

 Another approach, if a geometric overlay is being used.
 Assume N tokens are distributed among N nodes.
 Assume the tokens repel each other. This will cause tokens to move away from

each other.
 When a token is held for given, specified length of time, it will promote itself

to superpeer.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 74

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

 Nodes can learn about other nodes through gossiping.
 If a node discovers other nodes are nearby, it will move the

node (and relinquish the superpeer status).

CSIE52400/CSIEM0140 Distributed Systemss Coordination 75

Repulsion force
of A on C

Token-holding node

Normal node

Resulting movement by
which the token at C is
passed to another node.

Node D will become the
token holder

REMINDERS FOR
THIS CLASS

GALLERY 01

Distributed Event Matching
 Event matching (notification filtering) is at the heart of

publish-subscribe systems.
 A process specifies a subscription S for events of interest.
 When a process publishes a notification N for an event, the

system determines if S matches N.
 If matched, send N (and associated data) to the subscriber.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 76

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

 Matching subscriptions against events.
 Notifying subscribers in case of a match.
 Assume the existence of a function match(S, N) which returns

true when subscription S matches the notification N, and false
otherwise.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 77

Event Matching Requirements

REMINDERS FOR
THIS CLASS

Centralized Event Matching
 A centralized server that handles all subscriptions and

notifications.
 A subscriber submits a subscription, which is subsequently

stored.
 When a publisher submits a notification, it is checked against

every subscription.
 When a match is found, the notification is sent to the

associated aubscriber.
 Not scalable but still feasible for many cases.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 78

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systemss

Multiple Servers Matching
 A simple scale up of the centralized approach.
 Deterministically divide the work across multiple servers.
 A function sub2node(S) which maps S to a nonempty subset

(the rendezvous nodes for S) of servers.
 A function not2node(N) which maps N to a nonempty subset

(the rendezvous nodes for N) of servers.
 For any S and matching N, make sure that sub2node(S)

not2node(N)

Coordination 79

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Notification Routing
 The servers (brokers) are organized into an overlay network.
 The issue becomes how to route notifications to the

appropriate set of subscribers.
 Three classes of methods:
 Flooding
 Selective routing
 Gossip-based dissemination

CSIE52400/CSIEM0140 Distributed Systemss Coordination 80

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

 Use broadcasting to make sure that notifications reach their
subscribers.

 Two approaches:
 Store each subscription at every broker while publishing

notifications only a single broker. The later identifies the
matching subscriptions and copy/forward the notification.

 Store a subscription only at one broker while broadcasting
notifications to all brokers. Matching is distributed across
the brokers.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 81

Notification Flooding

REMINDERS FOR
THIS CLASS

GALLERY 01

Selective Routing
 Brokers take routing decisions by considering the content of a

notification.
 Each notification carries enough info to cut-off routes that do

not lead to its subscribers.
 A naïve content-based routing:
 Brokers are organized into a broadcast tree.
 Every broker broadcasts its subscriptions to all other brokers

to compile a list of (subject, destination) pairs.
 A notification message N is prepended with the destination

brokers.
 The router uses the list to decide on the paths the message

should follow. (next slide)

CSIE52400/CSIEM0140 Distributed Systemss Coordination 82

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

Content-based Routing

Coordination 83CSIE52400/CSIEM0140 Distributed Systemss

REMINDERS FOR
THIS CLASS

Gossip-based Routing
 Subscribers interested in the same notifications form their own

overlay network (constructed through gossiping).
 Once a notification is published, it merely needs to be routed

to the appropriate overlay.
 Subscriber overlay can also be built based on topics.
 The simplest overlay is a ring with shortcuts to facilitate

efficient notification dissemination.

CSIE52400/CSIEM0140 Distributed Systemss Coordination 84

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

REMINDERS FOR
THIS CLASS

GALLERY 01

Gossip-based Coordination
 Gossiping is useful in many areas: aggregation, large-scale

peer sampling, overlay construction,…
 An example in aggregation:
 Every node Pi initially chooses an arbitrary number vi
 When Pi contacts node Pj, they update their value:

vi, vj (vi + vj)/2
 Eventually all nodes will have the same value, the average of

all initial values. (Why?)
 Propagation speed is exponential. (Why?)
 What if v1 = 1 and vj = 0, for all other j ?

CSIE52400/CSIEM0140 Distributed Systemss Coordination 85

HOW TO USE THIS PRESENTATION
 Issue: In large-scale distributed systems in which nodes are dispersed

across a wide-area network, we often need to take some notion of
proximity or distance into account⇒ it starts with determining a (relative)
location of a node.

CSIE52400/CSIEM0140 Distributed Systems Coordination 86

Positioning Nodes

CSIE52400/CSIEM0140 Distributed Systems Lecture 09: Coordination

HOW TO USE THIS PRESENTATION

REMINDERS FOR
THIS CLASS

Computing Position
 Observation: A node P needs d + 1 landmarks to compute its own

position in a d -dimensional space. Consider two-dimensional case.

 Computing a position in 2D: P needs to solve three equations in two
unknowns (xP ,yP):

CSIE52400/CSIEM0140 Distributed Systems Coordination 87

HOW TO USE THIS PRESENTATION

CSIE52400/CSIEM0140 Distributed Systems

Global Positioning System
 Assuming that the clocks of the satellites are accurate and synchronized
 It takes a while before a signal reaches the receiver
 The receiver’s clock is definitely out of sync with the satellite

 Observation: 4 satellites ⇒ 4 equations in 4 unknowns (with ∆r as one of
them)

Coordination 88

