
CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 1

Structured Big Data 1:
Google Bigtable & HBase

Shiow-yang Wu (吳秀陽)

CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly
taken with permission and courtesy

from Professor Shih-Wei Liao of NTU.

Outline
 Problems of big data processing with Hadoop MapReduce

 Structured big data processing

 Traditional RDBMS

 ACID vs BASE

 Distributed DB

 Bigtable
o Motivations, data model, system architecture, API, implementation,

refinement

 Hbase

 CAP theorem

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 2

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 2

Problems of BD Processing
 Hadoop MapReduce is simple and powerful but:

◦ The one-input data format (key-value pairs) and two-
stage dataflow computing are extremely rigid.

◦ Custom code has to be written for even the most
common operations (e.g., projection and filtering)

 Programmers could be unfamiliar with the
MapReduce and would prefer to use SQL-like lang

 Performing tasks with a different dataflow (e.g.,
joins or n stages) would require implementing
inelegant workarounds

 Hadoop MR is not good for interactive queries

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 3

Structured Big Data
Processing
 This lecture discuss various solutions on adding

SQL flavor on top of the Big Data platforms for
processing large-scale structured data.

 Starting with the structured data store Google
Bigtable.

 Then discuss the open source counterpart Apache
Hbase.

 Move toward NoSQL.

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 4

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 3

Traditional DBMS

 Mostly based on relational model (tables, tuples,
attributes)

 Well-defined schema

 Support relational operators (SELECT, PROJECT,
JOIN, …)

 SQL language

 Transaction management

 ACID properties

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 5

ACID Properties
 Atomicity

◦ either all the operations of a transaction are executed
or none of them are (all-or-nothing)

 Consistency
◦ the database is in a legal state before and after a

transaction

 Isolation

 Durability

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 6

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 4

ACID Properties
 Atomicity

 Consistency

 Isolation
◦ the effects of one transaction on the database are

isolated from other transactions even under concurrent
execution

 Durability
◦ the effects of successfully completed (i.e., committed)

transactions endure subsequent failures

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 7

Benefits of RDBMS
 High level semantics

o Easy to program

o Programmers are more familiar with

o (Multi-row) transactions

 Lots of mature commercial implementations
o MySQL, PostgreSQL, MSSQL…..

 Optimizations makes them really fast
o But only under small scale of data

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 8

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 5

Problems of RDBMS on Large
Scale Data

 Most important of all, current implementations
lack, or only come with limited support of
distributed deployment

 Not very feasible when it comes to BIG data.
o Especially when it come to scalability

 ACID properties are too strong (next slide)

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 9

ACID vs BASE
 ACID properties seem indispensable

 They are incompatible with availability, scalability
and performance requirements in very large
systems.

 An alternative to ACID is BASE:
◦ Basic Availability

◦ Soft-state

◦ Eventual consistency

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 10

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 6

CAP Theorem
 Eric Brewer (Brewer’s Theorem): It is impossible for

a distributed system to simultaneously provide all
three of the following guarantees:
◦ Consistency

◦ Availability

◦ Partition tolerance

 (more on this later)

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 11

Distributed Database
 Remind:Transaction

o A unit of consistent and atomic execution against the database.

 Termination protocol
o A protocol by which individual sites can decide how to terminate a

particular transaction when they cannot communicate with other
sites where the transaction executes.

 Distributed DBMS, Concurrency control algorithm,
Distributed Locking, Logging protocol, One-copy
equivalence, Query processing, Query optimization,
Quorum-based voting algorithm, Read-once, write-
all protocol, Serializability, Transparency, Two-
phase commit, Two-phase locking

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 12

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 7

BigTable: Motivations
 Consider Google …

◦ Lots of (semi-)structured data
◦ Copies of the web, satellite data, user data, geographic data, email and

USENET, Subversion backing store

◦ Millions of machines

◦ Different projects/applications

◦ Hundreds of millions of users

◦ Many incoming requests (thousands of q/sec)

◦ 100TB+ of satellite image data

 Need both offline data processing and online
serving

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 13

Why not a DBMS?
• Few DBMS’s support the requisite scale

◦ Required DB with wide scalability, wide applicability, high
performance and high availability

• Couldn’t afford it if there was one
◦ Most DBMSs require very expensive infrastructure

• DBMSs provide more than Google needs
◦ E.g., full transactions, SQL

• Google has highly optimized lower-level systems that
could be exploited
◦ GFS, Chubby(distributed lock service), MapReduce, Job

scheduling

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 14

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 8

BigTable: Goals
 Wide applicability

o Can be used by many Google products and projects
o Often want to examine data changes over time, e.g., Contents of a

web page over multiple crawls
o Both throughput-oriented batch-processing jobs and latency-sensitive

serving of data to end users

 Scalability
o Handful to thousands of servers, hundreds of TB to PB

 High performance
o Millions of ops per second

 High availability
o Want access to most current data at any time

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 15

What is a BigTable?
 “A BigTable is a sparse, distributed, persistent

multidimensional sorted map. The map is indexed
by a row key, a column key, and a timestamp; each
value in the map is an uninterpreted array of bytes.”
◦ Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. In
7th OSDI 2006.

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 16

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 9

BigTable: Introduction
 A sparse, distributed, persistent multidimensional sorted

map
o With an interesting data model

 Fault-tolerant, persistent

 Scalable
o Thousands of servers
o Terabytes of in-memory data
o Millions of reads/writes per second, efficient scans

 Self-managing
o Servers can be added/removed dynamically
o Servers adjust to load imbalance

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 17

Relative to DBMS, BigTable
provides …

 Simplified data retrieval mechanism
◦ A map
◦ <Row, Column, Timestamp> -> string
◦ No relational operators

 Atomic updates only possible at row level

 Arbitrary number of columns per row

 Arbitrary data type for each column

 Designed for Google’s application set

 Provides extremely large scale (data, throughput)
at extremely small cost

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 18

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 10

HBase
 An open source implementation of Bigtable

 A part of Hadoop

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 19

Data Model
 Row-based, key-value pairs

 “Semi” Three Dimensional datacube
◦ Input(row, column, timestamp)  Output(cell contents)

CSIE59830 Big Data Systems

R
o

w
s

Columns

Time

“com.cnn.www”

.

.

.

.

“contents:”

Structured Big Data 1 – Bigtable & HBase 20

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 11

Data Model: Rows
 Row keys are arbitrary strings up to 64KB

 Row is the unit of transactional consistency
◦ Every read or write of data under a single row is atomic
◦ Multi-row atomicity not guaranteed

 Identified and sorted in lexicographic order by row
keys

 Rows with consecutive keys (Row Range) are grouped
together as “tablets”.
◦ Unit of distribution and load-balancing
◦ reads of short row ranges are efficient and typically require

communication with only a small number of machines

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 21

Data Model: Columns
 Provide schema-like semantic

 Column keys are grouped into sets called “column families”, which
form the unit of access control.

 Data stored under a column family is usually of the same type
(easier to be compressed together)

 A column family must be created before data can be stored in a
column key

• After a family has been created, any column key within the family can be used
for queries

 Column key is named using: family:qualifier

 Access control and disk/memory accounting are performed at
column family level

 Managed by the Chubby lock service

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 22

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 12

Data Model: Timestamps
 Each cell can contain multiple versions of data, each

indexed by timestamp (called version in Hbase)

 Timestamps are 64-bit integers

 Assigned by:
◦ Bigtable: real-time in microseconds

◦ Client application: when unique timestamps are a necessity

 Data is stored in decreasing timestamp order, so that most
recent data is easily accessed
◦ Application specifies how many versions (n) or how new enough

(last 7 days) items to be maintained in a cell

◦ Bigtable garbage collects obsolete versions

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 23

Data Model Example
Example: Zoo

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 24

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 13

Data Model Example
Example: Zoo

row key col. key timestamp

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 25

Data Model
Example: Zoo

row key col. key timestamp

- (zebras, length, 2006) --> 7 ft

- (zebras, weight, 2007) --> 600 lbs

- (zebras, weight, 2006) --> 620 lbs

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 26

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 14

Data Model
Example: Zoo

row key col. key timestamp

- (zebras, length, 2006) --> 7 ft

- (zebras, weight, 2007) --> 600 lbs

- (zebras, weight, 2006) --> 620 lbs

CSIE59830 Big Data Systems

Each key is sorted in
Lexicographic order

Structured Big Data 1 – Bigtable & HBase 27

Data Model
Example: Zoo

row key col. key timestamp

- (zebras, length, 2006) --> 7 ft

- (zebras, weight, 2007) --> 600 lbs

- (zebras, weight, 2006) --> 620 lbs

CSIE59830 Big Data Systems

Timestamp ordering is
defined as “most
recent appears first”

Structured Big Data 1 – Bigtable & HBase 28

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 15

Data Model
Example: Webtable for storing crawled Web pages

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 29

Data Model

CSIE59830 Big Data Systems

Row

Structured Big Data 1 – Bigtable & HBase 30

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 16

Data Model

CSIE59830 Big Data Systems

Columns

Structured Big Data 1 – Bigtable & HBase 31

Data Model

CSIE59830 Big Data Systems

Cells

Structured Big Data 1 – Bigtable & HBase 32

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 17

Data Model

CSIE59830 Big Data Systems

timestamps

Structured Big Data 1 – Bigtable & HBase 33

Data Model

CSIE59830 Big Data Systems

Column family

Structured Big Data 1 – Bigtable & HBase 34

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 18

Data Model

CSIE59830 Big Data Systems

Column family

family:qualifier

Structured Big Data 1 – Bigtable & HBase 35

Data Model

CSIE59830 Big Data Systems

Column family

family: qualifier

Structured Big Data 1 – Bigtable & HBase 36

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 19

Bigtable API

 Bigtable APIs provide functions for:
◦ Creating/deleting tables, column families

◦ Changing cluster, table and column family
metadata such as access control rights

◦ Support of single row transactions

◦ Allowing cells to be used as integer counters

◦ Executing client supplied scripts in the address
space of servers

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 37

Bigtable API
 Write API

o Write or delete different granularities up to row

o Applied atomicity within a row

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 38

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 20

Bigtable API

 Read API
o selection by a combination of row, column or timestamp ranges

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 39

Google Applications using
BigTable

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 40

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 21

Building Blocks

 On top of Google File System (vs HDFS)
o stores persistent data

 Scheduler (in-house):
o Schedule Bigtable jobs

 Chubby (vs ZooKeeper)
o As synchronization service

 MapReduce: not a building block, but uses
Bigtable / HBase heavily

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 41

Building Blocks: GFS
 Bigtable uses the distributed Google File System

(GFS) to store log and data files

 The Google SSTable file format is used internally to
store Bigtable data

 An SSTable provides a persistent , ordered
immutable map from keys to values
◦ Operations are provided to look up the value associated

with a specified key, and to iterate over all key/value
pairs in a specified key range

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 42

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 22

Building Blocks: Chubby
 Bigtable relies on a highly-available and persistent

distributed lock service called Chubby

 Chubby provides a namespace that consists of
directories and small files. Each directory or file
can be used as a lock
◦ Consists of 5 active replicas, one replica is the master

and serves requests

◦ Service is functional when majority of the replicas are
running and in communication with one another –
when there is a quorum

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 43

BigTable and Chubby
 Bigtable uses Chubby to:

◦ Ensure there is at most one active master at a time,

◦ Store the bootstrap location of Bigtable data (Root
tablet),

◦ Discover tablet servers and finalize tablet server deaths,

◦ Store Bigtable schema information (column family
information),

◦ Store access control list.

 If Chubby becomes unavailable for an extended
period of time, Bigtable becomes unavailable.

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 44

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 23

Building Blocks

CSIE59830 Big Data Systems

Shared pool of machines that also run other distributed applications

Structured Big Data 1 – Bigtable & HBase 45

Organization
 A Bigtable cluster stores tables

 Each table consists of tablets
◦ Initially each table consists of one tablet

◦ As a table grows it is automatically split into multiple
tablets

 Tablets are assigned to tablet servers
◦ Multiple tablets per server.

◦ Each tablet is 100-200 MB

◦ Each tablet lives at only one server

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 46

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 24

System Architecture:Tablet

 Large tables broken into tablets at row
boundaries
o Tablet holds contiguous range of rows
o Aim for ~100MB to 200MB of data per tablet

 Serving machine responsible for ~100 tablets
o Fast recovery:

 100 machines each pick up 1 tablet from failed machine
o Fine-grained load balancing:

 Migrate tablets away from overloaded machine
 Master makes load-balancing decisions

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 47

System Architecture: Tablet

 Dynamic fragmentation of rows
o Unit of load balancing

o Distributed over tablet servers

o Tablets split and merge

 automatically based on size and load or manually

o Clients can choose row keys to achieve locality

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 48

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 25

Where is my Tablets?

 Question: given a row, how does a client find the
right tablet server?
o Tablet server location is ip:port

o Need to find tablet whose row range covers the target
row

o One approach: could use the BigTable master

 Central server almost certainly would be bottleneck in
large system

 Instead: store tablet location info in special tablets
similar to a B+ tree

 We’ll talk about this later

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 49

System Architecture

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 50

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 26

System Architecture

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 51

System Architecture

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 52

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 27

System Architecture

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 53

System Architecture

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 54

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 28

Implementation

 Tablet Location

 Tablet Serving

 Compaction

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 55

Tablet Location

 Remind: Where is my Tablets?

 Question: given a row, how does a client find the
right tablet server?
o Tablet server location is ip:port

o Need to find tablet whose row range covers the
target row

o One approach: could use the BigTable master
◦ Central server almost certainly would be bottleneck in large system

o Instead: store tablet location info in special tablets
similar to a B+ tree

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 56

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 29

Finding Tablet Location

 Client caches tablet locations.

 In case if it does not know, it has to make
three network round-trips in case cache is
empty and up to six round trips in case
cache is stale

 Tablet locations are stored in memory, so no
GFS accesses are required

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 57

Tablet Location
 A 3-level hierarchy analogous to that of a B+-tree to

store tablet location information :
◦ A file stored in chubby contains location of the root tablet
◦ Root tablet contains location of Metadata tablets

◦ The root tablet never splits

◦ Each metadata tablet contains the locations of a set of user
tablets

 Client reads the Chubby file that points to the root
tablet
◦ This starts the location process

 Client library caches tablet locations
◦ Moves up the hierarchy if location N/A

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 58

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 30

Metadata Tablets
 3-level B+-tree like scheme for tablets

o 1st level: Chubby, points to root tablet

o 2nd level: Root tablet data points to appropriate METADATA
tablet

o 3rd level: METADATA tablets point to data tablets

 METADATA tablets can be split when necessary

 Root tablet never splits so number of levels is fixed

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 59

Size Analysis
 Each metadata row stores ~ 1KB of data,

 With 128 MB tablets, the three level store addresses 234

tablets (261 bytes in 128 MB tablets).

 Approaches a Zetabyte (million Petabytes).

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 60

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 31

Tablet Storage

 Commit log on GFS – Redo log
o buffered in tablet server's memory

 A set of locality groups
o one locality group = a set of SSTable files on GFS

o key = <row, column, timestamp>, value = cell content

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 61

SStable(Sorted String Table)

SSTable: Sorted String Table
o persistent, ordered, immutable map from keys to

values.

 keys and values are arbitrary byte strings.

 SSTable: Immutable on-disk ordered map from string->string

 string keys: <row, column, timestamp> triples

o contains a sequence of blocks (typical size = 64KB),
with a block index at the end of SSTable loaded at
open time (next slide).

o one disk seek per block read.
o operations: lookup(key), iterate(key_range).
o an SSTable can be mapped into memory.

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 62

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 32

Tablet
 Contains some range of rows of the table

 Built out of multiple SSTables

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 63

Table
 Multiple tablets make up the table

 SSTables can be shared

 Tablets do not overlap, SSTables can overlap

CSIE59830 Big Data Systems

SSTable SSTable SSTable SSTable

Tablet

aardvark apple
Tablet

apple boat

Structured Big Data 1 – Bigtable & HBase 64

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 33

System Architecture:
Locate Tablet

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 65

System Architecture : Serve
Tablet

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 66

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 34

Tablet Serving: Write

CSIE59830 Big Data Systems

Write

Operation:

Record the

logs in GFS

then write data

in memtable

Sorted in-memory
buffer for keeping

recently committed
updates

Structured Big Data 1 – Bigtable & HBase 67

Tablet Serving: Read

CSIE59830 Big Data Systems

Read

Operation:

executed on a

merged view

of data from

memtable &

SStable

Structured Big Data 1 – Bigtable & HBase 68

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 35

Implementation: Three
major components
 A library that is linked into every client

 One master server
◦ Assigning tablets to tablet servers

◦ Detecting the addition and deletion of tablet servers

◦ Balancing tablet-server load

◦ Garbage collection of files in GFS

 Many tablet servers
◦ Tablet servers manage tablets

◦ Tablet server splits tablets that get too big

 Client communicates directly with tablet server for
reads/writes.

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 69

Architecture

CSIE59830 Big Data Systems

BigTable

BigTable Master

Performs metadata ops
and load balancing

BigTable Tablet Server BigTable Tablet Server

Serves data Serves data

Cluster scheduling system GFS Chubby

Holds tablet
data, logs

Holds metadata, handles
master election

Handles failover,
monitoring

BigTable Client

BigTable Client
Library

Structured Big Data 1 – Bigtable & HBase 70

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 36

Tablet Server
 When a tablet server starts, it creates and acquires

exclusive lock on a uniquely-named file in a specific
Chubby directory
◦ Call this servers directory

 A tablet server stops serving its tablets if it loses its
exclusive lock
◦ This may happen if there is a network connection failure

that causes the tablet server to lose its Chubby session

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 71

Tablet Server
 A tablet server will attempt to reacquire an

exclusive lock on its file as long as the file still exists

 If the file no longer exists then the tablet server
will never be able to serve again
◦ Kills itself

◦ At some point it can restart; it goes to a pool of
unassigned tablet servers

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 72

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 37

Master Startup Operation

 Upon start up the master needs to discover the
current tablet assignment.
◦ Grabs unique master lock in Chubby

◦ Prevents concurrent master instantiations

◦ Scans servers directory in Chubby for live servers

◦ Communicates with every live tablet server
◦ Discover all tablets

◦ Scans METADATA table to learn the set of tablets
◦ Unassigned tablets are marked for assignment

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 73

Master Operation

 Detect tablet server failures/resumption

 Master periodically asks each tablet server
for the status of its lock

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 74

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 38

Master Operation
 Tablet server lost its lock or master cannot contact

tablet server:
◦ Master attempts to acquire exclusive lock on the server’s file

in the servers directory

◦ If master acquires the lock then the tablets assigned to the
tablet server are assigned to others
◦ Master deletes the server’s file in the servers directory

◦ Assignment of tablets should be balanced

 If master loses its Chubby session then it kills itself
◦ An election can take place to find a new master

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 75

Tablet Server Failure

Tablet server

GFS Chunkserver

SSTable SSTable SSTable

Tablet Tablet Tablet

Tablet server

GFS Chunkserver

SSTable

(replica)

SSTable

SSTable

Tablet Tablet Tablet

(replica)

SSTable

Logical

view:

Physical

layout:
SSTable

Chubby ServerMaster

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 76

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 39

Tablet Server Failure
Chubby Server

Tablet server

GFS Chunkserver

SSTable SSTable SSTable

Tablet Tablet Tablet

Tablet server

GFS Chunkserver

SSTable

(replica)

SSTable

SSTable

Tablet Tablet Tablet

(replica)

SSTable

Logical

view:

Physical

layout:
SSTable

X

X X X X

Master

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 77

Tablet Server Failure

Tablet server

GFS Chunkserver

SSTable SSTable SSTable

Tablet Tablet Tablet

(replica)

SSTable

Logical

view:

Physical

layout:

Tablet

(other tablet servers

drafted to serve other

“abandoned” tablets)

Backup copy of tablet

made primary

Message sent to tablet

server by master

Extra replica of tablet created automatically by GFS

Chubby ServerMaster

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 78

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 40

Tablet Serving
 Commit log stores the updates that are made to

the data

 Recent updates are stored in memtable

 Older updates are stored in SStable files

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 79

Tablet Serving
 Recovery process

 Reads/Writes that arrive at tablet server

o Is the request well-formed?

oAuthorization: Chubby holds the permission file

o If a mutation occurs it is wrote to commit log and finally
a group commit is used

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 80

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 41

Tablet Serving

 Tablet recovery process

oRead metadata containing SSTables and redo
points

oRedo points are pointers into any commit logs

oApply redo points

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 81

Compactions
 As writes execute, size of memtable increases.

 Once memtable reaches a threshold:
◦ Memtable is frozen,

◦ A new memtable is created,

◦ Frozen metable is converted to an SSTable and written
to GFS.

 This minor compaction – convert the memtable
into an SSTable
◦ Reduce memory usage

◦ Reduce log traffic and recovery time on restart

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 82

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 42

Compactions
 Merging compaction (in the background)

◦ Read a few SSTables and memtable to produce one
SSTable. (Input SSTables and memtable are discareded.)

◦ Reduce number of SSTables

◦ Good place to apply policy “keep only N versions”

 Major compaction
◦ Periodically compact all SSTables for tablet into a new

base SSTable on GFS

◦ Merging compaction that results in only one SSTable

◦ No deletion records, only live data

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 83

Minor Compaction

CSIE59830 Big Data Systems

When in-memory

state fills up, pick

tablet with most

data and write

contents to

SSTables stored

in GFS

Structured Big Data 1 – Bigtable & HBase 84

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 43

Major Compaction

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 85

System Performance

 Not linear, but not bad up to 250 tablet servers

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 86

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 44

Performance Observation

 Random reads slow because tablet server channel
to GFS saturated

 Random reads (mem) is fast because only
memtable involved

 Random & sequential writes > sequential reads
because only log and memtable involved

 Sequential read > random read because of block
caching

 Scans even faster because tablet server can return
more data per RPC

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 87

Refinements
 Locality groups

◦ Clients can group multiple column families together into
a locality group.

 Compression
◦ Compression applied to each SSTable block separately
◦ Uses Bentley and McIlroy's scheme and fast

compression algorithm

 Caching for read performance
◦ Uses Scan Cache and Block Cache

 Bloom filters
◦ Reduce the number of disk accesses

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 88

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 45

Refinements
 Commit-log implementation

◦ Suppose one log per tablet rather than one log per
tablet server

 Exploiting SSTable immutability
◦ No need to synchronize accesses to file system when

reading SSTables

◦ Concurrency control over rows efficient

◦ Deletes work like garbage collection on removing
obsolete SSTables

◦ Enables quick tablet split: parent SSTables used by
children

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 89

CAP Revisit

 Consistency
o Everybody see the same result of an operation

 Availability

o No matter an operation succeeds or fails, a result
must be returned -- the system must respond

 Partition Tolerance

o The system must work still despite of message
loss or node failure -- communication within
cluster

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 90

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 46

CAP Theorem

 The CAP theorem: in distributed system,
consistency, availability & partition tolerance
can’t be fulfilled together.

 Proposed by E. Brewer of UCB as a conjecture

 Proved by Seth Gilbert and Nancy Lynch of MIT

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 91

CAP on Bigtable

 Bigtable is a distributed database

 Something must be sacrificed
o Partition tolerance is required: things will fail

o Consistency is fulfilled: row atomicity

o Availability not fulfilled: what if Chubby fails?

 Consistency is more important for their
applications than availability

 Other systems may have different goals

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 92

CSIE59830 Big Data Systems Lecture 06 Structured Big Data 1 – Bigtable & HBase

Note 47

NoSQL Databases

 NoSQL stands for “not only SQL”

 The type of systems for structured big data with
SQL-like capabilities

 Arise in the big data era

 Must trade off between C, A and P.

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 93

CSIE59830 Big Data Systems Structured Big Data 1 – Bigtable & HBase 94

