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Large-Scale Graph 
Processing 2: GraphLab

Shiow-yang Wu (吳秀陽)

CSIE, NDHU, Taiwan, ROC

Lecture material is mostly home-grown, part ly 
taken with permission and courtesy 

from Professor Shih-Wei Liao of NTU.

GraphLab
 Open-source large graph processing system
 Implemented in C++ at CMU
 GAS (Gather, Apply, Scatter) model (more on 

this later)
 Shared memory -> Distributed GraphLab
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Main Reference
 Yucheng Low, et. al. Distributed GraphLab: A 

Framework for Machine Learning and Data Mining 
in the Cloud, Proceedings of the VLDB Endowment, 
Vol. 5, No. 8, 2012.
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Why do we need GraphLab?

 Machine Learning and Data Mining 
(MLDM) problems increasingly 
need systems that can execute 
MLDM algorithms in parallel on 
large clusters. 

 Implementing MDLM algorithms in 
parallel on current systems like 
Hadoop and MPI can be both 
prohibitively complex and costly.

 The MLDM community needs a 
high-level abstraction to handle the 
complexities of graph and network 
algorithms.
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MLDM Algorithm 
Properties

Graph Structured 
Computation

 Many of the recent 
advances in MLDM have 
focused on modeling the 
dependencies between 
data.

 By modeling 
dependencies, we are 
able to extract more 
signal from noisy data.

Dependency Graph
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Asynchronous Iterative 
Computation
 Synchronous systems 

update all parameters 
simultaneously (in parallel) 
using parameter values 
from the previous time step 
as input

 Asynchronous systems 
update parameters using 
the most recent parameter 
values as input.

 Many MLDM algorithms 
benefit from asynchronous
systems.
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Dynamic Computation
 Static computation requires 

the algorithm to update all 
vertices equally often. This 
wastes time recomputing 
vertices who have effectively 
converged.

 Dynamic computation allows 
the algorithm to potentially 
save time by only 
recomputing vertices whose 
neighbors have recently 
updated.
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Serializability
 Serializability ensures that all 

parallel executions have an 
equivalent sequential execution, 
which eliminates race conditions.

 Race conditions are a programming 
fault which can produce 
undetermined program states and 
behaviors.

 Many MLDM algorithms converge 
faster if serializability is ensured. 
Some, like Dynamic Advanced Life 
Support algorithm, require 
serializability for correctness 
and/or stability.
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Properties of MLDM Graph 
Processing

Dependency
Graph

Iterative
Computation

What I Like

What My 
Friends Like

Factored 
Computation 
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GraphLab Abstraction
 GraphLab abstraction: 

◦ Data Graph: program state with data and dependencies

◦ Update Function: computation on the data graph by 
transforming data in overlapping contexts called scopes

◦ Execution Model: a simple loop execution semantics

◦ Ensuring Serializability: models and methods to 
optimize parallel execution while maintaining 
serializability

◦ Sync Operation and Global Values: global values that 
may be read by update functions, but are written using 
sync operations
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Data Graph
 A graph with arbitrary data (C++ Objects) 

associated with each vertex and edge.

Vertex Data:

• User profile text

• Current interests estimates

Edge Data:

• Similarity weights 

Graph:

• Social Network
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An update function is a user defined program which when 
applied to a vertex transforms the data in the scope of the 
vertex

label_prop(i, scope){
// Get Neighborhood data
(Likes[i], Wij, Likes[j]) scope;

// Update the vertex data

// Reschedule Neighbors if needed
if Likes[i] changes then 

reschedule_neighbors_of(i); 
}

;][][
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

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Update Functions
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Update Functions
 An update function is a 

stateless procedure that 
modifies the data within 
the scope of a vertex and 
schedules the future 
execution of the update 
functions on other vertices.

 GraphLab update takes a 
vertex v and its scope Sv
and returns the new 
versions of the data in the 
scope as well as a set 
vertices T:

Update: f(v,Sv) -> (Sv, T)
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Execution Model: The 
Algorithm
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Execution Model: The Scheduler

CPU 1

CPU 2

The scheduler determines the order that vertices are 

updated.
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The process repeats until the scheduler is empty.

CSIE59830 Big Data Systems Large-Scale Graph Processing 2 – GraphLab 16



CSIE59830 Big Data Systems Lecture 09 Large Graph Processing 2 – GraphLab

Note 9

Ensuring Race-Free Code
 How much can computation overlap?
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Importance of Consistency
 Many algorithms require strict consistency, or 

performs significantly better under strict consistency.
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Importance of Consistency
 Machine learning algorithms require 

“model debugging”

Build

Test

Debug

Tweak Model
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GraphLab Ensures Sequential 
Consistency

For each parallel execution, there exists a sequential 

execution of update functions which produces the same result. 

CPU 1

CPU 2

Single
CPU

Parallel

Sequential

time
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Ensuring Serializability
 GraphLab ensures a serializable 

execution by stipulating that 
for every parallel execution, 
there exists a sequential 
execution of update functions 
which produces the same 
result. 

 GraphLab several consistency 
models which allow the 
runtime to optimize the 
parallel execution while 
maintaining serializability.

 The greater the consistency, 
the lower the parallelism.

Full Consistency

Edge Consistency

Vertex Consistency
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Read

Write

Full Consistency
 A full consistency ensures that the scopes of 

concurrently executing update functions do not 
overlap. 

 The update function has complete read-write access 
to its entire scope.

 This limits the potential parallelism since concurrently 
executing update functions must be at least two
vertices apart.
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Consistency Rules

Guaranteed sequential consistency for all update functions

Data
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Full Consistency
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Obtaining More Parallelism
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Edge Consistency

 The edge consistency model ensures each update 
function has exclusive read-write access to its 
vertex and adjacent edges, but read-only access to 
adjacent vertices

 This increases parallelism by allowing update 
functions with slightly overlapping scopes to safely 
run in parallel.

Read

Write
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Edge Consistency

CPU 1 CPU 2

Safe

Read
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Vertex Consistency
 The vertex consistency model only provides write 

access to the central vertex data.

 This allows all update functions to be run in 
parallel, providing maximum parallelism. 

 However, the this is the least consistent model 
available.

Read

Write
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Global Values
 Many MLDM algorithms 

require the maintenance 
of global statistics 
describing data stored in 
the data graph.

 GraphLab defines global 
values as values which 
are read by update 
functions and written 
with sync operations.
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Sync Operation

Sync Operation

𝑍 = 𝐅𝐢𝐧𝐚𝐥𝐢𝐳𝐞(⨁𝒗∈𝑽𝐌𝐚𝐩 𝑆𝑣 )

 The sync operation is an associative commutative sum which is 
defined over all parts of the graph.

 This supports tasks like normalization that are common in MLDM 
algorithms. 

 The sync operation runs continuously in the background to 
maintain updated estimates of the global value.

 Ensuring serializability of the sync operation is costly and requires 
synchronization and halting all computation.
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The GraphLab Framework

Scheduler Consistency Model

Graph Based

Data Representation

Update Functions

User Computation

Sync Operation
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Algorithms Implemented 
 PageRank

 Loopy Belief Propagation

 Gibbs Sampling

 CoEM

 Graphical Model Parameter Learning

 Probabilistic Matrix/Tensor Factorization

 Alternating Least Squares

 Lasso with Sparse Features

 Support Vector Machines with Sparse Features

 Label-Propagation

 …
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Applications
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Netflix Movie Recommendation

 The Netflix movie recommendation task 
uses collaborative filtering to predict 
the movie ratings for each user based 
on the ratings of similar users.

 The alternating least squares(ALS) 
algorithm is often used and can be 
represented using the GraphLab
abstraction

 The sparse matrix R defines a bipartite 
graph connecting each user with the 
movies that they rated. Vertices are 
users and movies and edges contain the 
ratings for a user-movie pair.
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Netflix Comparisons
 The GraphLab

implementation was 
compared against Hadoop 
and MPI using between 4 to 
64 machines.

 GraphLab performs between 
40-60 times faster than 
Hadoop.

 It also slightly outperformed 
the optimized MPI 
implementation.
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Video Co-segmentation (CoSeg)

 Video co-segmentation automatically identifies and clusters 
spatio-temporal segments of video that share similar texture 
and color characteristics.

 Frames of high-resolution video are processed by coarsening 
each frame to a regular grid of rectangular super-pixels.

 The CoSeg algorithm predicts the best label (e.g. sky, 
building, grass, pavement, trees for each super pixel). 

High-Res Image Super-Pixel
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CoSeg Algorithm Implementation

 CoSeg uses Gaussian Mixture 
Model in conjunction with 
Loopy Belief Propagation.

 Updates that are expected to 
change vertex values 
significantly are prioritized.

 Distributed GraphLab is the 
only distributed graph 
abstraction that allows the use 
of prioritized scheduling.

 CoSeg scales excellently due to 
having a very sparse graph and 
high computational intensity.
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Named Entity Recognition 
(NER)
 Named Entity Recognition is the task of 

determining the type (e.g., Person, Place, or Thing) 
of a noun-phrase (e.g. Obama, Chicago, or Car) 
from its context (e.g. “President..”, “Lives near..”, or 
“bought a..”).

 The data graph of bipartite with one set of vertices 
corresponding to the noun-phrases and other 
corresponding to each contexts. 

 There is an edge between a noun-phrase and a 
context if the noun-phrase occurs in the context.
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NER Comparisons
 The GraphLab implementation of 

NER achieved 20-30x speedup 
over Hadoop and was 
comparable to the optimized 
MPI.

 However, GraphLab scaled 
poorly achieving only a 3x 
improvement using 16x more 
machines. 

 This poor performance can be 
attributed to the large vertex 
data size, dense connectivity, 
and poor partitioning.
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Cost-Effectiveness
 The price-runtime curves for 

GraphLab and Hadoop 
illustrate the monetary cost of 
deploying either system.

 The price-runtime curve 
demonstrates diminishing 
returns: the cost of attaining 
reduced runtimes increases 
faster than linearly. 

 For the Netflix application, 
GraphLab is about two orders 
of magnitude more cost-
effective than Hadoop. 
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Summary
 An abstraction tailored to Machine Learning and 

Data Mining applications
◦ Targets Graph-Parallel Algorithms

 Naturally expresses
◦ Data/computational dependencies
◦ Dynamic iterative computation

 Simplifies parallel algorithm design

 Automatically ensures data consistency

 Achieves state-of-the-art parallel performance on a 
variety of problems
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Summary

 Distributed GraphLab extends the shared memory 
GraphLab to the distributed setting by:
◦ Refining the execution model

◦ Relaxing the schedule requirements

◦ Introducing a new distributed data-graph

◦ Introducing new execution engines

◦ Introducing fault tolerance.

 Distributed Graphlab outperforms Hadoop by 20-
60x and is competitive with tailored MPI 
implementations.
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