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Abstract

A replication scheme determines the number and lo-
cation of replicas in o distributed system. Traditional
static replication schemes do not perform well in mo-
bile environment since the assumptions of fixed hosts
and relatively static access patterns no longer hold. For
effective data management in mobile environment, we
propose a dynamic replication scheme which employs
user profiles for recording users’ mobility schedules, ac-
cess behavior and read/write patterns, and actively re-
configures the replicas to adjust to the changes in user
locations and system status. Simulation results demon-
strate that the scheme can accurately predict the data
requirement to facilitate effective replication, reduce re-
sponse time, and increase data availability.

1. Introduction

Data replication [5] is often employed to improve the
availability and effectiveness of information services in
distributed systems. A replication scheme determines
the number (replication level) and location (replication
placement) of replicas in a distributed system. Tra-
ditional replication schemes [3, 5, 7] are static in the
sense that the number and placement of replicas are
predetermined and fixed. Manual re-calculation of the
access cost and redistribution of replicas are necessary
to reflect new access patterns. This is acceptable in tra-
ditional distributed environment since the hosts are in-
stalled at fixed locations and the access patterns are rel-
atively static. In mobile environment, however, static
replication schemes do not perform well because the as-
sumptions about fixed hosts and static access patterns
no longer hold [2, 4]. Dynamic replication schemes
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[1, 13], on the other hand, try to overcome the prob-
lem by continuously maintaining statistics about ac-
cess patterns and system workload so as to dynamically
recalculate access cost and reconfigure the replication
structure to adjust to the changes in access patterns.
This is particularly desirable for mobile computing en-
vironment [6, 10, 11]. Even with dynamic replication,
these schemes are essentially passive in the sense that
the actual reconfiguration can only happen after the
changes in access patterns have been taken place for a
period of time and reflected on the access statistics.

We improve upon existing dynamic replication algo-
rithms and propose an active replication scheme which
employs user profiles for recording mobile users’ mo-
bility schedules, access behavior and read/write pat-
terns, and actively reconfigures the replicas to adjust
to the changes in user behavior and system status. Our
scheme is unique in several respects: (1) We maintain
detail access statistics of each individual user in his/her
profile such that the replication decision can be made to
tailor the movement and data requirement of each user.
(2) We allow a user to provide his/her daily schedule
which is used to derive the user’s mobility pattern and
data requirement. This enables the system to provide a
certain degree of predictive replication which allocates
object replicas before the actual access. (3) We devise
the concept of open objects to represent a user’s cur-
rent and near future data requirement. This leads to
a more precise and responsive cost model to reflect the
changes in access patterns. (4) We allow the declara-
tion of emergency events and objects which are uncon-
ditionally replicated. This is targeting safety and time
critical application domains.

For performance evaluation, we built a simula-
tion environment and compared five representative
schemes: (1) no replication; (2) static replication; (3)
dynamic data allocation [14]; (4) adaptive data repli-
cation [15]; and (5) the proposed active replication.
Our scheme can accurately predict the data require-



ment to facilitate effective replication, reduce response
time, and increase data availability.

The rest of the paper is organized as follows. Sec-
tion 2 provides a survey of related issues and research
work. Section 3 presents our framework and system
model. Section 4 introduces the active replication algo-
rithms. In Section 5, we discuss our simulation method
and the results of performance evaluation and compar-
ison. Section 6 concludes the paper.

2. Related Work

The access cost of most dynamic replication schemes
are calculated based on the accumulated read/write
statistics and the chosen consistency control protocol
[6, 11, 15]. Consider the case of deciding whether to
replicate an object O on a site. Assume that R is the
average number of local read requests per time unit to
O on that site, and W is the average number of write
requests to O made by all users in the entire system.
Let a be the cost that can be saved if the object were
read locally instead of requested from a remote site,
and (3 be the additional cost that must be spent for
maintaining a replica of O. Obviously, during a time
unit, ax R is the total cost that can be saved if a replica
of O is allocated on the site, and 3 x W is the total cost
that must be spent to maintain this replica. Based on
this cost model, we can determine that if a xR > gxW
then the allocation of a replica of O on the site is judi-
cious. On the other hand, if @ X R < 8 x W then it is
not cost worthy to do so.

Some other design dimensions have also been con-
sidered, such as the lower and/or upper limit on the
number of replicas of an object [8], as well as the ca-
pacity of a site [11]. To set the limit on the number
of replicas is to ensure certain level of availability with
bounded overhead. Another interesting design is to re-
quire that all replicas of an object reside on neighboring
sites [15]. This has the advantages of reducing replica
allocation and consistency maintenance cost. For ob-
jects with strong interdependency, it is sometimes bet-
ter to replicate the entire group of related objects at the
same time. This type of semantic information is used
in [9] to improve the efficiency of replication. It is also
possible to formulate the replication problem from an
economy point of view, i.e. to consider replication as a
trade behavior. The servers are the trading parties and
the goods for trade are the data objects. Each server
can determine whether to buy or sell object replicas, or
decide whether to maintain, keep or discard the replicas
it has. Such decisions are made based on the data re-
quirement of the local users as well as the maintenance
cost to keep the replicas up to date. This approach is

taken by the replication subsystem of Mariposa [12].

To summarize, a dynamic replication scheme must
determine, among other things: (1) a consistency con-
trol protocol; (2) a cost model for estimating the access
and replica maintenance cost; (3) the replication struc-
ture; and (4) the replication control algorithm(s). The
scheme we proposed employs the primary copy model
and the ROWA (read-one-write-all) protocol for consis-
tency control, and an improved cost model upon ex-
isting dynamic replication schemes for cost estimation.
We do not place any limit on the level or placement of
object replicas.

3. System Model

The active replication scheme was designed to work
in a wired/wireless LAN environment. Servers con-
nected by traditional fixed network are the sites for al-
locating and maintaining object replicas. Servers that
are capable of providing wireless communication ser-
vices are called mobile support stations (MSS). The ra-
dio coverage of a MMS is called a cell. Any computa-
tional device which is carried with a mobile user and
is capable of wireless communication is called a mobile
host. Each user has a profile to keep track of the user’s
current location and related information. A hand-off
process is taken between two adjacent MSSs to ensure
seamless transition when users move from cell to cell.
This also implies that a MSS can detect any entrance
and exit of users into and out of its cell.

To simplify our algorithm design, we adopt the
popular primary copy model and ROWA protocol for
replica consistency control. In this model, we select,
among an object O and all its replicas (named O-
scheme), one as the primary copy (P(0)). The site
that maintains P(O) must have all information about
the replicas of O, including the number and locations.
All sites that keep a replica of O must know where
P(O) resides. All reads to O can be satisfied by the
nearest copy of O; while all writes to O must be sent
to P(O) first and then propagate to all sites in the O-
scheme for replica update. The cost of replica update is
proportional to the size of the O-scheme. We note that
more deliberate models and consistency protocols can
also be used with our framework. The detail of adopt-
ing other models or protocols, however, is not within
the scope of this paper.

4. The Active Replication Scheme

Our method improves upon existing dynamic repli-
cation schemes with special design toward mobile en-
vironment. We employ user profiles to record users’



read/write patterns so that our algorithms can be tai-
lored to satisfy as closely as possible each individual
user’s information requirement. For predicting future
access pattern, we offer the opportunity for a user to
specify daily schedule as hints of the user’s mobility
pattern and data requirement. This is desirable in
practice since mobile users do not move at random.
They often come to a location at a predetermined time
with a specific purpose in mind. Also the work a user is
currently engaged in has a strong relationship with the
data required. This is why a user’s daily schedule can
be served as valuable hints for predicting the future.
However, a user may not follow schedule strictly. In
such case, we resort to past statistics for making repli-
cation decision. In using the read/write histories, we
propose the concept of open objects for better cost esti-
mation. We selectively adopt the read/write statistics
of only those objects that are currently in use or likely
to be used in the near future. The following sections
discuss detail of the active replication algorithms.

4.1 System Information

User Profiles

User profiles are the places for declaring schedules and
maintaining per-user access statistics. A schedule is a
declaration of daily activities. Each schedule entry de-
clares the time, location, and activity a user plans to do
with optional data objects requirement. A mapping is
performed to determine the default data requirement of
a schedule entry by considering, for example, character-
istics of the user, location, and activity. The default re-
quirement is unioned with the explicitly requested data
objects to form the information requirement. Figure 1
is an example schedule in a hospital environment. An
asterisk signifies an emergency object which are uncon-
ditionally replicated. Schedules are explicit hints about
users’ mobility and access patterns. They have been
used regularly to record our daily activities. Where we
are and what we do have a strong relationship with
what we need for doing our job. Our method simply
takes advantages of existing practice for improving in-
formation services. A user who appears at the right
place and time is called ”a user on schedule”. Other-
wise, he/she is called ”a user off schedule”.

The read/write histories are a user’s access statistics
on data objects in the system. Since a user accesses
only part of the data objects at a time and location,
we capture this characteristic by defining the concept
of open objects (in a similar sense as open files) to be
the set of objects accessed since entering the current
cell and, for a user on schedule, the set of data objects
declared explicitly or implicitly in the current schedule

Schedule of Dr. Taylor
Time Location Activity & Objects

00:00 - 01:50 OR1 Operation32
10:30 - 12:00 PD1 Outpatient: ER3906*
14:00 - 16:00 MD3 Outpatient: ER3906*
16:10 - 19:00 OR5 Operation36
21:00 - 21:50 PL1 Project24: PR2409
P.S.

MD: Medical Dep.

PD: Pediatrics Dep.

PL: Pathology

PR: Pediatric Report

DR: Delivery Room

OR: Operation Room
ER: Epidemic Report
* : Emergency Object

Figure 1. An example schedule.

entry. Open objects represents current and near future
data access range. The information is used in calculat-
ing the access cost when making replication decision.

Replication Server

A replication server must maintain information about
local users and the object replicas, handle read requests
and replica update messages. The information about
local users includes user profiles and each user’s on/off
schedule status. For each data object, a server main-
tains an access record called local_open_read which is
the sum of all read histories of local users having this
object opened. This is used for representing the read
pattern of the current cell toward the object. Since
the past read histories of users who no longer have this
object opened are not counted, our algorithm is more
precise and responsive to the changes in access pattern
than algorithms that simply accumulate all the past
read requests to the object.

For a server that maintains a primary copy of O,
a record of the current O-scheme must be kept up to
date. A global access record called global_open_write
is used to reflect the current write pattern to object
O in the entire system. This is the sum of the write
histories of all users who have the object opened.

Emergency Events and Objects

We allow the declaration of emergency events and
emergency objects for must-have objects that require
fast access. An emergency event is any situation that
demands quick response. In many application domains,
such events can be identified in advanced. An emer-
gency event usually has a set of default information
requirement that can also be identified beforehand.
Whenever such event occurs, the system uncondition-
ally replicates all emergency objects associated with



that event. A user can also declare emergency objects
in his/her schedule. To provide emergency services,
a server must maintain a local _emergency_counter for
each object declared as emergent to count the number
of emergency events or claimed users to that object.
The object is replicated whenever the counter is greater
than zero.

System Events

Our algorithms are activated upon the occurrence of
certain events. The system events that trigger the
execution of the replication control code include the
READ event, the WRITE event, the UPDATE event
(a server receives a consistency update message), the
ENTER/EXIT event (a user enters/leaves a cell), the
TIME-CHECK event (the system performs a peri-
odic check for replica management), and the EMER-
GENCY event (the occurrence of the predefined emer-
gency event). On each event occurrence, a correspond-
ing part of the replication control code is triggered.

4.2 Cost Model

Our cost model follows the basic idea of comparing
cost saving of allocating a replica with that of replica
maintenance cost (Section 2). The access cost is cal-
culated based on network transmission cost. A local
access does not incur any transmission cost while the
cost of a remote access is counted as the network dis-
tance between the current site and the nearest site with
areplica of the desired object. If the distance is d, then
the cost per access that can be saved from allocating
a replica in the current site is d. Similarly, the ex-
tra cost of maintaining the replica on each update is
also d since the message is propagated from the near-
est site in the O-scheme. If a replica of O is allocated
in the current site, then the total saving per time unit
is d x local -open_read, while the extra replica mainte-
nance cost is d x global_open_write. Naturally, when
d x local -open_read > d x global_open_write (or equiv-
alently, , local_open_read > global_open_write) it is
beneficial to have a replica in the current site. Other-
wise it is not cost worthy to do so.

4.3 The Replication Algorithms

For ease of presentation, we define the following
symbols:

e O1,...,0; are the data objects in the system.

e By,...,B, are the base stations in the system.

| READ Algorithm |
When (the event U; reads O; occurs at By,)

{

If (O; is not an open object of U;)

Add Oj to the list of open objects of U;;
local .open_ready; += read;;;
global open_write; += write;;;

}

read;; +=1;
local .open_ready; +=1;

If (no local replica of O; exist) and
(local -open_ready; > global_open_write;)
Allocate a replica of O; and inform P(O;);

}

Figure 2. The READ Algorithm.

e (1,...,C), are the corresponding cells.

e Uy,..., U, are the mobile users in the system.
e Py, ..., P, are the user profiles.

e S1,...,Sm are the user schedules.

We use local_open_ready; to denote the local open
read record of Bj on object O;. Similarly,
global_open_write; is the global open write record of
the object O; maintained in P(O;). The local emer-
gency counter of B, on object O; is represented by
local_emergency_countery;. We also use read;; and
write;; to denote the read and write histories of U; on
object O;. Both of these records are maintained in F;.

Each server runs an event detector to detect the
occurrences of system events described in Section 4.1.
Based on the event type, the corresponding replication
control module is triggered and executed. There are
eight modules for handling different types of situations.
The algorithms used in each module are presented in
Figure 2 through 9.

5. Simulation and Comparison

We have developed a mobile information system
simulation environment which allows us to model and
experiment on various network configurations, user mo-
bility and access patterns. We compare the perfor-
mance of five representative replication schemes:(1) No
replication, (2) static replication, (3) dynamic data al-
location [14], (4) adaptive data replication [15], and our



| WRITE Algorithm |
When (the event U; writes O; occurs at By)

{

If (O; is not an open object of U;)

Add Oj to the list of open objects of U;;
local_open_ready; += read;;;
global open_write; += write;;;

}

write;; +=1;
global open_write; +=1;

}

Figure 3. The WRITE Algorithm.

UPDATE Algorithm

When (an update to a replica of O; occurs at By)

If (local_emergency_countery; = 0) and
(local_open_ready; < global_open_write;)
Discard the replica of O; and inform P(O;);
¥

Figure 4. The UPDATE Algorithm.

ENTER Algorithm

When (the event that U; enters Cy occurs)

{

If (U; is on schedule)

For all O; required in S;

{
Add Oj to the list of open objects of Uy;
local open_ready; += read;;;
global_open_write; += write;;;

If (O; is an emergency object)
local _emergency_countery; +=1;

If (no local replica of O; exist) and
((local_open_ready; > global _open_write;) or
(local _emergency_countery; > 0))
Allocate a replica of O; and inform P(O;);
}

}
}

Figure 5. The ENTER Algorithm.

EXIT Algorithm

When (the event that U; exits C occurs)

For all open objects O; of U;

{
Remove O; from the open objects of U; ;
local_open_ready; -= read;;;
global open_write; -= write;;;

If (O; is an emergency object requested)
local_emergency_countery; -= 1;

If (O; has a replica in the site) and
(local_emergency_countery; = 0) and
(local open_ready; < global_open_write;)
Discard the replica of O; and inform P(0O;);
}
}

Figure 6. The EXIT Algorithm.

| TIME CHECK Algorithm |
When (a local time-check event occurs)

{

For each local U;

{

If (the on/off schedule status has changed)

call EXIT Algorithm for U;;
call ENTER Algorithm for U;;
}
}
}

Figure 7. The TIME CHECK Algorithm.

| EMERGENCY ENTER Algorithm

When (an emergency event occurs at By)

For all O; required in the emergency event

{

local_emergency_countery; +=1;

If (no local replica of O; exist)
Allocate a replica of O; and inform P(O;);

}

}

Figure 8. The EMERGENCY ENTER Algo-
rithm.




| EMERGENCY EXIT Algorithm
When (an emergency event is over at By,)

For all O; required in the emergency event

{

local_emergency_countery; -= 1;

If (local_emergency_countery; = 0) and
(local open_ready; < global_open_write;)
Discard the replica of O; and inform P(O;);
}

}

Figure 9. The EMERGENCY EXIT Algorithm.

(5) active replication algorithm. For each scheme, we
measure the average access cost (both read and write),
average response time (for read request), and average
local availability of data. Both the access cost and re-
sponse time are computed based on network distance.
The local availability is the percentage of read access
that can be satisfied locally. Because of the space limit,
we only present the results on access cost and local
availability.

We classify sites and data objects into classes. An
access class is a set of objects that are routinely ac-
cessed by some fixed set of users. A location class is
a set of sites that are constantly visited by some fixed
set of users. Each user is assigned an access class and a
location class to represent his/her access practice and
mobility range. The variation of user behavior is con-
trolled by the following parameters: (1) movement lo-
cality (the probability of moving within location class);
(2) access locality (the probability of accessing within
access class); (3) schedule conformability (the degree to
which the user’s actual behavior follows his/her sched-
ule); (4) write ratio (the ratio of a user’s write requests
with respect to all requests). We have conducted a
variety of simulation on different setting of the param-
eters. For each set of experiment, we varied one of the
parameters while keeping others fixed so as to isolate
the effect of the former.

5.1 Movement Locality

From Figure 10, it can be seen that the higher the lo-
cality the lower the average access cost. This is because
when the users tend to move within a fixed area, most
replicas are allocated around that area which results
in lower access and replica maintenance cost. Higher
movement locality also results in higher local availabil-
ity (Figure 11). When the locality is low, however, our

active replication scheme is the only one that can still
maintains a good level of data availability. This is due
to the use of schedule and predictive replication.

5.2 Access Locality

It can be observed from Figure 12 that the higher
the access locality the lower the average access cost.
Stronger locality implies a more stable access pattern.
This is advantageous to all replication algorithms, even
for the case with no replication (since the initial dis-
tribution of data is also made according to the access
class partition). From Figure 13 we can see that except
for no replication, all algorithms achieve higher avail-
ability when the users reveal stronger access locality.
For both set of experiments, our algorithm performs
consistently better than all other algorithms.

5.3 Schedule Conformability

From Figure 14 we can see that schedule conforma-
bility does not have significant impact on all five algo-
rithms. This is conceivable for algorithms which do not
employ schedule. For our algorithm, a user conforms to
his/her schedule simply means he/she shows up at the
right place and time. It does not place any constraint
on the objects accessed by the user. Remote access is
still allowed. Furthermore, access cost includes write
cost. Therefore schedule conformability does not have
a strong impact on access cost. The situation is dif-
ferent, however, for local availability (Figure 15). For
other algorithms, schedule conformability has no effect.
For active replication, we observed higher local avail-
ability with higher conformability. This is a successful
demonstration of the benefit of using schedule.

5.4 The Effect of Write Requests

From Figure 16, all algorithms incur higher access
cost when the write ratio is higher. The impact is es-
pecially evident on static replication. When the write
ratio approaches 100%, the average access cost of static
replication becomes very high since all replicas in-
cur only consistency maintenance overhead. Dynamic
replication schemes, however, are capable of discarding
replicas that are no longer beneficial. When the write
ratio approaches 0% (i.e. close to read-only access pat-
tern), the cost calculation of three dynamic replication
schemes almost always results in positive decision and
thus a nearly full replication situation. In such case,
most read requests can be satisfied locally, resulting
in very low access cost. Local availability is also af-
fected significantly ( Figure 17). The higher the ratio
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the lower the availability since the reduction of replicas
increases the percentage of remote access.

6. Conclusions and Future Work

Traditional replication schemes are passive in na-
ture, and rarely consider the characteristics of mobile
environment. We have proposed a dynamic replication
scheme that actively provides replication services for
mobile users. With more precise and responsive cost
model, as well as the help of schedule, our scheme suc-
cessfully demonstrates its ability to reduce access cost,
improve response time, and achieve high local availabil-
ity. The implementation of our scheme calls for careful
consideration of several issues such as the maintenance
of access histories and user profiles, the selection of pri-
mary copy, the limits on the number of replicas, clock
synchronization for periodic time check events, and the
possible adoption of other cost models. The perfor-
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Figure 12. Average access cost of five replication
schemes with varying access locality.
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mance of our algorithm can be further improved if the
replication scheme is integrated with other mechanisms
such as caching, prefetching, and data broadcasting.
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