
Dynamic Data Management for Location Based Services in Mobile Environments

Shiow-yang Wu Kun-Ta Wu
Department of Computer Science and Information Engineering

National Dong Hwa University
Hualien, Taiwan, R. O. C.

Abstract

We characterize the dynamic data management problem
for location based services(LBS) in mobile environments and
devise a cost model for servicing both location independent
and location dependent data. The cost analysis leads to a set
of dynamic data management strategies that employs judi-
cious caching, proactive server pushing and neighborhood
replication to reduce service cost and improve response time
under changing user mobility and access patterns. Simula-
tion results suggest that different strategies are effective for
different types of data in response to different patterns of
movement and information access.

1 Introduction

The advances in portable devices and wireless communi-
cation technologies enables a new form of services namedlo-
cation based services(LBS)which deliver location dependent
and context sensitive information to mobile users. Typical
examples of such services include local maps, local weather,
traffic condition, tour guide, and shopping guide, etc. A key
characteristic of LBS is that the same service request may
need to be answered with complete different results as the
user changes his/her location or the targets move. Because of
the highly dynamic nature of the problem, traditional infor-
mation management techniques are not well suited for LBS.
Developing proper infrastructure, location management, as
well as data management strategies for LBS has been a major
challenge to both wireless service providers and application
developers. To answer this challenge, we first analyzed the
nature of the problem and proposed a classification of poten-
tial application domains. Based on the analysis, we charac-
terized thedynamic data managementproblem for LBS and
devised a general service architecture flexible enough to pro-
vide dynamic access to both location dependent and location
independent data. We further devised a cost model to ana-
lyze the dynamic behavior of the system as well as the service
cost. The cost analysis leads to a set of dynamic data man-
agement strategies that employs judicious caching, proactive
server pushing and neighborhood replication to improve ser-

vice response time under changing user mobility and access
patterns. Simulation results suggest that different strategies
are effective for different types of data in response to differ-
ent patterns of user movement and information access.

The rest of the paper is organized as follows. Section 2
provides a survey of related issues and research work. Sec-
tion 3 presents our framework for problem analysis, applica-
tion characterization and domain classification which leads
to the challenging dynamic data management problem. In
Section 4, we proposed a system architecture for location-
based information services to answer the challenge. Based
on the service architecture, we devised a cost model in Sec-
tion 5 to facilitate the design of a set of dynamic data manage-
ment strategies as well as the analysis of the system behav-
ior. Simulation results presented in Section 6 demonstrate
the feasibility and performance of our framework toward the
construction of highly responsive systems for location-based
mobile information services. Section 7 concludes the paper.

2 Related Work

Data management in mobile computing environments
is especially challenging for the need to process informa-
tion on the move, to cope with resource limitation, and to
deal with heterogeneity. Among the applications of mobile
data management, LBS have been identified as one of the
most promising area of research and development [1]. The
problem has also been studied under various terms such as
location-aware, context-aware, or adaptive information sys-
tems [8, 9]. Many of the previous work on LBS treated
location as an additional attribute of the data tables[4, 10].
LBS queries can be processed like ordinary queries except
with additional constraints on the location attribute. Caching
techniques specially tailored for LBS or mobile computing
environments in general have also been a major research area
[2, 4]. Semantic caching techniques employed semantic de-
scriptions of cached items to facilitate better cache admis-
sion and replacement decisions that are responsive to the user
movement[3, 6]. Research effort on moving objects database
are also related to our work in the need to process data in
a highly dynamic environment [5, 7, 11]. Our work differs

from the previous works in that we consider the problem
from a global point of view. Our strategies take into account
both location dependent and location independent queries to
information from centralized broadcasting channel such as
the stock pro or world news, as well as localized services such
as the nearby restaurants or local weather. The dynamic na-
ture of our approach also facilitates timely responses to rapid
changes in access and/or mobility patterns.

3 Mobile Information Service Characteriza-
tion and Classification

Based on the characteristics of data and their typical us-
age patterns, we classify information service applications in
mobile environments along four dimensions.

• Source of data :centralvs. local
The data can be from acentral broadcasting channel
such as the CNN world news, or from alocal service
station such as area map or tourist attractions.

• Period of validity :staticvs. dynamic
The period of validity of the data can be relativelystatic
such as various kinds of traffic timetables, ordynamic
such as the current traffic condition.

• Target audience :publicvs. personal
The intended target audience of the data can be to the
generalpublic such as a public announcement, or to a
particularpersonsuch as email or personalized news.

• Location dependency :location independentvs. loca-
tion dependent
The nature of the queries and results can belocation in-
dependentsuch as the stock pro, orlocation dependent
such as the nearby restraints within a given range.

In Table 1, we give several examples of the mobile informa-
tion services along these four dimensions. Note that some
services may appear in more than one places. Area news,
for example, may be provided by a central news agency or
by a local station. The classification helps us in design-
ing a general service architecture that can be easily adapted
to incorporate different data management strategies to fit
the characteristics of different application domains. For ex-
ample, information having the properties of central, pub-
lic, static, and location independent are good candidates for
traditional techniques such as keeping cached copies at the
client devices or local servers. On the other hand, the data
of local, personal, dynamic, and location dependent appli-
cations are best handled with dynamic strategies that can
quickly respond to the changes in user location or data sta-
tus. In general, central data sources call for proper dissem-
ination infrastructure while local data need good caching

mechanism. Static data can be efficiently served with proper
replication schemes while the processing of dynamic data
may consider prefetching or semantic caching techniques.
The access patterns to public data are often predictable and
therefore amenable to proactive dissemination techniques
such as pushing hot data closer to the clients. Personalized
data, however, may need to be processed with dynamic pro-
filing and data migration techniques. The location depen-
dency of data raises a new issue of answeringrange queries
such as the nearby motels within 5 miles of the current lo-
cation. Supporting such services requires neighboring base
stations(local servers) to exchange information on target ob-
jects. Some optimization techniques can be adopted such as
the prefetching and caching of popular range query targets.

As a summary, the challenge is to design a flexible ser-
vice architecture and dynamic data management strategies
to provide highly responsive and location dependent infor-
mation access in resource constrained and rapidly changing
environments for the application domains discussed above.
We call it thedynamic data managementproblem for loca-
tion based services in mobile environments. The dynamic
nature of the problem is strongly emphasized in here since
both the clients and targets may change locations at any time.

4 Location-Based Service Architecture

Based on the application classification and service char-
acterization, we devised a general system architecture as the
basis for our cost modelling and strategy design. Our sys-
tem were designed with several criteria in minds. First of
all, the architecture must reflect the current and foreseeable
future status of the wireless networking technologies. The
system must also be flexible enough to allow the installment
of different data management strategies on different classes
of applications. Finally, since we want to serve both location
dependent as well as location independent data, the architec-
ture must take the source characteristics into consideration.
Figure 1 depicted our architectural design consisting of the
central server, local server, and the client device.

The central server is used to model a service site for cen-
tralized data such as the New York Stock Exchange. In
addition to a central information database, a push unit is
included to facilitate server-initiated pushing strategies that
proactively send selected data items toward the clients. Since
the downlink bandwidth is usually much larger and cheaper
than uplink connection, pushing techniques turn out to be
efficient and valuable tools with little extra cost.

The local server is the data manager and wireless infor-
mation server for a single cell. Each cell is assumed to have
a unique local server which provides wireless access for all
the clients in its cell and acts as a bridge between the cen-
tral server and the client devices at the same time. It is the

Location Independent Location Dependent
Static Dynamic Static Dynamic

Central Public global public
announcement, traffic
timetable, ...

news, stock pro, mo-
bile banking, ...

area transportation
info, area map, tourist
attractions, ...

area news, area
weather, traffic condi-
tion, ...

Personal email, medical
record, personal note,
student grade, ...

personalized news,
investment guide,
chat messages, ...

personalized tour ar-
rangement, route
planning, ...

personalized
area news, exhibition
guide, ...

Local Public local public an-
nouncement, service
directory, ...

area news, area
weather, area broad-
casting, ...

nearby hotels
and restaurants, local
transportation info, ...

local news, local traf-
fic, ...

Personal personal information
(schedule, to do list,
shopping list), ...

personalized
area news, push ser-
vices, advertising, ...

nearby specified tar-
gets, personalized lo-
cal attractions, ...

current location,
route, nearby moving
targets, ...

Table 1: Mobile information service classification

Local Server

Request
Handler

Data Manager
PUSH

Manager

Local
Server
Profile

Central Server

GPS

Browser

Mobile Client

Query
Processing

WML
Generator

Map
Generator

Data
Integrator

Communication &
Broadcast Manager

Query
Generator

User &
Service
Profile

Response
to

Client

Response to
local server

PUSH to
local server

Request
from

local server

Query Cache
Manager

Remote Data
Manager

Local Cache/Data
Manager

Local
Map DB

Request
from
client

Cache

Central
Information
Database

Local
Info DB

Figure 1: LBS System Architecture.

center for managing local information as well as the key
player to provide location based services. All local servers
are connected to the Internet via fixed network and therefore
can send information to each others with almost negligible
delay in comparison with wireless access. This is an impor-
tant factor since neighboring local servers must work closely
together to provide efficient location-based services. The
cache and data manager is responsible for maintaining the
information received from the central server as well as other
local servers. A local server is also equipped with a map
database for answering location dependent map queries.

The client is any end user device that is capable of wire-
less communication as well as user interface services. This is
probably the branch of the wireless technologies that evolves
with the fastest pace. Therefore we do not presume the com-
puting power and storage capacity of a client device. We only
assume that it can send out information requests via a wire-
less link, can do some local processing if required, and has a
client cache for keeping frequently accessed data items. The
most distinctive feature of a client is that it moves. A client
can change its position at will, in and out of a cell, from one
cell to another, without the obligation to notify any server
in advance. Since a client can issue a query at any time any
where, this is especially challenging for information service
providers. In our architectural design, a client always sends
requests to the local server of the cell where the client re-
sides. The target objects may be available right at the client
cache, at the local server of the same cell, from the local
servers of other cells, or from central servers.

To make our design general and flexible, we assume an
object-based service environment. The information requests
are categorized into three types of queries:

• Object queries: that target specified objects.

• Range queries: that target objects located within a
range restriction and satisfy certain constraints.

• Map queries: for area map information.

The service of map queries is out of the scope of this pa-
per. We will discuss only object and range queries. Object
queries are like traditional type of queries that are issued by
explicitly naming the target objects or by giving the object
classes and the constraints that must be satisfied. Range
queries are location dependent queries to locate the desired
type(s) of object(s) within a specified distance around the
client. "List all the restaurants within 5 miles of my current
location." for example, is a typical range query. "Give me
the hotel reservation phone number of the Pleasant Plaza."
on the other hand, is an object query since the target object is
directly specified. We note that if the target object(s) is(are)
located within the same cell as the client, the local server
of the cell can answer the query without consulting other
servers. If, however, the target objects reside in other cells

or in a central server, the local server must request the desired
objects from other servers and pass them to the client when
the objects arrive. Since the client can move at will, a target
that can be accessed from within the same cell may have to
be accessed from other cell for the next request. This is also
true for the range queries since any target object can be in
and out of range as the client moves. Static query process-
ing strategies have little use in such environments. Dynamic
data management strategies that can effectively locate the
desired objects as well as quickly respond to the location
changes are in order.

5 Cost Model and Dynamic Data Manage-
ment Strategies

To facilitate the design of dynamic data management
strategies for location based services, we devise a simple
yet effective cost model that abstract away nonessential de-
tails of the wireless environment and characterize only the
key players and dominant cost factors. As depicted in Fig-
ure 2, a location based service environment is modelled as
consisting of four major types of abstract entities:

C The client device.

L The local server of the cell where the client resides.

L′ The neighboring servers, i.e. the local servers of the
neighboring cells.

S The central information server.

The client access the network through a wireless connec-
tion to the local server while all other connections between
servers (local and/or central) are through wired links. As the
current technology stands, the cost of a wireless link is much
higher than that of a wired link. The connection cost between
neighboring servers is relatively lower than the cost of ac-
cessing from a remote central server. We therefore classify
the communication cost into three categories:

d The wireless communication cost between a client and
its local server.

l The communication cost between neighboring local
servers.

r The cost of accessing information from a remote central
server to the local server.

Based on the abstraction and characterization, we pro-
posed three sets of dynamic data management strategies,
namely judicious caching, proactive pushing, as well as
neighborhood replicationto improve service response time
and reduce communication cost. The first two sets of strate-
gies are designed for object queries that target information

L

d

r

L'
l

C

physical link
wireless link
query range

L”

S

C : client
S : central server
L, L’, L” : local servers

l

Figure 2: LBS cost model — Central, location dependent, and range services

largely from central data services while the third set is for
location based range queries. We then conducted detail cost
analysis to understand the exact situations for these strate-
gies to be cost effective. This help us in determining when
to apply and adjust the strategies for better services.

Judicious Caching

As discussed in section 4, both local servers and clients
have caches to retain downloaded information. If certain
types of objects published by a particular central server were
accessed frequently by the clients of a cell, a simple idea is to
maintain cache copies of all such objects at the local server
and keep them always up to date. In this way, the clients in
the cell can always access fresh copies of the objects directly
from the local server without further delay. We termed this
judicious cachingsince the target objects to be cached can
range from the entire central server to certain categories or to
a particular class of objects. However, any caching strategies
bring about maintenance cost as well. To keep the cached
copies up to date, a local server must spend the extra cost of
getting new copies from the central server whenever updates
occur. The question is then how to determine when to apply
such a strategy to what types of data objects? Our proposed
solution is to first partition the data at the central server ac-
cording to their publishing characteristics. Data objects that
are closely related and updated at the same or similar rate are
grouped together. Then for each group of target objects, we
perform a detail analysis of the potential benefit of caching
those objects in a particular local server based on a set of
dynamically maintained access statistics listed as follows.

R The total number of requests to the target objects issued
by the clients in the cell.

U The total number of updates to the target objects.

c The average hit rate of the client cache.

h The average hit rate of the local server cache.

The caching of the target objects is beneficial if the sum of
the access cost and the update maintenance cost is lower than
conventional on-demand caching. That is,

Rc + R(1− c)d + Ur < Rc + R(1− c)hd +
R(1− c)(1− h)(d + r)

With simple algebraic manipulation, we have

U < R(1− c)(1− h)

SinceR(1− c)(1−h) is the number of requests actually re-
ceived by the central server to the target objects, the equation
above means that as long as the update rate to a particular
class of objects is smaller than the request rate experienced
on the central server, then it is beneficial to cache that class
of objects at the local server and keep them always up to date.
This is a reasonable decision to make since if the requests
to the same class of objects are much higher than the update
rate, the cache maintenance cost can easily be covered by
the saving on access cost. Therefore, the judicious caching
strategy is to maintain a class of objects at the local server
cache and keep them up to date if the update and request rates
satisfy the condition above. When the request rate drops at
latter time, or the update increases such that the condition

no longer holds, the local server can stop requesting further
maintenance update from the central server.

Proactive Pushing

A natural alternative to the judicious caching strategy is
to push a certain percentage of "hot" data to the local server
in an attempt to minimize the access cost and response time
experienced by the clients. We call thisproactive pushing
since it is the central server that proactively pushes selected
objects to the local server. Similar to judicious caching,
we need to determine exactly when and how to push the
data. With two additional parameters, a detail analysis of
the access cost with respective to conventional on-demand
caching reveals the condition for applying the strategy.

p The percentage of the "most frequently requested" data
to be proactively pushed to the local server.

q The percentage of update to the proactively pushed data
with respective to the total number of updatesU .

In other words, among the requests received by the local
server,p percentage of which can be responded locally since
they have been pushed from the central server to the local
server. We also pay the maintenance cost forq percentage of
the total update since we must keep them up to date. Similar
to judicious caching, we must have a lower cost than conven-
tional on-demand caching for such a strategy to be effective.
We therefore have the following cost formula.

Rc + R(1− c)pd + R(1− c)(1− p)(d + r) + Uqr

< Rc + R(1− c)hd + R(1− c)(1− h)(d + r)

With simple algebraic manipulation, we obtain the formula

Uq < R(1− c)(p− h)

which means that if the extra number of maintenance updates
due to proactive pushing is less than the additional number
of requests that can be satisfied locally, then it is worthy of
the cost. We note that wheneverp increases,q also increases.
When the update cost overwhelms the request saving, fur-
ther pushing can do more harm than good. Therefore in the
proactive pushing strategy, the central server selects an ini-
tial p and maintains the statistics discussed above. When the
requests to the "hot" data increase,p can be increased accord-
ingly. If the update rate to the pushed data becomes higher,
then the central server can reduce the pushing percentage.

So far, we have assumed that all objects at the central
server are considered together. There is no reason why we
can’t partition the data in a similar way as judicious caching
and maintain a separatep for each data group. In such case,
judicious caching becomes a special case of proactive push-
ing with p equals100%.

Neighborhood Replication

For range queries, the target objects are no longer from
central servers but from the local servers of the current and
neighboring cells within the specified range. Data manage-
ment strategies must be tailored accordingly. In general,
different range queries may overlap with each others. If
similar range queries were repeatedly issues by the clients,
then it would be beneficial to replicate the data objects of
the most frequently accessed neighboring cells at the local
server. We name thisneighborhood replication. The set of
replicated cells is called thereplication rangeof the strategy.
To maintain the cost effectiveness of such a strategy, we need
to record a different set of access parameters as follows.

R The total number of range requests issued by the clients
in the cell.

G The total number of updates to the location dependent
data objects.

c The average hit rate of the client cache.

m The number of neighboring servers to replicate.

n The average number of servers within the query ranges
but not replicated.

k The number of neighboring servers to be added to (k >
0) or excluded from (k < 0) the replication range.

n′ After adjusting the replication range, the average num-
ber of servers within the query ranges but not replicated.

The idea is to maintain replica of location dependent data
from selected neighboring cells and keep them up to date.
On each evaluation period, we try to evaluate the potential
benefit of addingk additional neighboring servers into the
replication range. Naturally, the inclusion of more replica is
beneficial if the expected cost is less than the cost without
them. This can be expressed by the following formula.

Rc + R(1− c)d + R(1− c)n′l + G(m + k)l
< Rc + R(1− c)d + R(1− c)nl + Gml

The formula can be simplified as

G < R(1− c)(n− n′)/k if k > 0 andn− n′ > 0
G > R(1− c)(n− n′)/k if k < 0 andn− n′ < 0

We note that when adding more servers into the replication
range (i.e.k > 0 and thusn− n′ > 0), R(1− c)(n− n′) is
the number of requests to the neighboring servers that can be
saved due to replication. Therefore, the first formula states
that if the number of updates to the location dependent data is
less than the average number of neighboring requests that can
be saved, then we can go ahead replicate those neighboring

servers. On the other hand, if we were to remove some
servers from the replication range (i.e.k < 0 and thusn −
n′ < 0),R(1−c)(|n−n′|)becomes the additional number of
requests that can no longer be satisfied by the cache and must
be sent to the neighboring servers. Therefore, the second
formula states that if the number of updates is greater than
the average increase in requests to the neighboring servers,
then we should shrink the replication range.

The neighborhood replication strategy can be summa-
rized as follows. Each local server determines an initial repli-
cation range on startup and replicates the location dependent
objects from the neighboring servers. On each evaluation pe-
riod, a local server determines whether to grow or shrink the
replication range according to the decision equations. We
note that a local server does not need to actually replicate
the additionalk neighbors in order to obtainn′ andG. Since
we know where each objects came from. After servicing the
client requests, we can always make the assumption of any
desirable replication configuration and derive the values of
these access statistics whenever we need them.

As a summary, all three types of strategies are designed
to dynamically respond to the rapid changes in access con-
texts and request/update patterns. By carefully analyzing the
relative benefits of caching and/or replication, we can deter-
mine exactly when to apply and how to adjust the strategies
to facilitate highly responsive location based services.

6 Simulation and Evaluation

We have designed and implemented a simulation sys-
tem (Figure 3) consisting of an environment generator, a
request/update generator, as well as a simulation engine. On
each experiment, we first select appropriate values for the set
of cost model parameters (i.e.,d, l, andr) and the set of en-
vironment parameters (such as the number of cells, clients,
data objects, requests, and updates). The former is for cost
accumulation while the latter is for generating a request file.
Then a set of server side parameters (such as the cache size,
push percentage, and initial replication range) is supplied to
initialize the simulation engine. The simulation proceeds
through a specified number of rounds. During each round,
we simulate the execution of the requests/updates and main-
tain the statistics needed for each data management strategy
accordingly. The changes in access statistics may trigger the
dynamic adaptation of the strategy which may in turn affect
the access statistics thereafter. In addition to the execution
simulation and strategy application, we also keep records
of the access cost of each request based on the cost model
parameters and write to the result file.

Figure 4 represents the results of performance compari-
son between conventional on-demand caching and judicious
caching with varying cache sizes as well as request/update

ratios. The size of the cache is the capacity measured in terms
of the percentage of data objects received from the central
server. We can see very clearly that the judicious caching
strategy is superior in all cache sizes especially when the
number of requests are higher than the updates. When the
updates are much higher than the request rate, two strate-
gies coincide since caching provides little benefit in such a
scenario.

Figure 5 demonstrates the combined effect of re-
quest/update ratio and cache size on judicious caching. Due
to the judicious nature, our strategy can effectively explore
cache resource and take advantages of the situations when
the requests are higher than the updates.

In order to understand the responsiveness of judicious
caching in reaction to the rapid change of access patterns, we
have conducted an experiment of 100 simulation rounds with
request/update ratio set to 20/80 for the first 50 rounds and
rapidly changed to 80/20 for the rest 50 rounds. The result
shown in Figure 6 not only demonstrates the performance ad-
vantage of judicious caching over conventional on-demand
caching but also the adaptation capability of our approach.

For evaluating the proactive pushing strategy, we fixed
the cache size and varied the push percentage to obtain the
result presented in Figure 7. Contrary to our expectation,
while proactive pushing performs consistently superior than
conventional on-demand caching, higher push percentage
does not provide significant advantage. After careful exam-
ination of the data set, we found that this may be due to the
random generation of request patterns which tends to access
data evenly without hot spot. In such case, proactive push-
ing does not provide significant advantage since no data are
"really" hot.

A rather interesting result was obtained from the response
time comparison between conventional on-demand caching
and neighborhood replication on range queries. Figure 8
shows that both strategies are relatively independent of the
request/update ratio. This is because the clients are con-
stantly moving which results in the cache being of little use.
We can also see that neighborhood replication consistently
outperforms on-demand caching by a large gap. This is
due to the dynamic nature of our strategy. When the re-
quest/update ratio is high, the strategy can take advantage
of the situation by increasing the number of neighbors into
the replication scope. On the other hand, when the reverse
is true, the strategy can automatically decrease the number
of replication sites to save the replica maintenance cost.

As a summary, dynamic data management is essential
for location based services. Even for location independent
data, dynamic strategies are still required since the clients
can move from one place to another. By characterizing the
data sources and access trends, we have designed effective
strategies that successfully balanced between the saving in
access cost and the increase in maintenance cost.

Request & Update Generator

Server
Generator

Network
Topology
Generator

Environment
Generator

Input Trace Analyzer

Request
Processor

Update
Processor

request update

System Parameter Collector

Output Statistics

Parameter
Initializer

Simulation
Engine

Performance
Statistics

Request Generator

Data Manager &
Cost Analyzer

(Strategy Selection)

Total number
of requests

Total number
of sites

Total number
of clients

Total number
of data objects

Request/
Update

Total number
of updates

Push
percentage

Figure 3: Simulation system architecture.

0

500

1000

1500

2000

2500

90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 10/90

request/update

co
st

On-Demand Caching,
CacheSize=25

On-Demand Caching,
CacheSize=50

On-Demand Caching,
CacheSize=75

On-Demand Caching,
CacheSize=100

Judicious Caching,
CacheSize=25

Judicious Caching,
CacheSize=50

Judicious Caching,
CacheSize=75

Judicious Caching,
CacheSize=100

Figure 4: Performance comparison of the judicious caching strategy with on-demand caching.

10
/9

0

20
/8

0

30
/7

0

40
/6

0

50
/5

0

60
/4

0

70
/3

0

80
/2

0

90
/1

0

100%

60%

20%

0

500

1000

1500

2000

2500

cost

request/update
cache size

2000-2500

1500-2000

1000-1500

500-1000

0-500

Figure 5: The combined effect of request/update ratio and cache size on the judicious caching strategy.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

simulation round

co
st

On-Demand Caching

Judicious Caching

20/80 80/20

Figure 6: The adaptation capability of the judicious caching strategy in response to the change on request/update pattern.

0

200

400

600

800

1000

1200

1400

1600

1800

90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 10/90

request/update

co
st

On-Demand
Caching
p = 25%

p = 50%

p = 75%

p = 100%

Figure 7: Execution cost of the proactive pushing strategy with varying push rate.

250000

270000

290000

310000

330000

350000

370000

90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 10/90

request/update

re
sp

on
se

 ti
m

e

On-Demand
Caching

Neighborhood
Replication

Figure 8: Response time comparison of the neighborhood replication strategy against on-demand caching on range queries.

7 Conclusions and Future Work

We have proposed a service framework, system archi-
tecture, simple but effective cost models and dynamic data
management strategies for location based services in mobile
computing environments. Analytical and simulation results
successfully demonstrate not only the feasibility but also the
effectiveness of our approach. The most distinctive features
of the proposed strategies are their capability to dynami-
cally respond to changes in the mobility and/or access pat-
terns. We plan to further extend our system framework and
cost model to handle information services on moving data
sources, not just moving clients. We are also evaluating the
potential of employing mobile agent technologies to support
continuous location based service queries.

References

[1] Daniel Barbara. Mobile computing and databases -
a survey. IEEE Transaction on Knowledge and Data
Engineering, 11(1):108–117, January/February 1999.

[2] B. Y. Chan, A. Si, and H. V. Leong. Cache manage-
ment for mobile databases: Design and evaluation. In
Proceedings of 14th ICDE, pages 54–63, 1998.

[3] Shaul Dar, Michael J. Franklin, B. Jonsson, Divesh
Srivastava, and Michael Tan. Semantic data caching
and replacement. InProceedings of VLDB, pages 330–
341, 1996.

[4] M. H. Dunham and V. Kumar. Location dependent
data and its management in mobile databases. InPro-
ceedings of DEXA Workshop, pages 414–419, August
1998.

[5] R. H. Guting, M. Erwig M. H. Bohlen, C. S. Jensen,
N. A. Lorentzos, M. Schneider, and M. Vazirgian-
nis. A foundation for representing and querying mov-
ing objects.ACM Transactions on Database Systems,
25(1):1–42, March 2000.

[6] Qun Ren and Margaret H. Dunham. Using semantic
caching to manage location dependent data in mobile
computing. InMobiCom’00: The Sixth Annual Inter-
national Conference on Mobile Computing and Net-
working, pages 210–221, August 2000.

[7] Simonas Saltenis and Christian S. Jensen. Indexing
mobing objects for location-based services. InProc.
18th International Conference on Data Engineering,
pages 463–472, 2002.

[8] M. Satyanarayanan, B. Noble, P. Kumar, and M. Price.
Application-aware adaptation for mobile computing.
Operating System Review, 29, January 1995.

[9] B. Schilit, N. Adams, and R. Want. Context-aware
mobile applications. InIEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz, CA,
U.S., December 1994.

[10] Ayse Y. Seydim, Margaret H. Dunham, and Vijay Ku-
mar. Location dependent query processing. InMo-
biDE’01: 2nd ACM International Workshop on Data
Engineering for Mobile and Wireless Access, pages 47–
53, 2001.

[11] Ouri Wolfson, Bo Xu, Sam Chamberlain, and Liqin
Jiang. Moving objects databases: Issues and solutions.
In Proceedings of the 10th International Conference on
Statistical and Scientific Database Management, pages
111–122, Capri, Italy, 1998.

