
Cross Enterprise Business Modeling with AC Diagrams and Workflow Patterns

Shiow-yang Wu Kuo-Chang Lin
Department of Computer Science National Information Infrastructure

and Information Engineering Enterprise Promotion Association
National Dong Hwa University 7F, 317, Song-Chiang Road,

Hualien, Taiwan, R. O. C. Taipei, Taiwan, R. O. C.
showyang@csie.ndhu.edu.tw xlen@nii.org.tw

Abstract

We proposed a framework for cross enterprise business
modeling and workflow automation targeting ecommerce
applications. A business process is modeled by using a
new visual tool named activity-control diagram (AC dia-
gram). Frequently occurring business procedures are cap-
tured by the adoptions of reusable workflow patterns. With
formally defined semantics using distributed system theory
of happens-before ordering, process behavior can be me-
chanically analyzed at design time. A completely specified
model is automatically converted to a workflow by an iter-
ative traversal algorithm that maps an AC diagram to an
XML workflow specification. The spec can then be executed
by an XML workflow engine to facilitate cross enterprise
ecommerce applications.

Keywords: XML, business modeling, activity control dia-
gram, workflow patterns, ECommerce

1. Introduction
With the explosive growth of the Internet and World Wide
Web, information systems with the capabilities of handling
cross enterprise business transactions over the Internet are
especially in strong demands. Traditional EDI based sys-
tems can only be described as proprietary, expensive, and
far from open. A flexible infrastructure and open system
architecture that can fully exploit the potential of the Inter-
net environment for business applications have been major
challenges for ecommerce and information system design-
ers. Encouragingly, the emergence of XML over the past
few years opens a promising passageway out of a chaotic
Internet world and into a semantic Web environment. Our
goal is to employ the best of XML technologies to provide a
structural framework and open architecture for the concep-
tual modeling and formal reasoning of business processes,
the generation of workflow specifications, as well as the au-
toexeccution of cross enterprise ecommerce activities, all
with sound theoretical basis. For business modeling, we de-

vised a new visual tool namedactivity-control diagram(AC
diagram) to specify business activities and the control re-
lationships among them. A rich set ofactivity notations
andcontrol notationsare provided for visual specification
of business processes. Each notation has its corresponding
XML specification. The formal semantics of the notations
are precisely specified using distributed system theory of
happens-before ordering to facilitate static analysis of the
process behavior and to enable the automatic generation of
XML workflow specification. The modeling process is fur-
ther simplified by capturing frequently occurring activity
and control relationships into workflow patterns. Instead of
modeling everything from scratch, users can choose to syn-
thesize a model by instantiating and connecting workflow
patterns. A completely specified model is automatically
converted to a workflow by an iterative traversal algorithm
that maps an AC diagram to an XML workflow specification
which can be executed by an XML workflow engine to fa-
cilitate cross enterprise ecommerce application integration
and information exchange.

The rest of the paper is organized as follows. Section 2
provides a survey of related issues and research work. Sec-
tion 3 introduces our framework and system architecture. In
Section 4, we gave intuitive description and examples of the
AC diagram and workflow patterns. In Section 6, we detail
the formal semantics and behavior analysis of AC diagram
followed by the presentation of conversion algorithm from
AC diagram to XML workflow. Preliminary implementa-
tion and comparative evaluation results shown in Section 7
demonstrate the feasibility and effectiveness of our frame-
work. Section 8 concludes the paper.

2. Related Work
The proliferation of W3C XML[14] has been phenome-
nal over the past few years. It has been widely used in
the business and ecommerce applications. The workflow
management community has adopted XML for quite some
time[9, 13, 11]. In most cases, XML were used for infor-
mation exchange and transformation. We took a step fur-

ther to employ XML as the internal representation of our
workflow specification which significantly improved the in-
teroperability of our workflow engine and execution sys-
tem. Research on inter-organizational workflow across mul-
tiple enterprise and/or heterogeneous platforms have been
the focus of attention in recent years[9, 10, 11]. The con-
cept of workflow patterns is not entirely new and has also
been argued as crucial in business modeling by many re-
searchers [1, 7]. Our work improves upon previous work
by modeling generic activities in addition to common focus
on control flow. Our workflow patterns are high level pat-
terns that combine activities and controls to form process
patterns while the themes of most previous work were cen-
tered around control patterns. Furthermore, we provide for-
mal semantics of workflow control constructs based on dis-
tributed system theory of happens-before ordering. Sound
theoretical basis enables us to conduct formal analysis of
workflow behavior to help the users in identifying design
and performance problems.

3. System Framework and Architecture
Based on the reference architecture suggested by WfMC
[4], we proposed an XML-based framework for cross en-
terprise business modeling and ecommerce application in-
tegration. As design criteria, we want to provide a high
level visual tool which is expressive enough and intuitively
appealing for business modeling. Users can define their pro-
cesses by drawing diagrams instead of using text-based def-
inition language. The semantics of the visual notations must
be formally specified such that the process behavior can be
exactly characterized and analyzed. The cross enterprise
workflow corresponding to the visual representation should
be automatically generated. The system must include prop-
erly designed workflow engine as well as transaction ser-
vices and middleware support for cross enterprise integra-
tion. The execution status must be monitored for its cor-
rectness and timeliness. In case of any problem, the system
must allow the dynamic modification and continuing execu-
tion of the workflow. The processing status and results must
be reported to the business users and/or partners.

To answer the challenges discussed above, we designed
a comprehensive architecture as depicted in Figure 1. The
architecture consists of seven closely interrelated modules.
XML is adopted for information representation and data ex-
change. Thebusiness modeling and process planing tools
are for workflow planning based on AC diagram. Users
can provide business rules and decision rules for the sys-
tem to follow. Workflow patternscan be instantiated and
included as components of a larger workflow. An AC di-
agram is automatically converted into an XML workflow
specification by theworkflow generatorwhich may consult
a repository of business data and partner information. The
XML workflow is an executable specification which can be

Process Control &
Workflow Execution

Engine

 Status Presentation
&

Report Generator

Process Monitoring &
Replanning Engine

Workflow
Generator

Invoke/
Result

Business Data
& Partner

Information

Decision Rules

Business Rules

Cross
Enterprise
Workflow
Patterns

User

Cross Enterprise XML Transaction Service

Cross Enterprise Application Integration Middleware

Business Modelling
&

 Process Planning Tools

business
process spec.

(AC Diagram)

Database

vendor E

Database

vendor D

Database

vendor C

Database

vendor B

Database

vendor A

workflow
spec. in
XML

process
refinement

spec. in XML

execution
status

execution
result

result
report

Figure 1. XML-based cross enterprise solu-
tion framework and system architecture.

processed by theprocess control and workflow execution
engine. Throughout the execution, the engine may invoke
arbitrary number of business operations and interact with
business partners with the help of thecross enterprise XML
transaction servicewhich is built on top of a middle layer
for cross enterprise application integration. The workflow
execution status is continuously monitored by theprocess
monitoring and replanning enginewhich may dynamically
adjust and refine the workflow in case of any difficulties.
The refinement specification is sent to the workflow gener-
ator to generate a refined workflow for continuous or reexe-
cution of the workflow. All intermediate and final execution
results are passed to thestatus presentation and report gen-
erator for generating summary reports. In this paper, we
discuss the business modeling and process planing tools as
well as the workflow generator.

4. Activity-Control Diagram
Our business modeling framework can be depicted as the
layered diagram in Figure 2. At the base layer is our XML
workflow specification which is directly executable by the
workflow engines. The center layer is the modeling tool
AC diagram consisting of activity notations and control no-

Activity NotationsControl Notations

Workflow Patterns

Activity Control Diagram

Bussiness Modeling

XML Workfow Specification

Figure 2. Business modeling framework with
AC diagram and workflow patterns.

tations. Users can use them directly and/or instantiate work-
flow patterns. In a way similar to design patterns [6], work-
flow patterns are meant to be reusable structures that can be
easily instantiated and interconnected. In this section, we
provide intuitive description of the AC diagram with illus-
trating examples. Formal semantics and workflow patterns
will be given in later sections.

An AC diagram consists of a set of activity notations and
control notations, as well as a set ofrelationshipsrepresent-
ing the flow and dependency between them. The activity
notations are used to model business activities. Instead of
enumerating all kinds of activities, we propose the use of
generic activities as shown in Figure 3. START and END
are used for starting up and closing down a business pro-
cess. DISPLAY is for reporting execution status and pro-
cessing results. RETRIEVAL and INFORMATION repre-
sent one-way information flow while EXCHANGE is used
to denote two-way information exchange. INTEGRATION
is for multi-way information join. TRANSFORMATION is
used to convert information from one form to another. DE-
CISION is for deciding the next proper way to go among
several alternatives. MODULE is a subdiagram that forms
a self-contained, properly interfaced unit. CUSTOM is re-
served for defining customized activities. Finally, INVOKE
invokes a customized activity which is normally a partner
and/or task specific application invocation.

The notations presented in Figure 4 provide a rich set of
workflow control structures for defining complex business
process. We provide intuitive descriptions in this section
and leave the formal semantics to Section 6. Each con-
trol notation connects a set of input activities to a set of
output activities and enforces a well-defined execution se-
mantics among them. SEQUENCE is the simplest control
which regulates activities one after another. OR represents
a set of alternatives such that the execution can follow any
one of them. A different path can be taken if the previ-
ously chosen one fails. XOR is similar to OR except for
the constraint that only one of the alternatives can be cho-
sen. AND denotes a set of activities that all must be car-
ried out. PRIORITY is like OR with preferences explicitly

Start

CustomModule

TransformationIntegration

Infomation

Invoke

Decision

Display

ExchangeRetrieval

End

Figure 3. The activity notations.

PRIORITY_JOIN
1
2
3
n

SEQUENCE
OR AND

XOR PRIORITY
1
32n

COUNT

n

LOOP

module

AND_JOIN

OR_JOINCHOICE
T

F

COUNT_JOIN

n

CONDITION

C1
C2Cn

Figure 4. The control notations.

specified. Lower priority alternatives can not be started un-
less all higher priority alternatives have been executed and
failed. COUNT is like a counting AND which denotes the
requirement to execute at leastn activities out of all alter-
natives. The numbern must be smaller or equal to the num-
ber of alternatives. CHOICE denotes a conditional branch-
ing where the choice of an alternative is determined by a
boolean condition. CONDITION is a generalized CHOICE
where the selection of alternatives is determined by gener-
alized conditions rather than a boolean condition. It also
has the property of AND since all branches with successful
conditions must be executed. Except for the SEQUENCE,
all seven notations above are collectively referred to assplit
structuresthat connect one input activity to multiple out-
put activities. The next set of four notations are known as

Start

retrival

retrival

Invoke

Search
hotel

Search
flight

Reserve
hotel

Reserve
flight

Make
order

Cancel
order

Hotel not
found

Flight
not

found

Display

Display

End

Invoke

Invoke

Invoke

F

T

F

T

Figure 5. A travel planning AC diagram.

join structureswhich connect multiple input activities to a
single output activity. ORJOIN denotes that the success of
any input activity is good enough to trigger the output activ-
ity. AND JOIN means that all input activities must success
before starting the output activity. COUNTJOIN is like
a counting ANDJOIN. PRIORITYJOIN denotes that the
output activity can only be triggered by an input activity of
priority i if all higher priority input activities have been tried
and failed. Finally, LOOP is used to model the repeated ex-
ecution of a sub diagram represented as a module. The loop
continues as long as the loop condition is satisfied.

The notations are designed to be intuitive enough for
non-IT users to understand and use properly. Figure 5 is
an example of a travel planning AC diagram. For a business
trip to be arranged successfully, we must do both a flight
search and a hotel search. If proper flight and hotel can be
found, we can proceed with flight and hotel reservation. If
both activities end without any problem, we can go ahead to
make the order and finish the job. Otherwise, we may need
to cancel existing order and end the flow.

5. Workflow Patterns
Even though the activity and control notations are simple
enough to be used directly, some structures do show up re-
peatedly in the business modeling process. We capture these
frequently occurring structures into workflow patterns as
the building blocks for complex workflow design. A work-
flow pattern is a generic set of activity and control notations
structured according to a frequently occurring business sub-
process. Patterns are designed to be easily conceivable and
reusable such that a user can quickly identify their structural
meaning and recognize their usage. We have designed a rich
set of workflow patterns for various situations. Because of
the space limit, we present two representative patterns in
this section.

(a) Split-Join pattern (b) AND split AND join
pattern

.
.

.

.
.

.

split join

1

2

n

(c) PRIORITY split OR join pattern

.
.

.

(d) COUNT split OR join pattern

.
.

.n

Figure 6. The Split-Join patterns.

F

T

F

T

F

T

Figure 7. The And-Or pattern.

TheSplit-Join Patterns denote a family of patterns that
start with a split type control and end with a join type con-
trol as depicted in Figure 6(a). Several split and join control
notation pairs can be combined to form meaningful split-
join patterns. For example, Figure 6(b), (c), and (d) de-
note an AND split AND join, PRIORITY split OR join, and
COUNT split OR join pattern, respectively. An AND split
AND join pattern denotes the situation where a number of
activities that must all be carried out successfully. A PRI-
ORITY split OR join pattern corresponds to the situation
where a number of alternative activities can be taken to sat-
isfy the job requirement. But the user prefers some activities
over the others if possible.

Another example is theAnd-Or Pattern as depicted in
Figure 7. In here, we capture the situation that a set of sub-
tasks must all be done successfully to complete a task where
the successfulness of each subtask is determined based on
the execution result of each subtask. Any failure of the sub-
tasks will result in the failure of the original task. As a mat-
ter of fact, the travel planning example presented in Figure 5
is designed based on the and-or pattern.

6. Semantics, Analysis and Conversion
In this section, we formally define the semantics of our
notations based on distributed system theory of happens-
before ordering[8]. In the following definitions, we use the
notationa → b to denote the ordering thata happens-before
b. We also useA andC to denote the set of activity notations
and control notations, respectively.

Definition 1 (Preliminaries)
Several notations are needed throughout the definitions.
start(a) is the start time of the activitya.
finish(a) is the end time of the activitya.
exec(a) is to execute the activitya.
repeat(m, c) is to repetitively execute modulem

whenever the conditionc is true.
success(a) to denote that activitya has been suc-

cessfully completed.
fail(a) to denote that the execution of activitya

has failed.

Definition 2 (AC Diagram)
An AC Diagram is a triple (A,C,R) where A =
{a1, a2, . . . , an|∀i, ai ∈ A} is the activity set, C =
{c1, c2, . . . , cm|∀i, ci ∈ C} is the control set, and R =
{(I, c, O)|I ⊆ A,O ⊆ A, c ∈ C} is the relationship set.

Definition 3 (Activity)
An activity is a tuple(aid, atype, P, c, t) where
aid is the unique identifier of the activity.
atype is the type of the activity as depicted in Figure 3.
P is the set of parameters.
c is a constrain expression.
t is an optional deadline.

Definition 4 (Control)
A control is a tuple(cid, ctype, I, O, d, t) where
cid is the unique identifier of the control.
ctype is the type of the control as depicted in Figure 4.
I is the input activity set.
O is the output activity set.
d is an ordered set of condition(s) (for CHOICE,

CONDITION, and LOOP) or a count (for
COUNT and COUNTJOIN).

t is an optional deadline.

Definition 5 (Ordering)
To adopt the happens-before ordering, we define a notation
to denote the successive execution of two activities. More
specifically, the fact that the execution of activityo should
follow the completion of activityi is defined and denoted as

Order(i, o) = finish(i) ≤ start(o)∧
∀x ∈ A, o → x ⇒ start(o) < start(x)

Definition 6 (SEQUENCE)
A SEQUENCE is a control of the form
(cid, SEQUENCE, {i}, {o}, null, t) with the following
semantics.

success(i) ⇒ exec(o) ∧Order(i, o)

Definition 7 (OR)
An OR is a control of the form
(cid, OR, {i}, {o1, . . . , on}, null, t) with the following
semantics.

success(i) ⇒ ∃k, 1 ≤ k ≤ n, exec(ok)∧Order(i, ok)

Definition 8 (AND)
An AND is a control of the form
(cid, AND, {i}, {o1, . . . , on}, null, t) with the follow-
ing semantics.

success(i) ⇒ ∀k, 1 ≤ k ≤ n, exec(ok)∧Order(i, ok)

Definition 9 (XOR)
An XOR is a control of the form
(cid, XOR, {i}, {o1, . . . , on}, null, t) with the follow-
ing semantics.

success(i) ⇒
∃k, 1 ≤ k ≤ n, exec(ok) ∧Order(i, ok)

∧ ∀j 6= k, 1 ≤ j ≤ n,¬exec(oj)

Definition 10 (PRIORITY)
A PRIORITY is a control of the form
(cid, PRIORITY, {i}, {o1, . . . , on}, null, t). Let on+1

be a dummy action such thatsuccess(on+1) = true. Then
the semantic can be described as follows.

success(i) ⇒
∃k, 1 ≤ k ≤ n + 1, exec(ok) ∧Order(i, ok)
∧success(ok)∧(∀j, 1 ≤ j < k, exec(oj)∧fail(oj))

Definition 11 (COUNT)
A COUNT is a control of the form(cid, COUNT, {i}, O =
{o1, . . . , on}, count, t) with the following semantics.

success(i) ⇒ ∃S ⊆ O, |S| = count∧
(∀j ∈ S, exec(j) ∧ Order(i, oj))

Definition 12 (CHOICE)
A CHOICE is a control of the form
(cid, CHOICE, {i}, {oT , oF }, d, t) with the following
semantics.

success(i) ⇒
((d = true) ⇒ exec(oT) ∧Order(i, oT))

∨ ((d = false) ⇒ exec(oF) ∧Order(i, oF))

Definition 13 (CONDITION)
A CONDITION is a control of the form
(cid, CONDITION, {i}, {o1, . . . , on}, {d1, . . . , dn}, t)
with the following semantics.

success(i) ⇒ ∀k, 1 ≤ k ≤ n,

(dk = true) ⇒ exec(ok) ∧Order(i, ok)

Definition 14 (OR JOIN)
An OR JOIN is a control of the form
(cid, OR JOIN, {i1, . . . , in}, {o}, null, t) with the fol-
lowing semantics.

(∃k, 1 ≤ k ≤ n, success(ik) ∧ k = a)
⇒ exec(o) ∧ Order(ia, o)

Definition 15 (AND JOIN)
An AND JOIN is a control of the form
(cid, AND JOIN, {i1, . . . , in}, {o}, null, t) with the
following semantics.

(∀k, 1 ≤ k ≤ n, success(ik))
⇒ exec(o) ∧ ∀j, 1 ≤ j ≤ n, Order(ij , o)

Definition 16 (COUNT JOIN)
A COUNT JOIN is a control of the form
(cid, COUNT JOIN, I = {i1, . . . , in}, {o}, count, t)
with the following semantics.

(∃S ⊆ I, |S| = count ∧ ∀j ∈ S, success(ij))
⇒ exec(o) ∧ ∀j ∈ S, Order(ij , o)

Definition 17 (PRIORITY JOIN)
A PRIORITY JOIN is a control of the form
(cid, PRIORITY JOIN, {i1, . . . , in}, {o}, null, t). Let
in+1 be a dummy action such thatsuccess(in+1) = true.
Then the semantic can be described as follows.

(∃k, 1 ≤ k ≤ n + 1, success(ik) ∧ k = a∧
(∀j, 1 ≤ j < k, fail(ij)))

⇒ exec(o) ∧ Order(ia, o)

Definition 18 (LOOP)
A LOOP is a control of the form
(cid, LOOP, {i}, {o,m}, d, t) where m is a module.
The semantics can be described as follows.

success(i) ⇒ ((d = true) ⇒
repeat(m, d)∧Order(i,m)∧exec(o)∧Order(m, o))

∨ ((d = false) ⇒ exec(o) ∧Order(i, o))

T

F

Figure 8. An example of the ExSplit-ConJoin
Inconsistencies.

Figure 9. The XML skeleton of an AC diagram.

With clearly defined semantics, formal behavior analysis
can be naturally conducted. For example, by following the
happens-before ordering, we can identify the longest or crit-
ical path in the diagram to estimate the time required for ex-
ecuting the workflow. Another important type of analysis is
to discover semantic inconsistencies in an AC diagram. We
have identified several classes of inconsistencies. For exam-
ple, theExSplit-ConJoin Inconsistenciesare the patterns
that connect an exclusive split (CHOICE, XOR or PRIOR-
ITY) with a concurrent join (ANDJOIN or COUNTJOIN
with count> 1) since an exclusive split only allows one al-
ternative to be executed while a concurrent join needs more
than one inputs to be successfully completed. Figure 8 is
an example that connects a CHOICE with an ANDJOIN
which is clearly inconsistent since it is impossible for both
inputs of the ANDJOIN to succeed. The inconsistency
analysis can help the users in identifying design problems.

After a business process has been modeled as an AC dia-
gram, our next goal is to automatically convert the diagram
into an XML workflow specification. This is done by first
giving each notation (activity and control) its corresponding
XML specification, and then design an algorithm to perform
the conversion. Because of the space limit, we only present
the XML skeleton of the AC diagram (denoted as a Busi-
nessTransaction) in Figure 9.

XML
document

Activity Control Diagram

All control
notations have been
processed?

Set Root;
distance = 0;

All control
notations of current
diatance have been
processed?

Process the input set
of the control
notation

Yes

Process the output
set of the control
notation

Add the control
notation to the
control_set

Add a relation to the
relation_set

Yes

Make Document

Get next control
notation at the
current distance

distance = distance + 1

No

No

Figure 10. AC diagram to XML workflow spec-
ification conversion algorithm.

The algorithm for converting an AC diagram to its corre-
sponding XML workflow specification is presented in Fig-
ure 10. The algorithm takes an essentially breadth-first ap-
proach to process the activity and control notations level by
level. For each control notation, the input set is processed
first, followed by the output set, then finally the control it-
self. After the processing of each control notation, a relation
is added to the relationship set. The algorithm then proceeds
to the next control at the same level or advances to the next
level if all controls at the current level have been processed.

7. Prototype and Evaluation
To evaluate the usefulness and performance of our ap-
proach, we have implemented a prototype workflow engine
using Java, DOM, XQuery, and XML related APIs. The
organization of the engine is depicted in Figure 11. The
Engine Control Centeris responsible for taking the XML
workflow specification as input, control the execution of
the workflow, and generate the final execution report. The
XML specification is validated by theDOM Parserto gen-
erate the corresponding DOM tree for further processing.
TheControl Processoris the key component for maintain-
ing the proper semantics of the control notations. TheActiv-
ity Processortakes an activity node with associated param-
eters and invokes proper procedures for executing the activ-
ity. Finally, theStatus Monitoring & Recordingcomponent
is to monitor the workflow execution status and record in-
termediate results for other components to employ.

With the prototype implementation, we compare the AC
diagram with two commercially available workflow man-

XML DOC

DOM Parser Control
Processor

Activity
 Processor

Status
monitoring &

recording

Report

Workflow Engine

Control Processor
workflow
schedule
process

 control
 dispatcher

Set and
Get flow
status

assign
activity
notation

DOM Tree

Engine
Control
Center

Figure 11. The Workflow Engine.

AC Dia-
gram

DEM PDE

Theoretical basis happen-
before

high level
Petri-net

OOAG

No. links 12 22 14
No. activities 10 14 10
Activity and
control

yes yes no

Types of controls plenty few few
Types of activi-
ties

plenty few N/A

Representation XML proprietary proprietary
Behavior analy-
sis

happens-
before

Petri-net proprietary

Model complex-
ity

simple complex simple

Table 1. Comparison of AC Diagram, DEM,
and PDE.

agement tools, the Agentflow from FlowRing Tech Corp[5]
and the EZ-Modeler from DynaFlow Inc.[3]. Agentflow
employs a proprietary process definition tool namedPro-
cess Designer Engineer(PDE) while EX-Modeler uses the
popular business modeling toolBaan IV DEM[12]. We
therefore conduct a preliminary comparison of AC diagram
with PDE and DEM by using all three of them in modeling
the travel planning example in Figure 5. The result is shown
in Table 1. In general, the modeling primitives of DEM and
PDE can all be covered by the activity and control nota-
tions of AC Diagram but not vise versa. For example, the
PRIORITY, COUNTJOIN, and PRIORITYJOIN control
notations do not have counterparts in either DEM or PDE.
Another advantage of the AC Diagram is the use of XML
as workflow and data representation formats. The adoption
of XML helps us significantly in the design of workflow
engine for cross-enterprise application integration.

For performance evaluation, we designed a scalable AC

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 4 6 8 10 12 14
Number of Activities

Ex
ecu

tio
n T

im
e(m

s)

local

net

Figure 12. The performance of the workflow
engine on local machine vs over network.

83%

15% 2%0%

activity

parse

control

overhead

Figure 13. The execution time percentage on
different parts of the workflow engine.

diagram and measured the execution time on a local vs net-
work environment. For local execution, all activity and con-
trol invocations were done on the same machine. For net-
work execution, all activities were carried out on remote
machines. The purpose was to simulate cross-enterprise ex-
ecution. Figure 12 shows that the network execution time
was close to the local execution time which demonstrates
the efficiency of the workflow engine. We also measured
the percentage of time spent on different parts of the work-
flow and the overhead. We can observe in Figure 13 that
over 85% of time were spent on real work (i.e. activities
and controls) and less than 15% of time was spent on pars-
ing XML. The remaining overhead is negligible.

8. Conclusions and Future Work
We have proposed an XML-based framework for cross en-
terprise electronic commerce applications. AC diagram and
workflow patterns are used for business modeling and work-
flow automation. Happens-before ordering is employed
for specifying the formal semantics of the notations and
for behavior analysis. A prototype workflow engine is de-

signed and implemented to evaluate the feasibility and per-
formance of our approach. Comparative evaluation and
experimental results show that AC diagram and workflow
patterns are expressive, easy to use, and efficiently imple-
mentable with very low execution overhead.

One of the problem we encountered is that our notations
are generic and therefore need to be instantiated according
to different business semantics. For a fixed implementa-
tion of the workflow engine, we need to pass enough pa-
rameters to properly instantiate a generic notation to the
right business semantics. To this end, we plan to design a
new approach of executing the workflow by using dynamic
agents[2] that can be dynamically associated with different
knowledge bases for changing business environments. We
also plan to develop transaction management mechanism
such that a business process can be designated to execute
in transaction mode with ACID guarantee.

References
[1] W. Aalst, A. van der, B. Hofstede, and A. Kiepuszewski. Ad-

vanced workflow patterns. In7th Intl. Conf. on Cooperative
Information Systems (CoopIS 2000), pages 18–29, 2000.

[2] Q. Chen, P. Chundi, U. Dayal, and M. Hsu. Dynamic-agents.
Intl. J. on Cooperative Information Systems, 1999.

[3] DynaFlow Inc. EZ-Process Suite, 2004.
[4] L. Fischer, editor.The Workflow Handbook 2004. The Work-

flow Management Coalition, 2004.
[5] Flowring Technology Corp. Agentflow- Product White Pa-

per, 2004.
[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[7] B. Kiepuszewski, A. Hofstede, and W. van der Aalst. Fun-
damentals of control flow in workflows.Acta Informatica,
39(3):143–209, 2003.

[8] L. Lamport. Time, clocks, and the ordering of events in
a distributed system.Commun. ACM, 21(7):558–565, Jul
1978.

[9] K. Lenz and A. Oberweis. Modelling interorganizational
workflows with XML nets. InProc. 34th Hawaii Intl. Conf.
on System Sciences, Jan. 2001.

[10] J. Meng, S. Su, H. Lam, and A. Helal. Achieving dy-
namic inter-organizational workflow management by inte-
grating business processes. InAnnual Hawaii Intl. Conf. on
System Sciences (HICSS’02), 2002.

[11] G. Shegalov, M. Gillmann, and G. Weikum. XML-enabled
workflow management for e-services across heterogeneous
platforms.The VLDB Journal, 10(1):91–103, 2001.

[12] SSA Global. Baan IV DEM, 2004.
[13] W. van der Aalst and A. Kumar. XML based schema defini-

tion for support of inter-organizational workflow.Informa-
tion Systems Research, 14(1):23–47, 2003.

[14] W3C. The World Wide Web Consortium - Extensible
Markup Language (XML), 2004.

