
1 INTRODUCTION 

Computer simulations are indispensable in the design 
and analysis of complex dynamic systems, especially 
for the testing and validation of structural and 
functional behavior at different levels of details (L. 
Žlajpah, 2008). It is even more important for 
autonomous vehicle design since not only the vehicle 
status but also all possible interactions with 
surrounding objects must be taken into consideration. 
Most existing systems are restricted to limited aspects 
such as lane keeping, driving patterns, electronic 
systems, fleet control, etc. but fail to correspond with 
reality in complex and volatile environments (Ş. Y. 
Gelbal et al. 2017, P. Nilsson et al. 2017, Q. Li et al. 
2012, A. Marjovi et al. 2015). We proposed a CPVS-
based simulation framework for V2X and driving 
control in autonomous vehicles. The framework is 
built on top of ROS2 that integrates physical system, 
navigation control and sensor data on the vehicle with 
cyber system on Unity for scene generation, test data 
provisioning and vehicle status visualization. The 
simulation can be conducted in two modes: real-time 
scene rendering and vehicle monitoring mode for 
online simulation and visualization, as well as scene 

restoring mode for error analysis. A scene editor 
subsystem is provided to layout any desired scene and 
trigger the generation of simulated data for the testing 
and evaluation of simulated or physical vehicles. 
With special emphasis on cyber-physical interactions, 
the framework facilitates tight correspondence 
between simulated environment and reality which is 
the key to effective design, testing, and co-
optimization. 

The paper is organized as follows. Section 2 
presents existing CPVS and related systems for 
autonomous vehicles, especially ROS2 and Unity-
based systems. Section 3 describes the architectural 
design and system components of our CPVS-based 
simulation system. Section 4 continues with detail 
analysis of the key characteristics and main 
advantages. In Section 5, we discuss the 
implementation and evaluation of our framework. 
Section 6 concludes the paper. 

2 LITERATURE REVIEW 

CPS facilitates tight integration of virtual and 
physical systems on computing, communication, and 
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ABSTRACT: Autonomous vehicle technology has been advancing rapidly. Comprehensive testing is essential 
before road deployment. However, no test can cover every possible situation. Thus, a good simulation system 
is necessary. Most existing systems are restricted to limited aspects that fail to correspond with reality in 
complex and volatile environments. Cyber-Physical Vehicle System (CPVS) technology enables the simulation 
systems to integrate more closely with actual vehicles. Nevertheless, the behavior analysis and decision-making 
capabilities are still far from perfect. The proposed framework is based on CPVS that integrates physical sensors 
and mechanical components on vehicle with a ROS2-based cyber-system receiving messages through WAN 
for cooperative optimization. The messages are conformed to IEEE and SAE standards integrated with 
RealSense, Lidar, IMU sensor data and mechanical components information to display the vehicle status with 
Unity graphics in two modes: real-time scene rendering and vehicle monitoring mode for vehicle monitoring, 
and scene restoring mode for error analysis. We emphasize the cyber-physical interaction in which physical 
system serves feedback data for model building and scene construction while cyber system tests the controller 
with various simulated scenes. A scene editor subsystem is provided to visually layout static/moving objects on 
a virtual plane to construct any desired scene and trigger Unity to generate simulated sensor data for evaluating 
the reactions of simulated or physical vehicle. The CPVS is used in the design of an autonomous ground vehicle 
(AGV) simulated and tested using serval situations layout with the scene editor. Compared with testing the 
AGV in real environments, the result is highly satisfactory. 
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control to achieve stability, performance, reliability, 
robustness, and efficiency on many application 
domains (H. Wang, M. Xu et al., 2018). CPVS is the 
extension of CPS on ground, aerial, and maritime 
vehicles. It is more challenging due to the need to deal 
with not only surrounding objects but also complex 
issues such as weather, regulations and social 
interactions. The size and resource limits on vehicles 
make everything trickier. On-road deployment brings 
even more uncertainty. With tight integration of all 
modules and components between cyber and physical 
systems, CPVS facilitates close coordination and co-
optimization in both design and operation to meet the 
demanding requirements of autonomy, adaptability, 
reliability, effectiveness, robustness and safety as 
illustrated in Figure 1 (J. M. Bradley and E. M. 
Atkins, 2015). 

In our framework, ROS2 is chosen as the kernel of 
the physical system. ROS2 is a meta operating system 
and a set of tools for robots. It is highly versatile and 
very popular among roboticists ever since its first 
release (S. Macenski, T. Foote, B. Gerkey et al., 
2022). With its concise yet comprehensive 
considerations of embedded systems, diverse 
networks, real-time processing, security and product 
readiness, it is now widely used in the autonomous 
systems such as robots and AGVs. The cross-
platform support of ROS2 allows us to integrate 
seamlessly with Unity for the cyber system part of our 
CPVS framework. However, our framework is 
flexible enough to adopt other 3D simulation tools 
such as Gazebo and CoppelizSim (formely V-Rep). 
Most existing systems that integrate Unity and ROS2 
are restricted to limited functionalities or one-way 
communication (E. Sita, C. M. Horváth, T. 
Thomessen et al,. 2017; A. Hussein, F. García, and C. 
Olaverri-Monreal, 2018). Our CPVS-based 
framework achieves tight integration of cyber and 
physical systems for the design, simulation, testing 
and optimization of autonomous vehicles. 

The scope of AGV control has been extended from 
vehicle control to V2V (communicating with 
surrounding vehicles) to V2X (interacting with all 
objects on road such as traffic signals and 
pedestrians). With increasing need of V2X 
communication, the interoperability of vehicles and 
objects of different nations, brands and models must 

be established. International standards such as IEEE 
802.11p and SEA J2735 are becoming more mature 
and popular (SAE, 2022). Our system abides by the 
international standards above to cover V2X. 
 

3 SYSTEM DESCRIPTION 

A. Framework 
The CPVS-based framework we proposed and 
implemented is built on top of ROS2 and Unity as 
illustrated in Figure 2. ROS2 is the operation platform 
of the physical system to support navigation control, 
object recognition, and all sensor modules. The cyber 
system is modeled and visualized by Unity. A 
common ROS2 substrate is used for the connection 
and message exchange between the two. A scene 
editor subsystem is provided to design test scenarios 
and trigger the object generator in Unity to construct 
corresponding simulated scenes for testing and 
evaluation. More details in the following sections.  

1) ROS2 
The physical system (vehicle) is composed of 
multiple ROS2 nodes to manage underlying 
mechanical components as well as different types of 
on-vehicle sensors for camera image capturing, IMU 
data collection and filtering, voltage measurement, 
wheel speed detection/control, etc. The information 
feedback from the physical system is crucial. After 
applying the control commands, the ROS2 nodes can 
capture vehicle status information such as wheel 
speed, turning angle, acceleration and other data for 
the cyber system to reconstruct vehicle state 
dynamically on the simulator GUI. This can be used 
for system modeling and monitoring to facilitate 
system design, decision making, testing and co-
optimization. 

2) Unity Game Engine 
The cyber system is driven by the Unity game engine. 
Upon receiving the data captured and transmitted 
from ROS2, the Unity engine compares and adjusts 
the cyber vehicle state to truthfully represent the 
physical vehicle so that the simulation and analysis 
results can be more reliable and useful. 

Figure 1. Cyber-Physical Vehicle System concepts. 
Figure 2. The proposed CPVS system architecture. 



  For more comprehensive simulation, our system 
can reconstruct not only the dynamic vehicle state 
such as coordinate, orientation, acceleration and 
trajectory, but also the interactions of the vehicle with 
surrounding objects. This is achieved by a set of 
virtual sensors provided by our CPVS system. For 
example, a virtual RealSense camera can simulate 
and render the image and depth data similar to a real 
camera. A virtual LiDAR can reflect the distance 
between objects in the simulated scene and render it 
with PhysicsRaycast in Unity. 
  The flexibility and versatility of Unity on scene 
construction enable us to achieve high diversity in 
simulation. Simple scenes can be constructed with 
built-in obstacles in Unity for initial testing. For 
complex scenes in real world, we can import 3D 
models built by tools such as AutoCAD, Blander, etc. 
as well as the rich 3D model resources provided by 
the open-source community. With model importing 
function, our system can potentially simulate any real 
world scene to significantly extend the coverage of 
testing with very low cost. 

3) ROS2 and UNITY Connection 
The connection between cyber and physical systems 
is done through message exchange between ROS2 
and Unity. The message header contains information 
such as ID,  timestamp, data format, encoding, etc. 
Control and sensing data such as motor control 
commands, data from various sensors, and calculated 
output are transmitted in the message payload. The 
message transmission is through the LAN using the 
official Unity-Robotics-Hub (Unity Technologies, 
2022). 

B. V2X 
Compared with the information collected by sensors, 
the data provided by V2X is richer and more accurate, 
which is of great value to the prediction and decision 
making in AGV. V2X can also provide field of vision 
of obscured objects and blind spots through 
intermediate vehicles. Most existing V2X simulators 
are aimed at the testing and verification of 
communication protocols. To test the operation of the 
AGV control system in V2X environment, existing 
test sites are very rare and expensive, and almost all 
of them are closed sites. As an important feature of 
our framework, we introduce V2X into our system to 
test the AGV control responses on V2X events. Our 
message format is defined based on the Basic Safety 
Message format released by SEA, without the fields 
that are not used in our system, such as Brake Applied 
Status as presented in Table 1. 
 

C. Real-Time Scenes Rendering and Vehicle 
Monitoring Mode 

This is one of the two primary operation modes 
provided by the cyber system. When Unity receives 
the physical- system data provided by ROS2, it 

restores the current state of the vehicle and 
surrounding scenes in the simulator. The speed, 
acceleration, and attitude of the vehicle are 
determined by the IMU, and the wheel speed, battery 
voltage, system power, temperature, etc. can be 
obtained from corresponding sensors. Driving 
environment data, including other vehicles, 
pedestrians, traffic signs, obstacles, etc., can be 
detected not only by cameras and LiDAR, but also 
from V2X information which allow us to create more 
accurate scenes. 
  It is essential to correctly model and simulate the 
interactions of the AGV control system with all other 
objects in the driving environment so as to make 
proper decisions. Under this mode, the cyber system 
can present the users with detailed physical data of 
the vehicle as well as all interactions with other 
objects in real time. In addition to facilitating remote 
real-time monitoring, a great opportunity for the 
optimization of the AGV decision-making system is 
at hand. 

D. Scene Restoring Mode 
The second primary mode of the cyber system is to 
record and store essential data during real-time 
simulation and rendering so that critical scenarios can 
be reconstructed repeatedly for controller adjustment 
and system optimization. The stored information can 
also be used on other controllers for the purposes of 
comparison and evaluation. System optimization is 
not limited to current controller on the vehicle. It can 
be applied to test the controllers in all stages of system 
design, even on the optimization of mechanical 
structure. 

E. Scene Editor Subsystem 
To achieve comprehensive testing of the control 
system, solely relying on the test data recorded by 
actual vehicles is not enough. The cost of collecting 
test data for all possible scenarios is prohibitively 
high. Some experimental vehicles may not even be 
allowed to test on the road without legal approval. 
  For this reason, we propose a Scene Editor 
Subsystem that can design and edit test scenarios. 
Through this system, a scene containing multiple 
dynamic and static objects, such as an intersection 
with cars and pedestrians, can be edited with a 

TABLE 1. V2X Message Packet Definition 
    

Data Element Format unit 
Vehicle ID Text  
Position    Vector3 m 
Position accuracy  Float m 
Liner Speed Vector3 m/sec 
Liner acceleration Float m/sec 
Heading Float rad 
Turn angle   Float rad 
Turn rate Float rad/sec 
Control status Text  
Vehicle size Vector3 m 



concise and friendly user interface to generate a 
corresponding script. Unity engine can simulate the 
test scenario through running the script and analyze if 
the simulated AGV meets the expected control 
results. 
  As illustrated in Figure 3, after designing the layout 
and arranging the movement of all objects in the 
scene editor subsystem, the generated script can be 
executed by Unity to create the scene dynamically. 
They provide the driving environment data for the 
simulated vehicle on ROS2 for further simulation and 
control. Simulation results can be visualized in 
different ways as demonstrated in Figure 4.  

4 SYSTEM CHARACTERISTICS 

A. Control System Evaluation 
When testing on the simulator, the focus is often on 
whether it can truthfully reflect the actual running 
state and provide reference information for 
optimization. During the testing of controller, if the 
thresholds of proper responses can be determined 
according to the test data, then an evaluation function 
can be devised to measure the controller performance. 
To the best of our knowledge, neither the current 
simulation software nor the test equipment for self-
driving cars can offer this function. 

The advantage of CPVS is that the physical and 
cyber systems are closely integrated, and various 
information in both systems can be exchanged 

comprehensively. For example, if we want to test the 
decision-making of an AGV control system in 
response to a sudden obstacle in V2X environment. 
Existing simulation software can only simulate roads 
with different types of traffic flow or generate V2X 
information independently on the road. The proposed 
CPVS architecture can record the sensing time of the 
control system, the control commands output, vehicle 
movement data, etc. during the execution of the 
script. Upon judging whether the controller achieves 
the designated task, it can also evaluate the quality of 
the decision process. For the above mentioned case, 
we can evaluate if the vehicle always stops at a certain 
distance before the obstacle. Other metrics such as the 
time point when the object is recognized, the time and 
cost of calculation, and the vehicle deceleration 
behavior, etc. also need to be analyzed to set proper 
thresholds. By obtaining these detailed information, 
the system components can be optimized separately 
and as a whole. 

B. Cooperative Optimization 
The main purposes of using a traditional simulator is 
to investigate and evaluate control system behavior 
for controller optimization through simulated system 
operation and data analysis. In our CPVS 
architecture, however, not only the control system 
and mechanical structure on the physical system can 
be optimized, but also the restoration of the simulated 
vehicle and the generation of the simulated 
environment in the cyber system. 

Take the development process of an AGV as an 
example. After setting the vehicle mission, the target 
driving environment and terrain can be generated in 
the cyber system. Then the designated vehicle model 
can be tested and adjusted to meet the requirements. 
After model adjustment, various simulated sensors 
can also be configured and installed on the virtual 
model. With satisfactory simulation results, the actual 
vehicle can be built based on the successful model in 
the cyber system. In addition to cost saving, the 
simulations also ensure a certain level of applicability 
and reliability of the physical vehicle. After vehicle 
construction is completed, physical system can 
provide true data with loaded sensors and compare it 
with that of simulated vehicle. System identification 
is used to ensure the consistency between the 
simulated vehicle with the actual vehicle, so as to 
match simulation to reality. This makes the 
subsequent design and optimization of the control 
system in the simulator more compatible with the 
actual vehicle. After the deployment of the vehicle 
loaded with the control system, the operating 
environment data collected by the vehicle can be used 
to further optimize the cyber system, such as 
introducing real-world noise to the sensors and V2X 
data of the simulator, or making the characteristics of 
generated scenes more similar to real world 
environments and so on. 

Figure 3. Scene editor subsystem (left) and scenes construction 
in Unity (right). 

Figure 4. ROS2 visualization. Pointcloud (left), camera (top 
right) and object ID (bottom right). 



The above is a legitimate development process 
using our CPVS framework but not the only one. Our 
system can offer invaluable assistance to many AGV 
design, testing, and manufacturing tasks. In 
particular, the physical system and cyber system can 
be continuously improved at different stages and 
layers to achieve cooperative optimization. 

C. Decision-Making 
In addition to the co-operation of the cyber and 
physical systems, our system can also generate 
possible future scenes dynamically based on certain 
conditions and parameter changes, then predict the 
decision in advance according to the situation at hand 
or ahead of time. This allow the system to make more 
resourceful and reliable decisions. 

5 EXPERIMENTS 

A. Platform Description 

1) Physical System 
The physical system includes the physical vehicle 
with ROS2 kernel for the control system. The 
controller consists of upper level calculation and 
control algorithms with lower level motor control and 
sensor receptors. The ROS2 employed is the Foxy 
Fitzroy release. NVIDIA Jetson Nano Developer Kit 
is chosen as the development platform. Each 
component is modeled by a ROS2 node including 
each sensor, remote control, navigation, and Unity 
connector. The sensors include RealSense, 2D 
LiDAR, IMU, wheel-speed sensor, voltage sensor, 
and power sensors. 

2) Cyber System 
The cyber system consists of a Unity 20203.11f 
kernel on Win10 driven by Intel i7-7700 CPU with 16 
GB RAM. The simulator consists of two parts, a 
simulated vehicle and an object generator.  

The simulated vehicle is the 3D model of the target 
vehicle under simulation. They have the same 
structure and simulated components with the same set 
of simulated sensors: a virtual RealSense, virtual 2D 
LiDAR and virtual IMU. 

The object generator generates static and dynamic 
objects based on the script exported from the Scene 
Editor Subsystem. The script is an XML file with 
object definitions, object types, coordinates, size, and 
the designed scenes along the timeline. Each scene 
contains all the objects in the scene and 
where/when/how each object moves. Unity executes 
the script and renders the objects accordingly to 
create the scene dynamically. 

To simulate V2X environment, each object in the 
running scene, including pedestrians, vehicles, traffic 
signals, trees and obstacles, has a corresponding data 
publisher to publish data according to Table 1. 

The simulated vehicle receives the commands 
from the remote control or autonomous controller on 
the physical vehicle to determine how to move. When 
both the simulated vehicle and the physical vehicle 
receive the commands and act accordingly, the 
system is in real-time monitoring mode. If only the 
simulated vehicle is operating without corresponding 
physical vehicle, it is in scene restoring mode. With 
various scene editing, restoration and simulation, we 
can test the vehicle system comprehensively with 
very low cost. 

B. Validation Use Cases 
We design a test scene on the Scene Editor Subsystem 
and export the script to Unity. The simulated vehicle 
accepts control commands and sensor data from 
Unity without corresponding physical vehicle. With 
cyber only vehicle, we can easily and repeatedly test 
the controller and modify the code if necessary. The 
initial controller and corresponding AGV trajectory is 
depicted as blue line in Figure 5. 

To correspond closely with physical vehicle, a 
calibration process is necessary so that the control 
properties of both systems can be consistent. In this 
case, we need to calibrate wheel speed, DC motor 
response time and the PI control parameters of the 
servo motor. After calibration, the cyber vehicle and 
physical vehicle are now in line with each other as 
illustrated by the orange and green lines in Figure 5.  

We now apply the controller on the cyber vehicle 
to the physical vehicle and arrange a real-world scene 
which mimics the script scene. The trajectory and 
control output of the physical vehicle coincide closely 
with that of the cyber vehicle as illustrated in Figure 
6. The controller designed and optimized in the cyber 
system can be used directly on the physical system 
without modification or adjustment, which 
demonstrates the effectiveness of our CPVS-based 
simulation framework.  

The integration of V2X information is an 
important feature of our framework. As illustrated in 
Figure 7, upon traversing on a target path (blue line), 
the on-vehicle LiDAR can only detect visible 
obstacles within sensing range (the purple circle) and 
trigger dynamic obstacle avoidance locally (the green 
line). With V2X information (the orange dots), the 
control system can recognize obstacles along the 
target path far ahead of local sensing range to 

Figure 5. Simulated AGV trajectory and control output. 



facilitate global optimal path planning instead of local 
adjustment.  

6 CONCLUSIONS 

  We proposed and implemented a CPVS-based 
framework for autonomous vehicle development and 
simulation. The framework integrates ROS2-based 
physical system with Unity-based cyber system such 
that the control system developed, simulated and 
tested on the cyber system can be used directly on the 
physical system without modification yet still 
exhibits almost identical behavior. A Scene Editor 
Subsystem makes the framework even more versatile 
and useful.  
  The framework can be extended with more tools 
for validation and performance evaluation. We plan 
to devise precise metrics to measure the effectiveness 
of simulation and the quality of control system. 
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Figure 6. Scenario for demonstrating the close correspondence 
between cyber and physical vehicle in our system. 

Figure 7. V2X information for the control system to plan ahead.


